Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейное параметрически устойчиво

Для исследования динамических систем с параметрическими возмущениями можно использовать методы исследования нели- нейных динамических систем, так как линейные параметрические системы являются нелинейными в пространстве своих параметров. В этой главе рассмотрим методы исследования и решения задач в общей постановке о динамической устойчивости систем с одной и многими степенями свободы  [c.198]


Исследование устойчивости линейной параметрической системы состоит в выделении областей возбуждения, которые в литературе называются областями динамической неустойчивости. Эти обла-  [c.206]

Эволюция вектора у (t) в пространстве U будет представлять собой диффузионный марковский процесс. Однако стохастические уравнения (24) для линейных параметрических систем оказываются нелинейными по отношению к части из компонентов вектора у (t). Поэтому уравнения относительно моментных функций образуют бесконечную систему. В уравнения, содержащие производные от моментных функций низших порядков, войдут моментные функции более высокого порядка. В связи с этим возникает проблема замыкания, т. е. приближенного сведения бесконечной системы дифференциальных уравнений к конечной системе. Кроме того, после замыкания уравнения будут содержать смешанные моменты процессов х (О и z (f), которые не входят в определение устойчивости по совокупности моментных функций. Поэтому вводят модифицированное определение устойчивости.  [c.304]

Известно, что в отсутствие параметрического резонанса нижнее положение равновесия маятника устойчиво в линейном приближении. Устойчивость этого положения равновесия с учетом нелинейных эффектов (при дополнительном предположении отсутствия резонансов порядков три и четыре) может быть доказана лишь с помощью теорем об инвариантных торах.  [c.380]

Пусть А — линейное симплектическое отображение канонического пространства Отображение А называется устойчивым, если последовательность А ограничена. Отображение А называется параметрически устойчивым, если все симплектические отображения, близкие к А, устойчивы.  [c.219]

Во второй части учебника изложены основные положения динамики стержней, дан вывод уравнений движения стержней в линейной и нелинейной постановке приведены уравнения малых колебаний пространственно-криволинейных стержней с изложением численных методов определения частот и форм колебаний. Большое внимание уделено неконсервативным задачам с изложением методов исследования динамической устойчивости малых колебаний. Рассмотрены параметрические и случайные колебания стержней. Приведены примеры численного решения прикладных задач с использованием ЭВМ.  [c.2]

Предварительные замечания. Большое число задач динамики механизмов сводится к анализу динамических моделей,,параметры которых изменяются во времени. Для решения этих задач могут быть использованы различные подходы [9, 21, 38, 41, 60, 61, 77, 78, 79], выбор которых во многом зависит от специфики исследуемой системы и поставленной цели динамического расчета. Ниже рассматривается одна из возможных аналогий между параметрическими колебаниями в исходной системе и вынужденными колебаниями в некоторой вспомогательной модели, названной условным осциллятором [21, 25, 28]. Основанный на этой аналогии метод оказывается хорошо приспособленным к кругу инженерных задач динамики механизмов. В частности, в рамках единого подхода удается исследовать параметрические явления, связанные с потерей динамической устойчивости системы, а также строить приближенные решения при медленных и резких изменениях параметров механизма. Метод условного осциллятора может быть отнесен к группе методов анализа линейных нестационарных систем, содержаш,их большой параметр [61, 77, 79].  [c.139]


Предварительные замечания. В своей практической деятельности инженеру часто приходится сталкиваться с резонансом силового происхождения, который в линейных системах имеет место при совпадении какой-либо гармоники возмущающей силы с одной из собственных частот. Параметрический резонанс, возникающий при определенной пульсации параметров системы (например, приведенной массы или жесткости), требует достаточно тонкой частотной настройки и встречается значительно реже, поэтому нередко расценивается как несущественное и маловероятное побочное явление. Между тем, практика эксплуатации многих машин свидетельствует о том, что параметрический резонанс в ряде случаев не только является источником нарушений нормального функционирования механизмов, но может также приводить и к серьезным авариям, угрожающим безопасности обслуживающего персонала. В п. 16 мы уже упоминали об этом явлении, связанном с нарушениями условий динамической устойчивости.  [c.245]

