Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочки Изгиб осесимметричный

У.2. Дифференциальное уравнение изгиба образующей оболочки от осесимметричной нагрузки  [c.74]

Рассмотрим решение задачи устойчивости цилиндрической оболочки в классической постановке при осесимметричной форме потери устойчивости. Для получения однородного линеаризованного уравнения, описывающего такую форму потери устойчивости, воспользуемся широко известным уравнением изгиба цилиндрической оболочки при осесимметричной нагрузке. Это уравнение нетрудно получить из приведенных в 32 общих зависимостей  [c.258]


При решении задачи в обычной линейной постановке, когда уравнения равновесия формулируются для недеформированного элемента оболочки, начальный осесимметричный изгиб цилиндрической оболочки описывается уравнением (6.65) с учетом Т .  [c.263]

При расчете тонких оболочек (Л /R ) можно пренебречь их жесткостью при изгибе, считая, что они работают только на растяжение (сжатие). Рассматриваются оболочки постоянной толщины Л, срединная поверхность которых представляет собой поверхность вращения (рис. 9.28). Нагрузки, действующие на оболочку, являются осесимметричными. Если двумя смежными меридиональными и нормальными (на рис. 9.28 —коническими — ЛВС)сечениями выделить элемент, то по его граням будут действовать только главные напряжения меридиональные окружные ад. Эти напряжения по толщине стенки распределяются равномер-  [c.417]

Изгиб осесимметричных оболочек. Система дифференциальных уравнений для упруго-пластического деформирования тонкой осесимметричной оболочки может быть записана следующим образом (рис. 32)  [c.60]

Рассмотрим слоистую круговую ортотропную цилиндрическую оболочку, нагруженную осесимметрично распределенной нормальной поверхностной нагрузкой q x) и системой контурных нагрузок. Примем, что условия закрепления и нагружения краев оболочки не зависят от координаты причем контурные нагрузки не имеют угловой составляющей. В этом случае обращаются в нуль угловая составляющая вектора перемещений и все связанные с ней величины, а напряженно-деформированное состояние оболочки будет осесимметричным. Обращаясь к уравнениям (6.1.1) — (6.1.6), замечаем, что те из этих уравнений, которые связаны с угловой составляющей вектора перемещений, удовлетворяются тождественно, а остальные упрощаются в силу условия д/д<р = 0. Учитывая эти замечания, получаем из (6.1.1) — (6.1.6) замкнутую систему уравнений осесимметричного изгиба ортотропной цилиндрической слоистой оболочки, включающую в себя следующие группы зависимостей  [c.163]

РАЗРЕШАЮЩИЕ СИСТЕМЫ УРАВНЕНИЙ ИЗГИБА ОСЕСИММЕТРИЧНЫХ ОБОЛОЧЕК  [c.131]

Плодотворное использование теории функций комплексного переменного для исследования плоской задачи теории упругости, а также в теории кручения и изгиба упругих стержней. В дальнейшем эти методы оказались полезными для теории пластинок и оболочек и осесимметричных, а также контактных задач теории упругости. Они нашли успешное применение для решения некоторых упруго-пластических задач, задач вязкоупругости и др.  [c.245]


Полубезмоментная теория цилиндрических оболочек. Различают осесимметричное и неосесимметричное нагружение оболочек вращения. Осесимметричная нагрузка распределена равномерно по окружности (например, давление газов в цилиндре). При этом вдоль образующей цилиндра нагрузка может быть неравномерной (например, давление жидкости в вертикальном резервуаре). Неосесимметричная нагрузка распределена по окружности неравномерно (см., например, рис. 2.10). Осесимметричная нагрузка воспринимается преимущественно сопротивлением растяжению. При этом во многих случаях изгибными деформациями можно пренебречь и рещать задачу с помощью наиболее простой безмоментной теории. Неосесимметричная нагрузка воспринимается преимущественно сопротивлением изгибу. Однако в ряде случаев существенными могут быть также растяжение и кручение. В этих случаях задачу рещают с помощью моментной теории.  [c.24]

В местах резкого изменения жесткости стенок оболочки, сопряжения с днищами, около шпангоутов, а также при заметном изменении интенсивности нагрузки могут быть существенные деформации изгиба. Поэтому расчет по безмоментной теории, в которой пренебрегается сопротивлением стенок изгибу, в таких случаях приводит к большим погрешностям. Здесь напряжения вследствие изгиба нередко имеют тот же порядок, что и мембранные напряжения. В настоящей главе изложена теория расчета ортотропной цилиндрической оболочки при осесимметричном нагружении.  [c.203]

