Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость положений равновесия нелинейных систем

Устойчивость положений равновесия нелинейных систем  [c.165]

В большинстве случаев исследование устойчивости положения равновесия нелинейных систем может быть сведено к исследованию устойчивости линейных систем, выполненному в предыдущем параграфе. Случаи, когда это можно сделать, описываются в нижеследующих теоремах Ляпунова.  [c.165]

Вопросы нелинейной динамики, устойчивости, колебаний и управления различных типов орбитальных тросовых систем на круговой и эллиптической орбитах под воздействием аэродинамических, магнитных сил, а также сил тяги, приложенных к телу-носителю, изучались многими авторами [1-8]. В работах [9-11] исследовалась устойчивость положения равновесия ОТС. Результаты сопоставлены с известными.  [c.403]


Д. Р. Меркин (1956) исследовал устойчивость линейной системы, находящейся под действием только гироскопических сил. Рассмотрением характеристического уравнения он доказал, что для устойчивости равновесия такой системы необходимо и достаточно, чтобы определитель матрицы гироскопических коэффициентов 0. Показано также, что если на систему помимо гироскопических действуют и диссипативные силы с полной диссипацией, то положение равновесия всегда устойчиво в первом приближении. В. В. Румянцев (1957) показал, что положение равновесия нелинейной системы при указанных условиях асимптотически устойчиво по отношению к скоростям q i. В. М. Матросов (1959) обобщил эти результаты, доказав, что положение равновесия нелинейной системы устойчиво относительно qi и а всякое возмущенное движение асимптотически приближается к одному из положений равновесия qi = i, q = О, причем устойчивость сохраняется и при параметрических возмущениях.  [c.38]

Строго доказано [4], что для систем на фазовой плоскости с аналитическими правыми частями подобные движения невозможны с течением времени изображающая точка неограниченно стремится к устойчивому положению равновесия, либо к устойчивому предельному циклу, либо уходит в бесконечность. Стохастические процессы в детерминированных двумерных автономных нелинейных системах возможны только при неаналитических правых частях уравнений динамики. Ограничимся простым примером из работы [20].  [c.257]

Колебательные движения механических систем удобно описывать уравнениями Лагранжа в обобщенных координатах. При составлении уравнений мы будем отсчитывать обобщенные координаты всегда от положения устойчивого равновесия, относительно которого и происходят колебания механических систем. В большинстве случаев эти уравнения нелинейны и их интегрирование связано с большими трудностями. Однако при решении многих технических задач оказывается возможным в этих уравнениях отбрасывать квадраты и более высокие степени координат и скоростей. Такая операция называется линеаризацией уравнений. Линеаризованные уравнения не могут, конечно, в точности отобразить движения системы и дают несколько искаженную картину явления. Искажения тем менее существенны, чем меньше отброшенные члены уравнений в сравнении с оставшимися. Если значения координат и скоростей во все время движения остаются очень малыми, то их квадратами и высшими степенями вполне можно пренебречь, подобно тому, как в дифференциальном исчислении пренебрегают бесконечно малыми высших порядков. Таким образом, мы пришли к заключению, что колебания, описываемые линеаризованными уравнениями при сделанном выборе начала отсчета, должны быть только малыми колебаниями около положения равновесия.  [c.435]


В рассмотренных выше простейших примерах легко составить и точно решить полные нелинейные уравнения при произвольных значениях перемещений системы. Проведенный анализ дает исчерпывающую информацию о всех возможных устойчивых и неустойчивых положениях равновесия. Но подавляющее большинство практически важных задач значительно сложнее приведенных и получение таких полных точных решений для них не представляется возможным. Это заставляет искать приближенные, упрощенные пути исследования поведения сложных упругих систем под действием приложенных к ним нагрузок.  [c.21]

Полученные результаты позволяют ответить на вопрос, как будет вести себя изображающая точка, а следовательно, и исходящая система при малых отклонениях от точки равновесия. Лишь в случае линейных систем характер особой точки полностью определяет поведение системы, а именно если точка равновесия устойчива и является, например, устойчивым фокусом, то при любых сколь угодно больших отклонениях в системе всегда будут происходить затухающие колебания. Если точка равновесия неустойчива (седло или неустойчивый узел, фокус), то будет происходить неограниченное удаление от положения равновесия. Если точкой равновесия является центр, то система консервативна и в ней имеется бесчисленное множество периодических движений. На фазовой плоскости этому соответствует семейство вложенных один в другой эллипсов. Если же система нелинейна, то характер особой точки вовсе не определяет поведения изображающей точки на всей фазовой плоскости.  [c.227]

