Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классификация точечных групп

В табл. 1 дана сводка изложенной выше классификации точечных групп. Включены лишь те группы, которые, как представляется, могут быть существенны при изучении структуры молекул.  [c.22]

Классификация точечных групп  [c.69]

Сколько полюсов может иметь точечная группа и каковы их порядки Решение этой задачи позволит получить классификацию точечных групп, состоящих из собственных вращений.  [c.70]

Классификация точечных групп 71  [c.71]

Так как во всех ранее опубликованных книгах использовались точечные группы даже при классификации вращательных уровней, то невольно возникает вопрос почему же имеющаяся классификация вращательных уровней по типам симметрии точечных групп оказалась верной, если операции точечных групп вовсе не действуют на вращательные переменные В частности, может возникнуть еще и такой вопрос согласуется ли утверждение во введении, согласно которому вращательные спектры неполярных молекул возникают только при использовании группы МС, с результатами работ [128 —132, 141, 166, 177 ], в которых теория таких спектров построена на базе точечных групп Ответ на оба этих вопроса один и тот же и заключается в том, что группа МС, построенная для равновесной конфигурации (т. е. для отдельной потенциальной ямы), или группа МС жесткой молекулы, изоморфна точечной группе симметрии этой равновесной конфигурации. Следовательно, все результаты, полученные при использовании этих двух групп, совершенно эквивалентны друг другу. Именно поэтому до гл. 12, пока рассмат-  [c.6]


Книга адресована читателю, серьезно изучающему молекулярную спектроскопию, и хотя предполагается, что он знаком с основными постулатами квантовой механики, теория групп рассматривается здесь из первых принципов. Идея группы молекулярной симметрии вводится в начале книги (гл. 2) после определения понятия группы, основанного на использовании перестановок. Далее следует рассмотрение точечных групп и групп вращения. Определение представлений групп и общие соображения об использовании представлений для классификации состояний молекул даны в гл. 4 и 5. В гл. 6 рассматривается симметрия точного гамильтониана молекул и подчеркивается роль перестановок тождественных ядер и вращения молекулы как целого. Чтобы классифицировать состояния молекул, необходимо выбрать подходящие приближенные волновые функции п понять, как они преобразуются под действием операций симметрии. Преобразование волновых функций и координат, от которых волновые функции зависят, особенно углов Эйлера и нормальных координат, под действием операций симметрии подробно описывается в гл. 7, 8 и 10. В гл. 9 рассматриваются определение группы молекулярной симметрии и применение этой группы к различным системам. В гл. 11 определяется приближенная симметрия и описывается применение групп приближенной симметрии (таких, как точечная группа молекул), а также групп точной симметрии (таких, как группа молекулярной симметрии) для классификации уровней энергии, исследования возмущений, при выводе правил отбора для оптических  [c.9]

Читатель, уже знакомый с абстрактной теорией групп, использованием точечных групп и формой волновых функций молекул, может после гл. 2 сразу перейти к гл. 9, в которой дается определение группы молекулярной симметрии, а затем к гл. 10— 12, в которых обсуждается применение групп молекулярной симметрии. Центральной главой книги является гл. 11, в которой подробно рассматривается связь между группой молекулярной симметрии и точечными группами молекул (см., в частности, рис. 11.3—11.5). В этой главе подчеркивается полезность групп молекулярной симметрии для классификации состояний жестких молекул, т. е. молекул, не туннелирующих между различными конформациями.  [c.10]

Структурную симметрию как молекул, так и макроскопических тел можно описать, используя представления об осях вращения и плоскостях отражения. Например, молекула метала и тетраэдр имеют одну и ту же структурную симметрию. Эту симметрию можно определить, относя молекулу к некоторой точечной группе, состоящей из определенного набора операций вращения и отражения (или элементов), для молекулы метана такая группа обозначается символом Та. В физике молекул симметрия широко используется для классификации уровней энергии молекул. В этой книге подробно рассматриваются различные виды симметрии, поскольку точечная группа симметрии — не единственный вид симметрии, присущий молекулам. Рассматривается также применение различных групп симметрии для классификации состояний молекул и для изучения молекулярных процессов.  [c.11]