Осесимметричные оболочечные конструкции, изображенные на рис. 1.1(0, важны на практике так же, как и осесимметричные сплошные конструкции, однако здесь определяющие соотношения выводятся с использованием упрощающих предположений теории тонких оболочек. Теория осесимметричных тонких оболочек заполняет пробел между теорией изгиба и растяжения плоских пластин и теорией тонкостенных оболочечных элементов общего вида эта теория позволяет выявить ключевые аспекты, возникающие при исследовании оболочек общего вида.  [c.22]

Если же решение задачи теории упругости содержит иррациональные или трансцендентные функции от упругих постоянных, то решение соответствующей задачи теории вязкоупругости может вызвать определенные затруднения. В частности, решение осесимметричной задачи об изгибе цилиндрической оболочки содержит функции  [c.352]

ДЛЯ удовлетворения граничным условиям необходимо к частному решению w = добавлять решение однородного уравнения, которое затухает на длине порядка X. Таким образом, общая картина поведения круговой цилиндрической оболочки под действием осесимметричной нагрузки рисуется следующим образом. На большей части длины оболочки в ней реализуется безмоментное напряженное состояние. Изгиб проявляется лишь вблизи концов и в местах резкого изменения нагрузки он носит характер краевого эффекта, т. е. область, где напряжения изгиба существенны, простирается лишь на некоторую определенную длину порядка Я.  [c.423]

В некоторых случаях решение задачи теории упругости оказывается таким, которое содержит трансцендентные функции от операторов. В качестве примера можно привести построенное в 12.13 решение задачи об осесимметричном изгибе круговой цилиндрической оболочки. Решение соответствующего однородного уравнения для упругой оболочки строится из частных решений  [c.600]

Напомним, что выше начальный прогиб Wq — (х) и начальное окружное усилие Ту = Ту (х) определены с использованием решения уравнения обычного линейного краевого эффекта. Такой краевой эффект не оказывает заметного влияния на критическую нагрузку, так как зона начального моментного состояния локализована вблизи закрепленных торцов, а амплитуда начального прогиба при нагрузках порядка критических невелика. Однако для сжатой в осевом направлении цилиндрической оболочки имеется одно обстоятельство, существенно увеличивающее влияние начального моментного напряженного состояния оболочки на критические нагрузки. Осевые усилия в цилиндрической оболочке могут заметно влиять на докритические прогибы Wq, если абсолютные значения осевых усилий имеют порядок q p. Для выявления этого влияния при определении начального прогиба вместо линейного уравнения осесимметричного изгиба оболочки (6.65) следует использовать так называемое уравнение нелинейного осесимметричного краевого эффекта  [c.264]


При малых (по сравнению с единицей) значениях параметра со решение уравнения нелинейного краевого эффекта мало отличается от решения обычного линейного уравнения осесимметричного изгиба цилиндрической оболочки. Но при приближении значения параметра со к единице понятие краевого эффекта теряет силу, так как возмущения, возникающие у торцов оболочки, распространяются на расстояние, значительно превышающее зону обычного линейного краевого эффекта. При о) 1 эти возмущения охватывают всю длину оболочки, а их амплитуды неограниченно возрастают.  [c.265]

Для исследования устойчивости такой осесимметричной изгиб-ной формы равновесия цилиндрической оболочки можно воспользоваться системой уравнений (6.73), но величины = Wq х) и Т°у Т1 (х) следует определить из решения уравнения нелинейного краевого эффекта.  [c.265]

Если предположить, что = О и закрепление торцов оболочки не стесняет докритических осесимметричных радиальных перемещений, то изгиб образующей при осесимметричных формах равновесия оболочки будет, очевидно, описываться уравнением (см. 17)  [c.266]

Осесимметричный изгиб цилиндрической оболочки  [c.142]

Дифференциальное уравнение (3.80) имеет точно такой же вид, как однородное уравнение (3.44) осесимметричного изгиба цилиндрической оболочки. Общее решение этого уравнения может быть представлено в виде линейной комбинации функций е-- os X, е-- sin х, os х, sin х или линейной комбинации балочных функций А. Н. Крылова от аргумента х.  [c.158]

По виду уравнение (7.29) совпадает g уравнением осесимметричного изгиба цилиндрической оболочки, и его общее решение  [c.319]