Рассмотрим систему с одной степенью свободы, на которую наложены голономные стационарные связи и действуют заданные стационарные силы при этом предположим, что у системы имеет-ся положение устойчивого равновесия. Разложение кинетической, потенциальной и диссипативной функций в окрестности этого положения вплоть до членов второго порядка малости включительно приводит к линейному уравнению. Однако во многих практически важных задачах возникает необходимость исследования колебаний с достаточно большими амплитудами и скоростями. В таких случаях линейное приближение оказывается недостаточным и приходится учитывать последующие члены разложений, приводящие к нелинейным уравнениям. Если при этом отклонения от положения равновесия и скорости точек не слишком велики, то соответствующие уравнения будут описывать малые нелинейные колебания.  [c.311]

Рассматривая систему как линейную, мы не находим в ней устойчивых стационарных состояний она не может остаться в области, близкой к состоянию равновесия, — отклонения в линейной системе должны беспрерывно возрастать. Между тем при описании механической и электрической систем, которые привели нас к этим случаям, для того чтобы прийти к линейным уравнениям, мы должны были ограничиться рассмотрением областей, достаточно близких к состоянию равновесия (малое х и малое у). Значит, с одной стороны, мы должны ограничиться рассмотрением областей, достаточно близких к состоянию равновесия, а с другой стороны, рассматривая движение системы в этих областях, мы убедились в том, что система не останется в этой области, но неизбежно выйдет за ее пределы. Другими словами, линейная трактовка позволяет правильно изобразить поведение фазовых траекторий только в некоторой ограниченной области фазовой плоскости, вблизи положения равновесия. Но, с другой стороны, все фазовые траектории уходят за пределы этой ограниченной области. Чтобы исследовать дальнейшее поведение системы, мы должны, очевидно, учесть какие-то обстоятельства, которые до сих пор нами не учитывались, и рассматривать систему уже как нелинейную.  [c.90]

НЕЛИНЕЙНЫЕ СИСТЕМЫ. Теория нелинейных колебаний или, как иногда ее называют, нелинейная механика, занимается изучением периодических колебательных движений, описываемых нелинейными дифференциальными уравнениями. Системы, совершающие такие движения, называются обычно нелинейными системами . Таким образом, нелинейная механика занимается изз ением периодических движений нелинейных систем. По сравнению с линейной теорией нелинейная механика является дальнейшим углублением наших познаний о законах механического движения. Освобождаясь от многих искусственных построений линейной теории, нелинейная механика дает, как правило, более точное и полное отображение свойств колебательных движений механических систем. Дело в том, что линейность редко бывает свойством, присущим самой системе, вытекающим из ее устройства или ее физической природы. В большинстве случаев линейность есть результат упрощения реальной системы, чаще всего осуществляемого путем пренебрежения в уравнениях движения членами второго и высших порядков относительно координат и скоростей. Так, например, составляются линейные уравнения малых колебаний упругих систем около положения устойчивого равновесия. Основываясь на допущении, что, получив  [c.467]


В отсутствие внешней силы (5 = 0) имеем нелинейную автономную систему с единственным положением равновесия = Й = 0. Анализ устойчивости по уравнениям (16.1), (16.2) при 5 = О показывает, что оно неустойчиво, если  [c.290]

В первом томе были рассмотрены некоторые простейшие вопросы теории колебаний материальной точки с одной степенью свободы. В этой главе мы перейдем к изучению теории колебаний систем с несколькими степенями свободы, ограничившись рассмотрением малых колебаний в окрестности положения устойчивого равновесия. Затем вновь остановимся на рассмотрении колебаний системы с одной степенью свободы. Будут изучаться нелинейные и квазигармонические колебания, не встречавшиеся в элементарной теории, изложенной в первом томе.  [c.215]