В качестве простого примера влияния вращения молекулы на ее спектр можно рассмотреть молекулу метана. Она имеет тетраэдрическую равновесную геометрию в основном электронном состоянии, и для классификации колебательных состояний применяется точечная группа Та. Проводя рассмотрение на основе точечной группы симметрии, можно показать, что молекула метана не имеет электрического дипольного момента и разрешенного в электрическом дипольном приближении вращательного спектра. Однако центробежное искажение вращающейся молекулы может привести к появлению отличного от пуля электрического дипольного момента, поэтому молекула метана будет иметь вращательный спектр ). Группа молекулярной симметрии метана позволяет понять, какие ровибронные состояния могут взаимодействовать в результате центробежного искажения молекулы, и определить, какие вращательные переходы могут появляться в спектре.  [c.13]

Нахождение действия операций точечной группы на молекулу в равновесной конфигурации не представляет затруднений иначе обстоит дело с применением операций точечной группы к волновым функциям (см. [121], разд. 5.5). Элементы точечной группы молекулы приводят к вращению и (или) отражению вибронных координат (электронные координаты и координаты смещений ядер при колебаниях их вблизи равновесного положения) относительно фиксированных в молекуле осей при этом фиксированные оси остаются неподвижными. При такой интерпретации элементов группы мы будем называть ее точечной группой молекулы, в отличие от простой точечной группы трехмерного объекта, в которой операции представляют собой вращение или отражение объекта в целом. Точечная группа молекулы используется для классификации вибронных состояний молекулы действие элементов группы подробно рассматривается в гл. 11.  [c.45]

Для жестких нелинейных молекул группа всех операций Оа является молекулярной точечной группой. Операции Оь входят в молекулярную группу вращений, однако в некоторых случаях группа всех операций Оь является только подгруппой молекулярной группы вращений. Операции Ос входят в группу приближенной симметрии, элементы которой только переставляют спины (но не координаты) ядер мы здесь не будем рассматривать эту группу приближенной симметрии (группа перестановок ядерных спинов может быть использована для классификации ядерных спиновых состояний). Для молекулы воды мы получаем  [c.303]

ГД6 Р АА ) вв )(со... (NN ) является операцией перестановок ядер-ных спинов. Из этого соотношения мы видим, что операция точечной группы i является истинной операцией симметрии не только вибронного гамильтониана, как все остальные операции симметрии точечной группы,— она является операцией симметрии ровибронного гамильтониана (см. задачу 11.1). Операция i не является истинной операций симметрии полного гамильтониана из-за наличия в нем членов взаимодействия, содержащих ядерные спипы, однако такие члены обычно очень малы. Операция точечной группы i отличается от операции Е и не дает классификацию уровней по четности. Классификация энергетических уровней молекул по индексам gnu является приближенной и теряет смысл при учете взаимодействий, зависящих от ядерных спинов ).  [c.306]

С целью упрощения уравнений рассмотрим классификацию по симметрии колебательно-вращательных волновых функций основного электронного состояния Л = О молекулы H N. В этом частном случае можно довольно легко проследить связь между группой МС и молекулярной точечной группой.  [c.369]

Классификация колебательных волновых функций линейной молекулы по типам симметрии соответствующей точечной группы не представляет труда. Для вырожденных колебаний под действием операций (12.32) углы а преобразуются следующим образом  [c.374]

Классификация электронных состояний многоатомных молекул по типам различных точечных групп основана на допущении, что ядра фиксированы в положении равновесия (см. выше). Если ядра фиксированы в положении, отличающемся от равновесного, и если симметрия в неравновесном положении иная, чем в равновесном, то и типы электронных волновых функций будут иными. Однако ясно, что электронные собственные функции в двух конфигурациях должны однозначно соответствовать друг другу. Поэтому можно, по крайней мере при малых смещениях (колебаниях), классифицировать электронные волновые функции по типам равновесных конфигураций. Тем не менее следует заметить, что в вырожденных электронных состояниях при определенных смещениях от равновесной конфигурации потенциальные поверхности могут расщепляться, так как в смещенных конфигурациях симметрия может быть ниже и вырожденные типы могут не существовать (разд. 2). Проблема корреляции между типами различных точечных групп рассмотрена в гл. III, разд. 1.  [c.19]


S) приводит к тому, что в результате поворота на 2я спиновая функция меняет знак (так как е я) — полуцелом S). Поэтому такие спиновые функции являются двузначными и не принадлежат к какому-либо из типов, к которым принадлежат простые однозначные спиновые функции. Для их классификации необходимо расширить нормальные точечные группы. Типы и характеры таких расширенных точечных групп (или двойных групп) представлены в приложении I. В случае группы непрерывного  [c.22]