Основанная на этих гипотезах теория. тонкостенных стержней открытого сечения рассматривалась рядом исследователей, но законченная форма ей была придана В. 3. Власовым [24]. Деформации тонкостенных кривых стержней в отличие от прямых сопровождаются существенными искажениями формы их сечения. Задача о чистом изгибе стержней с круговой осью описывается почти такими же уравнениями, как осесимметричная деформация оболочек,вращения. Для стержней малой кривизны эти уравнения могут быть упрощены. В 45 рассмотрены числовые методы расчета, а для стержней, составленных из цилиндрических и плоских стенок, приведены аналитические решения.  [c.408]

Рассмотрим чистый изгиб тонкостенного стержня с круговой осью в плоскости начальной кривизны, причем предположим, что сечение стержня симметрично относительно плоскости кривизны (рис. 10.17). В этом случае деформации всех поперечных сечений стержня одинаковы, так же как и при осесимметричной деформации оболочки вращен"Ия (предполагается, что усилия, создающие моменты на торцах, распределены так же,, как и внутренние силы в любом поперечном сечении стержня). Однако эта задача отличается от рассмотренной в гл. 3. Там центральный угол d(p, занимаемый элементом оболочки, оставался неизменным, так как оболочки были замкнутыми по окружности. Здесь, в связи с изгибом, угол получает приращение ф, причем отношение  [c.429]

Условия эксплуатации и конструктивные особенности. В машинах и конструкциях различного назначения широко применяют компенсирующие устройства, выполняемые часто в виде тонкостенных осесимметричных гофрированных оболочек вращения. Компенсаторы предназначены для уменьшения внутренних усилий в трубопроводах, обусловленных различными перемещениями (при сжатии-растяжении, изгибе, параллельном сдвиге торцов и др.), температурных напряжений и остаточных напряжений, возникающих при монтаже. Наиболее распространены компенсаторы с высокой компенсирующей способностью, выполненные с гибким металлическим элементом в виде силь-фона металлорукава и сильфонные компенсаторы.  [c.151]

В параграфе рассматривается пространственное поведение труб при осесимметричных и кососимметричных воздействиях (вес ствола трубы, трубы газохода, оборудования, футеровки, погонные нормальные меридиональные силы от изгиба трубы и т. д.). При этом учитывается суммарное действие всех расположенных выше осесимметричных нагрузок, от которых в местах перепада толщины стенки трубы, устройства кольцевых ребер, зонах сопряжения конических оболочек с различными углами наклона линейных образующих, при сопряжении ствола трубы с фундаментом возникают дополнительные, направленные вдоль  [c.302]

Анализу изгиба и устойчивости осесимметрично нагруженных пологих оболочек вращения при ползучести посвящено относительно небольшое число работ, касающихся в основном сферических оболочек постоянной толщины под действием равномерного внешнего давления. При исследовании устойчивости оболочек такого класса не обязательно учитывать начальные несовершенства срединной поверхности. При этом имеются в виду неосесимметричные несовершенства, так как учет осесимметричных начальных прогибов, формально соответствующий анализу деформирования осесимметричной оболочки новой формы, не меняет существа подхода к решению задачи.  [c.8]

При решении задач изгиба и устойчивости весьма пологих оболочек в условиях мгновенного упругого деформирования в качестве ведущего параметра решения используем относительный прогиб в характерной точке I (в вершине — для замкнутых, на контуре центрального отверстия — для открытых оболочек). Это позволяет при необходимости получить всю кривую q(l), т. е. рассмотреть и закритическое состояние. Так как эта зависимость имеет достаточно плавный характер, в алгоритме решения указанных задач используем постоянный шаг. Численно величину критической нагрузки, соответствующую осесимметричной потере устойчивости в большом (асимметричная бифуркация для таких оболочек не наблюдается), определяем по перемене знака приращения нагрузки (Д -<0) на некотором шаге по ведущему параметру.  [c.50]


ОСЕСИММЕТРИЧНЫЕ ЗАДАЧИ ИЗГИБА И УСТОЙЧИВОСТИ ПОЛОГИХ ОБОЛОЧЕК ВРАЩЕНИЯ  [c.52]

Таким образом, предлагаемая методика дает надежные результаты анализа изгиба и устойчивости равномерно нагруженных замкнутых в вершине пологих оболочек вращения с учетом реологических свойств материала. Полученные данные отражают влияние геометрических параметров (высота над плоскостью, переменность толщины), условий опирания краев на формоизменение характер перераспределения внутренних силовых факторов в процессе ползучести и время осесимметричного выпучивания оболочек.  [c.68]

Все виды встречающихся задач с точки зрения размерности можно разделить на следующие расчет ферм расчет рам расчет плоского напряженного состояния расчет плоского деформированного состояния осесимметричные задачи расчет изгиба плит расчет тонких и толстых оболочек расчет общего случая трехмерного напряженного состояния. Естественно, для каждого вида задач применима общая постановка.  [c.38]