Во-первых, резонанс силового происхождения представляет собой вынужденные колебания устойчивой системы, которые, в частности, могут иметь место и при нулевых начальных условиях. Параметрический резонанс — это проявление неустойчивости равновесного состояния, в силу чего система при нулевых начальных условиях остается в положении равновесия и только неизбежные начальные возмущения приводят к раскачке. Так, для системы, описываемой линейным дифференциальным уравнением второго порядка с периодическими коэффициентами, при параметрическом резонансе общее решение без учета диссипации имеет вид  [c.245]

В монографиях И. И. Гольденблата [19], В. В. Болотина [10] и др. приведены решения многих частных и общих задач динамической устойчивости конструкций при детерминированных параметрических возмущениях в линейной и нелинейной постановках.  [c.198]

Одной из первых работ, посвященных исследованию динамической устойчивости конструкций при случайных возмущениях, является работа об устойчивости системы с жидким наполнением 153]. Результаты дальнейшего исследования нами статистической динамики линейных и нелинейных параметрических систем приведены в этой и следующей главах.  [c.199]

Расхождение в результатах объясняется различием критериев устойчивости решений стохастических дифференциальных уравнений и выбором методики исследования. Отметим, что данная методика дает возможность исследовать приближенными методами движение систем в переходных режимах как при стационарных, так и нестационарных возмущениях, а в сочетании с методом статистической линеаризации перенести изложенные выше результаты на случай существенно нелинейных параметрических систем. В работе [54] исследование подобных систем приведено с использованием асимптотического метода и нестационарных уравнений ФПК. Из у.равнений (6.58), (6.59) следует, что наличие флюктуаций при линейных членах f н f приводит к увеличению дисперсии движения системы. Из рис. 70 видно, что наличие флюктуаций в нелинейных членах также приводит к изменению дисперсии системы по сравнению с системой с постоянными параметрами. Однако, как нетрудно показать из анализа выражения (6.54), увеличение дисперсии флюктуаций в нелинейных членах приводит к уменьшению дисперсии. В работе [27 ] рассмотрена проблема снижения резонансных амплитуд за счет введения флюктуаций при линейном члене /. При этом введение флюктуаций предполагалось кратковременным. Выражение (6.54) показывает новые возможности при решении подобных проблем в сочетании с принципом управления по возмущению (компенсация возмущений).  [c.249]

В качестве примера определим условия динамической устойчивости системы (6.105) в полосе частот 2 ( oj + toj). В этом случае, как это следует из непосредственного анализа уравнений (6.107), (6.108), наличие параметрического возмущения при нелинейных функциях от фазовых координат приводит к новому по сравнению с линейной моделью (5.73) динамическому эффекту — Субгармоническому комбинационному резонансу. Аналогично могут быть рассмотрены и другие полосы частот субгармонического комбинационного резонанса.  [c.272]


Интересно отметить, что решения (6), (7) и критерии устойчивости (8) распространяются также на случай параметрической системы с линейной упругой силой (у = 0). Как известно, решение задачи о параметрических колебаниях в линейной системе без учета свойств источника энергии позволяет установить лишь условия возникновения колебаний и определить границы области параметрического резонанса. Амплитуда колебаний остается неопределенной, обычно указывается, что она может неограниченно возрастать.  [c.91]

Том состоит из трех частей. В первой части изложена теория колебаний линейных систем с конечным числом степеней свободы, во второй — теория колебаний линейных распределенных систем. В них подробно рассмотрены методы расчета собственных частот и собственных форм колебаний, вынужденных и параметрически возбуждаемых колебаний, методы исследования устойчивости неконсервативных линейных систем. В третьей части изложена теория колебаний линейных систем с конечным числом степеней свободы и распределенных систем при случайных воздействиях.  [c.14]

Здесь А и С — инерционный и квазиупругий операторы, введенные в гл. IX О — линейный оператор, учитывающий параметрические силы в уравнениях нейтрального равновесия. Операторное уравнение динамической устойчивости получают путем объединения уравнений (22) и (23) и замены параметров нагрузки в операторе G заданными функциями времени  [c.248]

Для систем с параметрическим возбуждением характерные задачи заключаются в определении границ областей устойчивости и условий возникновения параметрического резонанса (в линейной постановке с учетом линейного сопротивления) определении амплитуд установившихся параметрических колебаний в зоне параметрического резонанса (в нелинейной постановке).  [c.23]