Настоящее издание дополнено параграфом, посвященным классификации точечных групп по Вейлю, а также доказателы твом теоремы Вигнера—Эккарта, применение которой иллюстрируется на примере эффекта Зеемана.  [c.2]

Недавно ко мне обратилось московское издательство УРСС , которое специализируется по переводам научной и учебной литературы на испанский язык, а в последнее время активно издает монографии и учебники по физике и математике и на русском языке, с предложением опубликовать второе издание нашей книги, Я воспользовался этой возможностью, чтобы осуществить наши старые планы. Общая структура книги, рассчитанная на первое знакомство с предметом, полностью сохранена. Добавлено лишь несколько вопросов, имеющих принципиальное значение. В частности, добавлен параграф, посвященный классификации точечных групп по Вейлю, где задача об отыскании всех точечных фупп сводится к решению простых алгебраических уравнений в целых числах. Восполнено упущение первого варианта книга — приведено доказательство теоремы Вигнера—Эккарта, играющей важную роль в приложениях. Теорема Вигнера—Эккарта дает общее выражение для матричного элемента неинвариантного оператора на базисных функциях неприводимого представления. Применение теоремы Вигнера—Эккарта иллюстрируется на примере теории эффекта Зеемана.  [c.5]

Классификация нормальных колебаний молекулы по типам симметрии. Молекула, состояхцая из N атомов, имеет 3IV степеней свободы (N — число атомов в молекуле), из к-рых 3N — 6 связаны с относит, движением атомов — их колебаниями, а остальные 6 относятся к вращениям и аоступат. движениям молекулы в целом. Для симметричных молекул смещения атомов в данном колебании или вращении (трансляции) относятся к определённому типу симметрии точечной группы или ПИ-группы. Число степеней свободы типа симэлет рни определяется по ф-ле  [c.516]

Кроме точечных групп, к молекулам применяются только три группы вращения D2, Doo и К. Группа К используется двояко либо как молекулярная трехмерная группа чистых вращений, которую мы обозначим К(М), или как пространственная трехмерная группа чистых вращений К(П). Группа К(М) состоит нз прап1ений молекулы вокруг всех осей, проходящих через центр масс молекулы и фиксированных в молекуле, а группа К(П) состоит из вращений молекулы вокруг всех осей, проходящих через центр масс молекулы и фиксированных в пространстве. Эти две группы различаются и используются различными способами для классификации состояний молекулы.  [c.45]

Понятно, что порядок ППИЯ-группы может быть очень большим, намного больше порядка любой конечной точечной группы. Поэтому часто использовать ППИЯ-группу для классификации мо-  [c.222]

Группа МС для молекулы получается отбрасыванием из группы ППИЯ всех нереализуемых элементов. Нереализуемый элемент — это такой элемент, который взаимообращает пронумерованные равновесные формы молекулы тогда, когда эти формы разделяются непреодолимым барьером потенциальной поверхности. Непреодолимый барьер — это барьер, через который не может произойти туннельный переход за время проведения эксперимента. Туннельный эффект нельзя наблюдать при низком разрешении прибора, однако при высоком разрешении он может проявиться. Группа МС, которая используется при анализе результатов, будет тогда различной для двух случаев, так как элементы, связанные с туннельным переходом, являются реализуемыми в последнем случае, но не реализуются в первом. Если бы для фтористого метила можно было наблюдать расщепление, вызываемое инверсионным туннельным переходом (возможно, в высоковозбужденных колебательных состояниях), то при классификации симметрии расщепленных уровней грунна МС стала бы одинаковой с группой ППИЯ, так как все ее элементы были бы реализуемы. Точно так же, как для определения точечной группы молекулы надо знать равновесную ядерную конфигурацию, так и для определения группы МС надо 1нать равновесную ядерную конфигурацию и ситуацию с колебательно-вращательным туннельным переходом.  [c.228]