В основе технической теории пластин и оболочек, используемой при расчете тонкостенных элементов конструкций, лежат два важных упрощающих допущения — гипотезы Кирхгофа. С этими допущениями мы познакомимся на примере задачи об осесимметричном изгибе круглой пластины постоянной толщины — одной из самых простых задач теории пластин.  [c.53]

Отнесем тонкую круглую пластину к цилиндрической системе координат, направив ось z по оси вращения и поместив начало координат посредине толщины h (рис. 2.10). Пластина нагружена поперечными силами, приложенными симметрично относительно оси г закрепление контура пластины также осесимметрично. Для исследования напряженно-деформированного состояния пластины, вызванного ее поперечным изгибом, используем упрощающие допущения теории пластин и оболочек.  [c.53]

Это известное уравнение осесимметричного изгиба цилиндрической оболочки. Оно соответствует рассмотренному ранее уравнению краевого эффекта моментной оболочки вращения, и общие интегралы их одинаковы.  [c.159]

Для исследования осесимметричной формы потери устойчивости (рис. 8.4, а) воспользуемся уравнением осесимметричного изгиба цилиндрической оболочки под действием поперечной нагрузки  [c.226]

Это напряженно-деформированное состояние описывается уравнением осесимметричного изгиба цилиндрической оболочки  [c.242]

При /< 3"1/ Л осесимметричный изгиб охватывает всю длину оболочки и в этом случае, используя симметрию задачи, нетрудно найти коэффициенты j и получить выражения, описывающие начальное напряженно-деформированное состояние оболочки.  [c.243]

Здесь /7 р — критическое давление, подсчитанное с учетом момент-ности начального состояния и искривления образующей, а р рб.м— критическое давление, подсчитанное без такого учета по формулам 8.4. Как видим, моментность начального напряженно-деформиро-ванного состояния и искривление образующей оказывает заметное влияние на значение критического внешнего давления только для коротких оболочек. Аналогично влияет на значение р р учет начального осесимметричного изгиба оболочки и при других граничных условиях на ее торцах, в том числе и в случае подкрепления торцов упругими шпангоутами [12].  [c.243]

Цвливдрическяе оболочки при осесимметричном темаеразу шом ооле. Рассматривается цилиндрическая оболочка переменной толщины и с переменным модулем упругости по длине и толлщне. Радиус координатной поверхности выбирается из условия (9.10.17). Дифференциальное уравнение изгиба оболочки от действия температурного поля  [c.196]

Оболочка, безмоментная в исходном состоянии, является удобной моделью для решения задач устойчивости. В действи-телЬ)Ности же исходное состояние, как правило, моментное. Изгибы элементов оболочки обусловливаются влиянием краевых условий. Исследуем напряженно-деформированное состояние оболочки при осесимметричном нагружении. Прогибы определяются решением уравнения нелинейного краевого эффекта  [c.104]

Для конструкций типа мембранных можно построить упрощенные мембранные теории, опустив члены, связанные с изгибом. Мембраны могут терять несущую способность при сжимающем напряжении, поэтому они могут использоваться в тех случаях, когда внутреннее давление (надутые конструкции) или другие силы поддерживают стенку в растянутом состоянии, т. е. когда главные напряжения в плоскосуи стенки растягивающие. Мембранные теории могут также применяться и к оболочкам, чьи стенки обладают заметной изгибной жесткостью, если они имеют такие форму и нагрузку, что изгибная часть сопротивления пренебрежимо мала. Подобное имеет место для оболочек с осесимметричными формой и нагрузкой, а следовательно, и прогибами большое мембранное сопротивление создается при очень маДс(м изменении кривизны, за исключением окрестностей разрывов непрерывности в форме обоЛочки или в характере распределения нагрузки, а Также для поверхностей, которые являются почти плоскими и нормальнымл к оси симметрии. Здесь могут возникнуть существенные изгибные напряжения. Подобными конструкциями являются стальные баки, сделанные в форме, которую приняли бы резиновые баллоны при сходных нагрузках.  [c.61]

Глава посвящена рассмотрению двух наиболее интересных случаев деформирования оболочки вращения — осесимметричному ( = 0) и обратносимметричному k — 1) изгибам. Решение однородной системы разрешающих уравнений определяется методом асимптотического интегрирования и является точным в рамках кирхгофовской теории оболочек. Однако для практических целей достаточной обычно является точность первого (так называемого геккелеровского) приближения, соответствующая пренебрежению слагаемыми порядка Y hlRo по сравнению с единицей. Частное решение также вычисляется приближенно на основе предложения о его плавности и совпадает с безмомент-ным решением. Главу заключают параграфы, посвященные отдельно цилиндрическим, коническим и сферическим оболочкам. Рассмотрен ряд задач, которые могут представлять самостоятельный интерес (например, аналог теоремы о трех моментах в теории оболочек).  [c.184]