Если параметрическое возбуждение отлично от белого шума, анализ устойчивости существенно усложняется. Стационарный нормальный процесс с дробно-рациональной спектральной плотностью можно получить, пропуская белый шум через линейный фильтр с постоянными параметрами. В статье [65] было предложено расширять фазовое пространство с помощью переменных, описывающих процесс в системе фильтра, и исследовать устойчивость по отношению к моментным функциям в расширенном фазовом пространстве. Таким путем были построены области устойчивости для случайных процессов со скрытой периодичностью и обнаружены аналога побочных параметрических резонансов. Ряд примеров приведен в работе [8], где также дано сопоставление теоретических результатов с данными вычислительного эксперимента.  [c.531]

Итак, задача устойчивости цилиндрической оболочки сформулирована как краевая задача на собственные значения для системы дифференциальных уравнений с частными производными (6.4.1) — (6.4.5) при краевых условиях (6.4.6) и условии 2л -периодичности решения по угловой координате. Наименьшее из собственных значений этой задачи определяет критическую интенсивность внешней нагрузки, а соответствующая ему собственная вектор-функция — форму потери устойчивости. Параметрические члены уравнений нейтрального равновесия (6.4.1) в общем случае переменны и определяются путем интегрирования линейной системы уравнений осесимметричного изгиба (6.2.14) при краевых условиях (6.2.9). В выражениях для элементов матриц А, В коэффициентов этой системы (см. параграф 6.2) следует выполнить упрощения, соответствующие принятым допущениям о тонкостенности и пологости оболочки, а вектор-столбец / для рассматриваемого ниже случая нагружения оболочки равномерно распределенным внешним давлением интенсивности Р следует взять в виде  [c.185]

ЧУ-задача при ПДВ не эквивалентна, вообще говоря, ЧУ-задаче сохранения устойчивости даже при малых параметрических возмущениях. Данное положение имеет место уже в случае линейных автономных систем, которые, будучи частично устойчивыми при ПДВ, могут терять устойчивость даже при малом шевелении некоторых коэффициентов. Указанной ситуации нет в задаче устойчивости по отношению ко всем переменным.  [c.120]

Влияние одного или нескольких типов указанных выше (и, возможно, других) нелинейностей приводит к ограничению амплитуды параметрически возбуждаемых колебаний, а также к возможности существования периодических стационарных колебаний. Отметим, что наличие существенной диссипации может привести к устойчивым стационарным колебаниям в резонансной зоне как при нелинейном, так и линейном подходах.  [c.52]

Вопрос об устойчивости периодических движений линейных гамильтоновых систем подробно исследовался в работах М. Г. Крейна и В. А. Якубовича, результаты которых подытожены в совместной статье этих авторов (1963). Полученные ими результаты являются основой математической теории параметрического резонанса. М. Г. Крейн установил, что собственные частоты колебаний механических систем по отношению к параметрическому резонансу подразделяются на частоты первого и второго рода. Параметрический резонанс в классе гамильтоновых систем возможен лишь в случае, когда частота возмущения близка к одному из критических значений ( >j + ( л)/А , если и — собственнице частоты одного рода, и I (Оу — о>й I /М, если со и со — собственные частоты разного рода (здесь N — произвольное целое число). Указано, каким образом определяется род собственных частот. В. А, Якубовичем (1958) получены формулы для границ областей динамической неустойчивости, позволяющие, в частности, классифицировать указанные выше критические значения по степени их опасности .  [c.37]


Д. Р. Меркин (1956) исследовал устойчивость линейной системы, находящейся под действием только гироскопических сил. Рассмотрением характеристического уравнения он доказал, что для устойчивости равновесия такой системы необходимо и достаточно, чтобы определитель матрицы гироскопических коэффициентов 0. Показано также, что если на систему помимо гироскопических действуют и диссипативные силы с полной диссипацией, то положение равновесия всегда устойчиво в первом приближении. В. В. Румянцев (1957) показал, что положение равновесия нелинейной системы при указанных условиях асимптотически устойчиво по отношению к скоростям q i. В. М. Матросов (1959) обобщил эти результаты, доказав, что положение равновесия нелинейной системы устойчиво относительно qi и а всякое возмущенное движение асимптотически приближается к одному из положений равновесия qi = i, q = О, причем устойчивость сохраняется и при параметрических возмущениях.  [c.38]

Отметим, наконец, что уравнения в вариациях для периодических решений широкого класса нелинейных систем также представляют собой линейные дифференциальные уравнения с периодическими коэффициентами, которые часто могут быть истолкованы как уравнения параметрических колебаний. Такая связь между проблемой устойчивости и проблемой параметрических колебаний, естественно, не является случайной наличие неустойчивости движения нелинейной (не обязательно параметрической )  [c.97]