В этой главе вводятся и поясняются понятия группы приближенной симметрии и приближенного квантового числа. Важными группами приближенной симметрии являются молекулярная точечная группа и молекулярная группа вращений, которые дают нам весьма полезный приближенный способ классификации уровней по типам симметрии группа молекулярной симметрии (МС) и пространственная группа К(П) обеспечивают точную классификацию уровней. Далее рассматриваются взаимодействия уровней энергии молекулы, а группа точной симметрии используется для определения отличных от пуля членов возмущения и правил отбора для взаимодействия уровней. Приближенные квантовые числа и приближенную классификацию уровней по симметрии можно использовать также для выявления сильных возмущений уровней. Затем мы выведем правила отбора для однофотонных электрических дипольных переходов с использованием классификации уровней по квантовым числам и по приближенным и точным типам симметрии. Далее мы обсудим запрещенные переходы, а в конце этой главы кратко рассмотрим магнитные дипольные переходы, электрические квадрупольные переходы, многофотоиные процессы (включая комбинационное рассеяние света) и эффекты Зеемана и Штарка.  [c.294]


Точечная группа симметрии для равновесной конфигурации ядер в молекуле определяется легко (см. гл. 3). При использовании точечной группы для преобразования волновых функций молекулы элементы точечной группы рассматриваются как вра-н1ения и отражения вибронных переменных (колебательных смещений и электронных координат) в системе координат, закрепленной в молекуле (см, разд. 5.5 и рис. 5.7 в книге [121]). Молекулярная точечная группа является группой симметрии вибронного гамильтониана, так как расстояния между частицами при действии операций этой группы остаются неизменными. Операции молекулярной точечной группы не влияют на углы Эйлера, компоненты углового момента Ja и ядерные спиновые координаты. Если в гамильтониане мы пренебрегаем членами, связывающими вибронные координаты с другими степенями свободы (особенно с членами кориолисова взаимодействия и центробежного искажения), то мы получаем приближенный гамильтониан, который коммутирует с элементами молекулярной точечной группы. Следовательно, молекулярная точечная группа является группой приближенной симметрии полного молекулярного гамильтониана, а возмущения типа кориолисова взаимодействия и центробежного искажения являются основными эффектами, понижающими симметрию гамильтониана. Поэтому молекулярная точечная группа обычно используется для классификации колебательных и электронных состояний и для изучения вибронных взаимодействий, но не используется для классификации ровибронных состояний. Точечная группа является группой точной симметрии вибронного (и электронного) гавильтониана.  [c.299]

Теперь мы можем обобщить понятие молекулярной точечной группы на случай нежестких молекул, не принадлежащих какой-нибудь одной точечной группе симметрии. Группу, являющуюся обобщением молекулярной точечной группы, мы будем называть молекулярной вибронной группой. Элементы этой группы получаются следующим образом. После того как построена молекулярная группа симметрии (или, если необходимо, расширенная молекулярная группа симметрии, которая рассмотрена в гл. 12), каждый элемент группы О переносится в молекулярную вибронную группу, но при этом не учитываются преобразования углов Эйлера и перестановки ядерпых спинов, вызываемые этим элементом. Это достигается в формуле (11.17) путем исключения из нее операций 0 и ОГ, отвечающих преобразованию углов Эйлера и перестановке ядерных спинов соответственно. Для жесткой нелинейной молекулы соотношение (11.17) обеспечивает лучший способ определения молекулярной точечной группы. Вообще молекулярная вибронная группа используется для классификации колебательных и электронных состояний и для изучения вибронных взаимодействий, когда не возникает никаких вопросов относительно углов Эйлера или ядерпых спинов.  [c.307]

Теперь рассмотрим классификацию колебательных и электронных волновых, функций по типам симметрии молекулярной точечной группы для линейной молекулы. Элементами точечной группы Dooh являются  [c.373]

Классификация электронных волновых функций линейной молекулы по типам симметрии точечной группы имеет одну интересную особенность, к рассмотрению которой мы теперь перейдем. Электронные волновые функции и энергии Ve получаются при решении электронного волнового уравнения для конкретной конфигурации ядер [см. уравнение (8.2)]. Решение этого уравнения для различных конфигураций ядер дает зависимость Ve от коораинат ядер, которая в сумме с энергией Vnn отталкивания ядер дает функцию Fn потенциальной энергии ядер в зависимости от их координат для каждого электронного состояния [см. (8.5)]. Для линейной конфигурации H N основное электронное состояние относится к типу 2, а первое возбужденное электронное состояние — к типу П. Однако если молекула изогнутая, то она принадлежит к точечной группе s и ее электронные состояния невырождены. Электронное П-состояние  [c.374]