Сибиряковым [254] получено точное решение для ортотроп-ной слоистой (с симметричным расположецием слоев) пологой конической оболочки, находящейся под воздействием периодической краевой нагрузки, для случаев п = 0 (осесимметричное нагружение), и = 1 (продольный изгиб) и ге = 2. При этом он  [c.230]

При произвольном k система уравнений (5.81) имеет восьмой порядок. При k — Q система распадается на две— систему, описывающую осесимметричное кручение (она включает неизвестные Уо и 5Г (0)), и систему, описывающую осесимметричный изгиб Оболочки, а посдедняя система совпадает с приведенной в 16 гл. 3.  [c.269]

В настоящей монографии приведены результаты численного и экспериментального исследования термоползучести гибких пологих замкнутых, открытых и подкрепленных в вершине оболочек вращения переменной толщины, выполненных из изотропных и анизотропных материалов, обладающих неограниченной ползучестью. В главе I дан краткий анализ подходов к решению задач изгиба и устойчивости тонких оболочек в условиях ползучести. Глава II посвящена построению вариационных уравнений технической теории термоползучести и устойчивости гибких оболочек и соответствующих вариационной задаче систем дифференциальных уравнений, главных и естественных краевых условий, разработке методики решения поставленной задачи. Вариационные уравнения упрощены для случая замкнутых, открытых и подкрепленных в вершине осесимметрично нагруженных пологих оболочек вращения, показаны некоторые особенности алгоритма численного решения. Результаты решений осесимметричных задач неустаповившейся ползучести и устойчивости замкнутых, открытых и подкрепленных в вершине сферических и конических оболочек постоянной и переменной толщины приведены в главе III. Рассмотрено также влияние на напряженно-деформированное состояние и устойчивость оболочек при ползучести высоты над плоскостью, условий закрепления краев (при постоянном уровне нагрузки), уровня и вида нагрузки, дополнительного малого нагрева, подкрепления внутреннего контура кольцевым элементом. Глава IV посвящена численному исследованию возможности неосесимметричной потери устойчивости замкнутых в вершине изотропных и анизотропных сферических оболочек в условиях ползучести. Проведено сопоставление теоретических и экспериментальных дан-лых.  [c.4]


Осесимметричная деформация цилиндрических оболочек, работающих в условиях изгиба и растяжения (сжатия), описывается обыкиовеииым дифференциальным уравнением  [c.421]

Представим пластину в прямоугольной системе координат, совместив еесрединн5гю плоскость с координатной плоскостью ху (рис. 2.16, а). Будем считать, что толщина h пластины существенно меньше размеров пластины в плоскости ху. Задачу изгиба такой пластины поперечными силами рассмотрим в линейной постановке, как была рассмотрена более простая осесимметричная задача (см. 2.4), Причем для вывода соотношений, описывающих изгиб пластины, снова воспользуемся основными допущениями теории пластин и оболочек.  [c.60]


Смотреть страницы где упоминается термин Оболочки Изгиб осесимметричный : [c.362]    [c.434]    [c.220]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.691 , c.697 , c.713 , c.720 , c.739 , c.746 , c.750 , c.760 , c.779 , c.793 ]

Прочность, устойчивость, колебания Том 1 (1966) -- [ c.4 , c.713 , c.720 , c.739 , c.750 , c.760 , c.779 , c.793 ]



ПОИСК



Изгиб балок двухслойных оболочек вращения осесимметричный 664—681 — Случай обратнбсимметркчный

Изгиб оболочек

Оболочка бесконечная осесимметричная — Изгиб 61—64 Смещения

Оболочки цилиндрические Изгиб осесимметричный

Общие понятия. — Дифференциальное уравнение изгиба образующей оболочки от осесимметричной нагрузки

Осесимметричные задачи изгиба и устойчивости пологих оболочек вращения

Осесимметричный изгиб многослойной композитной ортотропной конической оболочки

Осесимметричный изгиб ортотропной цилиндрической оболочки

Прочность армированных осесимметричных оболочек при термосиловом внешнем воздействии Разрешающие системы уравнений изгиба осесимметричных оболочек



© 2025 Mash-xxl.info Реклама на сайте