Метод малого параметра может быть применен к параметрическим задачам, в которых случайные функции входят в коэффициенты дифференциального уравнения. Некоторые задачи устойчивости линейных систем со случайно изменяющимися параметрами исследованы при помощи этого метода в работах [35, 38, 48]. В работе [16] рассмотрена задача, приводящая к уравнению  [c.539]

Из результатов 25 следует, что условия возникновения параметрического резонанса в линейной канонической системе с периодически меняющейся функцией Гамильтона состоят как раз в том, что соответствующее симплектическое преобразование фазового пространства перестает быть устойчивым. Из доказанной  [c.200]

Таким образом, линейная неустойчивость переходит во взрывную, вызванную взаимодействием параметрических связанных мод на диссипативной нелинейности (ст ди/дТ). Ограничение неустойчивости происходит за счет кубичной нелинейности в зависимости вязкости от температуры. Система (24.14) имеет устойчивое стационарное решение Ах = 2 = 3 которое и соответствует шестигранным призматическим ячейкам(см. рис. 24.1а).  [c.526]

Во второй — пятой главах рассмотрены задачи теории гамильтоновых систем и ее приложений. Вторая глава посвящена линейным гамильтоновым системам. Приводятся результаты Ляпунова об устойчивости линейных гамильтоновых систем с постоянными или периодическими коэффициентами. Для устойчивых систем в случае простых корней характеристического уравнения строятся конструктивные алгоритмы приведения системы к нормальным координатам. Тут же приводится теорема Ляпунова — Пуанкаре о характеристическом уравнении гамильтоновых систем и рассматривается задача о параметрическом резонансе в гамильтоновых системах, содержащих малые периодические возмущения. В последнем параграфе второй главы получены области параметрического резонанса в первом приближении по малому параметру и приведены необходимые расчетные формулы.  [c.11]

Если амплитуда возбуждающих вибраций находится в некотором интервале <С 02> то монотонно нарастающая с момента включения источника этих вибраций амплитуда д возбуждаемых волн достигает через некоторое время максимальной предельной величины, после чего волновое движение, возбуждаемое вибрациями, становится периодическим и устойчивым. При этом, в отличие от линейного случая малых амплитуд, гребни стоячих волн теряют свою синусоидальную форму и приобретают в моменты наибольшего поднятия характер относительно узких язычков, напоминающих капли, которые еще не успели оторваться. Связанное с такой формой колебаний усиленное растяжение поверхности жидкости вызывает повышенный декремент затухания, чем и обусловливается восстановление устойчивости параметрических колебаний при приближении к стационарному состоянию  [c.372]

Колебания, возникающие при резонансе п-го рода, иногда также называют автопараметрическими. Этот термин возник в связи с математическим аппаратом, при.меняемым при исследовании условий устойчивости двпншния при резонансе -го рода. При исследовании вопроса об устойчивости движения приходится рассматривать линейные дифференциальные уравнения с периодическими коэффициентами. Эти уравнения будут рассмотрены ниже, при изучении квазигармонических колебаний и параметрического резонанса.  [c.306]

В первом томе изложены современные методы aнaлитичe oгo исследования колебательных систем с конечным числом степеней свободы к линейные систем с распределенными параметрами. Дала теория устойчивости колебательных систем, приведены методы аналитического описания и анализа колебательных процессов. Приведены результаты новейших достижений, методы определения собственных частот и форм колебаний систем сложной структуры. Большое внимание уделено параметрическим и случайным колебаниям, ударным процессам и распространению волн, а также теории вибрационной надежности.  [c.4]

Система с двумя случайными параметрическими воздействиями. Применим модифицированный метод моментных функций к задаче об устойчивости уравнения (40), в котором процессы Фу (t) соответствуют зависимым экспоненциальнокоррелированным процессам. Эти процессы получаются, если зависимые белые шумы т)у (t) (42) пропустить через линейные фильтры  [c.309]

Изложены теория деформаций и напряжений, вариационные принципы, критерии и теории пластичности, теория ползучести, методы решения задач пластичности и ползучести прочность и разрушение, термолрочность механика композиционных материалов и конструкций (модели, прочность и деформативность) колебания механических систем с сосредоточенными и распределенными параметрами, включая азрогидромехаиические колебания, параметрические и автоколебания, нелинейные колебания, удар, принципы линейной и нелинейной виброизоляции устойчивость упругих и упрутогшастических механических систем.  [c.4]