Для классификации ровибронных и вибронных состояний линейной молекулы используются различные группы симметрии, группа МС и молекулярная точечная группа соответственно. Однако можно ввести расширенную группу молекулярной симметрии (РМС) [24], кото- рая может быть использована для КЛаС- H N с симметрией сле-сификации обоих видов функций. Такая дует опустить индексы g и п. классификация объединяет классификацию вибронных состояний по типам симметрии точечной группы (т. е. il, П, А и т. д. с добавлением индексов gnu для молекул с симметрией D =h) и ровибронных состояний по типам симметрии группы МС (т. е. -f- или — с добавлением индексов а и s для молекул с симметрией Do h). Группа РМС не дает новой схемы классификации состояний, но позволяет проводить классификацию всех волновых функций и вывести правила отбора для вибронных и ровибронных переходов в рамках единой группы точно так же, как волновые функции нелинейной молекулы классифицируются в рамках единой группы МС.  [c.375]

Нежесткой называют молекулу, поверхность потенциальной энергии Fn которой в данном электронном состоянии имеет более одного возможного минимума. В результате молекула может переходить из одной формы в другую, и если время перехода достаточно коротко, то можно экспериментально наблюдать расщепления или сдвиги уровней, вызываемые этим переходом (туннелированием). Как мы видели в гл. 9, порядок группы МС нежесткой молекулы обычно выше, чем порядок точечной группы отдельных форм. Чтобы использовать эту группу для классификации энергетических уровней молекулы по симметрии, следует сначала определить подходящий набор молекулярных координат, найти гамильтониан нулевого порядка в этих координатах и дать классификацию собственных функций гамильтониана нулевого порядка по типам симметрии группы МС, которая и будет искомой классификацией.  [c.380]

По аналогии с виброниой группой, введенной как обобщение молекулярной точечной группы для классификации вибронных состояний нежестких молекул, можно ввести также молекуляр-  [c.409]

В работе В. В. Лохина (1963) было отмечено удобство классификации анизотропных сред по их точечным группам симметрии. Показано, что любой тензор, инвариантный относительно данной точечной группы, можно представить в виде линейной комбинации тензоров, составленных при помощи тензорных операций из некоторого минимального набора тензоров. Л. И. Седов и В. В. Лохин (1963) выявили такие системы тензоров для 7 типов текстур и всех 32 классов кристаллов. Установлен общий вид формул для тензоров произвольного ранга, являющихся нелинейными тензорными функциями скалярных и тензорных функций произвольного ранга (см. также В. В. Лохин и Л. И. Седов, 1963). Показано, что для построения тензорных функций необходимо и достаточно знание полной системы функционально независимых совместных инвариантов рассматриваемых тензоров и тензорных аргументов. Выявлена структура тензорных функций, описывающих состояние текстур и некоторых классов кристаллов (В. В. Лохин, 1963).  [c.74]

С другой стороны, что касается элементов симметрии, то они ограничены восемью типами пять осей вращения 1, 2, 3, 4, 6 1 — центр вращения 2=/п — плоскость симметрии 4—инверсионная ось. Сочетания этих элементов позволяют получить 32 класса симметрии кристаллов (или же точечных групп). Для обозначения указанных 32 классов кристаллов используют два вида условных обозначений символы Шенфлиса и символы Германа—Могена, как это показано в табл. 1-3-2. Подробное описание классификации кристаллов следует смотреть в специальной литературе по кристаллографии.  [c.27]


Для нелинейных многоатомных молекул классификация электронных состояний по типам симметрии может быть произведена в соответствии с принадлежностью равновесной конфигурации молекулы к сшре-деленной точечной группе конечного потядка (см. табл.) и аналогична классификации колебат. состоя-ний по типам симметрии (см. Нормальные колебания молекул) при этом необходимо, однако, учитывать, что, согласно Яна — Теллера теореме, вырожденные электронные состояния нелинейных молекул неустойчивы, о чем упоминалось выше. Правила отбора для переходов между электронными состояниями также аналогичны правилам перехода между колебат. состояниями. В соответствии с типами симметрии состояний отдельных электронов можно рассматривать для нелинейной молекулы электронные оболочки и их заполнение и характеризовать электронное состояние молекулы заданием электронной конфигурации. Для невырожденных состояний отдельных элект1)онов получаются оболочки, заполняемые 2 электронами, для дважды вырожденных — 4 электронами и для трижды вырожденных — 6 электронами.  [c.296]

Классификация электронных состояний, В уравнении Шредингера для движения электронов (1,5) величина Уе обозначает потенциальную энергию электронов в поле ядер (неподвижных). Как указано выше, в первом приближении (которое, как правило, является хорошим) мы можем рассматривать движение электронов при равновесном положении ядер. Поэтому функция Уе У 1меет ту же симметрию, что и молекул(а в определенном электронном состоя- ти. Таким образом, уравнение Шредингера, описывающее электронное ч движение, не изменяется под действием операции симметрии. Следовательно, 4 лектронная волновая функция невырожденного состояния может быть 4 олько симметричной или антисимметричной по отношению к каждой из оне-. Ч аций симметрии, допускаемых симметрией молекулы в равновесном ноло- ении, т. е. она либо остается неизменной, либо только меняет знак. В случае вырожденных состояний собственная функция может превращаться только в линейную комбинацию двух (или более) вырожденных волновых функций, так что квадрат волновой функции, представляющий собой электронную плотность, остается неизменным. Различные волновые функции могут вести себя по-разному по отношению к различным операциям симметрии данной точечной группы но, как правило, не все элементы симметрии точечной группы независимы друг от друга, поэтому возможны лишь определенные комбинации поведения волновых функций по отношению к операциям симметрии. Такие комбинации свойств симметрии называются типами симметрии (см. [23], стр. 118). На языке теории групп это неприводимые представления ])ассматриваемой точечной группы. Каждая электронная волновая функция, а следовательно, и каждое электронное состояние принадлежат к одному из возможных типов симметрии (представлений) точечной группы молекулы  [c.17]

В предшествующем тексте и в таблицах приложения I рассмотрена классификация электронных состояний только для стандартных (геометрических) точечных групп. Необходимо учитывать, что молекулы, в которых переход из одной равновесной конфигурации в другую является возможным (нежесткие молекулы см. стр. 13), могут относиться к другим группам симметрии, более высокого порядка. Типы нескольких из этих групп рассмотрены Майерсом и Уилсоном [922 J, Лонге-Хиггинсом [767], Хоугеном [575] и Стоуном [1169]. Нам не целесообразно останавливаться на этом вопросе, так как в электронных спектрах многоатомных молекул, по крайней мере до сих пор, были достаточно изучены только такие нежесткие молекулы, у которых группа симметрии изоморфна с одной из стандартных точечных групп. Хорошим примером служит молекула NH , для которой, как уже упоминалось, точечная группа, учитывающая инверсию, изоморфна с группой />зй, т. е. колебательные состояния (разд. 2) можно классифицировать по типам этой точечной группы.  [c.19]

Свойства симметрии вращательных уровней. В томе 11 ([23], стр. 477) дана классификация вращательных уровней сферического волчка в соответствии с вращательной подгруппой рассматриваемой точечной группы. Хоуген [573] считает, что, как п в случае молекул типа симметричного волчка, можно, а для некоторых задач и необходимо классифицировать эти уровни в соответствии с полной симметриехг точечной группы. Хоуген нашел, что вращательные волновые функции сферического волчка ведут себя подобно четным типам DJg непрерывной вращательно-инверсионной группы-Кл (табл. 55, приложение I). Эти типы (2/- -1)-кратно вырождены. Их надо подразделить на типы точечной группы рассматриваел10Й молекулы. Здесь будут рассмотрены только тетраэдрические молекулы точечной группы Тй, которая имеет типы Ах, А2, Е, Ех, Е2- Это возможные типы вращательных уровней. Корреляция тинов DJg и типов при небольших значениях / приведена в табл. 58 (приложение IV). Самый нижний уровень / = О имеет тин Ах, следующий уровень / = 1 имеет тин Ех, т. е. в любом приближении ни один из этих уровней не может расщепляться. При / = 2 получаем Е + а при / — 3 получаем А Л- Ех -Н Ео, т. е. здесь возможны расщепления (см. ниже).  [c.101]


Смотреть страницы где упоминается термин Классификация точечных групп : [c.16]    [c.516]    [c.516]    [c.517]    [c.11]    [c.128]    [c.364]    [c.370]    [c.373]    [c.378]    [c.410]    [c.120]    [c.126]    [c.91]   
Смотреть главы в:

Применение теории групп в квантовой механике Изд.4  -> Классификация точечных групп



ПОИСК



Точечные группы СТ, С, С3 и С. Точечные группы t), Сд



© 2025 Mash-xxl.info Реклама на сайте