Предположим, что векторное уравнение (5.2) соответстйует линейной однородной системе, а параметрическое воздействие у(/) представляет собой п-мерный стационарный гауссовский процесс. В ряде работ по стохастической устойчивости показано, что для линейных систем при стационарном гауссовском возбуждении устойчивость с вероятностью единица полностью определяется асимптотическими свойствами вторых моментов вектора X j i, Ха,. .., J jil, т. е. устойчивость почти наверное обеспечивается, если математическое ожидание вектора х и моментные функции второго порядка асимптотически стремятся к нулю 12, 28].  [c.136]

В шестой главе рассматриваются слоистые цилиндрические оболочки. Замкнутая система дифференциальных уравнений, описывающая в линейном приближении процесс деформирования слоистой упругой ортотропной композитной цилиндрической оболочки, получена из общей системы и использована при исследовании осесимметричного изгиба оболочки, нагруженной равномерно распределенным внутренним давлением. Выполнен параметрический анализ влияния поперечных сдвигов на интегральные (прогибы, усилия, моменты) и локальные (нагрузки начального разрушения) характеристики напряженно-деформирован-ного состояния. На примере этой задачи исследована зависимость решения от функционального параметра /(z) и показано, что в большинстве практически важных случаев этот параметр можно принять соответствующим квадратичной зависимости сдвиговых поперечных напряжений от нормальной координаты. В параграфе 6.4 дано решение задачи об устойчивости цилиндрической многослойной оболочки, нагруженной внешним давлением. Эта задача рассмотрена как на основе разработанных в настоящей монографии уравнений, так и на основе других вариантов уравнений устойчивости, приведенных в третьей ее главе. Выполнен параметрический анализ полученных решений, что позволило выявить и оценить влияние поперечных сдвиговых деформаций, обжатия нормали, кинематической неоднородности, моментности основного равновесного состояния на критические параметры устойчивости.  [c.14]


Эта задача подробно изучена в работах А. М. Ляпунова, М. Г. Крейпэ, В. А. Якубовича, В. М. Старжинского, Р1. М. Гель-фанда и В. Б. Лидского, Ю. Мозера и др. Полученные результаты изложены в монографии [97], где приведена и обширная библиография по устойчивости линейных систем с периодическими коэффициентами. Здесь мы ограничимся рассмотрением задачи о параметрическом резонансе для тех частных случаев, которые типичны для рассматриваемых далее конкретных задач небесной механики. Будем предполагать, что функция Гамильтона Н, соответствующая системе (1.1), имеет вид  [c.43]

Из резонансов, являющихся порождающими (на оси 0[а) для областей неустойчивости линейной системы, это только резонансы 2о)1 = N( 2, где Ж > 5 (в плоской и пространственной задачах), и 2 = ЫьУ2, где > 4 (в пространственной задаче), для периодических движений II типа. Из соответствующих этим резонансам точек на оси 0[х будут исходить очень узкие области неустойчивости (вообще говоря, области тем уже, чем больше N), которые при приближении к оси Ог сгущаются и перемежаются с областями устойчивости в линейном приближении. Согласно формулам (8.27), границы этих областей параметрического резонанса мало отличаются от квадратичных парабол, а подсчитанные для них величины б из (8.28) при достаточно малых а будут принимать только отрицательные значения следовательно, все параболы загнуты к оси Ое при достаточно малых р, и е.  [c.234]

В сущности это научная хрестоматия, посвященная одному из основных разделов механики и, если угодно, теории регулирования. С большим мастерством автор излагает практически все основные вопросы механических, а в ряде случаев и электрических колебаний с одной степенью свободы, линейных и нелинейных, консервативных и самовозбуждающихся, вынужденных и теряющих устойчивость вследствие параметрического резонанса. В долж ной мере освещаются исходные положения теории колебательных систем с двумя и несколькими степенями свободы.  [c.5]


Смотреть страницы где упоминается термин Линейное параметрически устойчиво : [c.196]    [c.150]    [c.510]    [c.67]    [c.225]    [c.624]    [c.70]    [c.276]    [c.234]   
Эргодические проблемы классической механики Регулярная и хаотическая динамика Том11 (1999) -- [ c.219 ]



ПОИСК



Линейное устойчивое

Ряд параметрический

Устойчивость линейная



© 2025 Mash-xxl.info Реклама на сайте