Мы здесь будем заниматься механизмами неустойчивостей и исследованием устойчивости движения в малом , т.е. в рамках уравнений, полученных из исходных с помощью разложения в ряд вблизи интересующего нас решения всех нелинейных зависимостей и оставления лишь линейных членов (уже обсуждавшаяся процедура линеаризации). Наиболее важным является исследование устойчивости, во-первых, статического положения системы, т. е. состояния равновесия линеаризованной системы с постоянными коэффициентами, во-вторых, периодических движений системы, малые отклонения от которых описываются линеаризованными уравнениями с периодическими коэффициентами. Относительно же устойчивости линейных систем (а не их решений) дадим пока лишь не вполне строгое определение динамическая система, описываемая коэффициентом передачи Ж р) р = ш) и находящаяся под внешним воздействием V, называется устойчивой, если малое изменение внешнего воздействия приводит к малому изме-  [c.129]

Теория нелинейных импульсных автоматических систем начала развиваться сравнительно недавно. Применяя идеи методов исследования абсолютной устойчивости, основанных на прямом методе А. М. Ляпунова в форме, приданной ему А. И. Лурье, и используя подход В. М. Попова, удалось найти достаточные условия абсолютной устойчивости положения равновесия нелинейных импульсных автоматических систем в виде разрешающей системы квадратных уравнений и частотных критериев устойчивости. Изучение периодических режимов в импульсных и цифровых автоматических системах исторически началось раньше установления критериев устойчивости. Вначале эти исследования основывались на привлечении идей приближенного метода гармонического баланса. Распространение метода гармонического баланса позволило разработать эффективные способы определения режимов с периодом, кратным периоду повторения в нелинейных амплитудно-импульсных и широтно-импульсных сиотемах. Этот подход весьма удобен и оправдан для определения низкочастотных периодических режимов. Для высокочастотных периодических режимов оказалось, что простая замена частотной характеристики непрерывной части на импульсную частотную характеристику позволяет не приближенно, а точно определить существование высокочастотных периодических режимов. Что же касается периодических режимов с периодом, не кратным периоду повторения, а также сложных периодических режимов, то единственная возможность их определения, которая существует в настоящее время, связана с развитием метода гармонического баланса по преобладающей гармонике. Задача исследования устойчивости периодических режимов сводится к задаче определения устойчивости в малом линейной импульсной системы с несколькими импульсными элементами [48].  [c.270]

Среди нелинейных задач статистической динамики особое место занимает исследование систем с прощелкиванием , т. е. таких систем, которые обладают несколькими устойчивыми положениями равновесия. Классическим примером являются стаци-онарные случайные колебания системы с одной степенью свободы при нелинейной восстанавливающей силе вида  [c.75]

Рассмотрим произвольную консервативную систему с голономными п стационарными связями, имеющую одну степень свободы. Положение системы будем определять обобщенной координатой д, отсчит1>1ваемой от положения устойчивого равновесия. Предположим, что система отклонена на небольшую величину от положения равновесия и ей сообщена небольшая начальная скорость. Тогда вследствие устойчивости положения равновесия система будет совершать движение вблизи этого положения равновесия, т. е. обобщенная координата 7 и ее скорость ц будут все время малы по модулю. Это обстоятельство дает возможность применить приближенный метод исследования движения, основанный на том, что нелинейные в общем случае дифференциальные уравнения движения упрощаются и заменяются на приближенные. линейные уравнения. Для этого, очевидно, достаточно выражения для кинетической и потенциальной энергий разложить в ряды по степеням д к ц, сохранив в них члены не выше второго порядка малости.  [c.464]

Рассмотрим произвольную потенциальную систему с голономными и стационарными связями, имеющую одну степень свободы. Положение системы будем определять обобщенной координатой д, отсчитываемой от положения устойчивого равновесии. Предположим, что система отклонена на небольшую величину от еоложения равновесия н ей сообщена небольшая начальная скорость. Тогда вследствие устойчивости положения равновесия система будет совершать движение вблизи этого положения равновесия, т. е. обобщенная ко-с даната д и ее скорость д будут все время малы по модулю. Это обстоятельство дает возможность применить пр ближекный метод иселедования движения, основанный на том, что нелинейные в общей  [c.648]


Полагая при составлении дифференциальных уравнений малых движений обобщенные координаты (отсчитываемые от положения равновесия) и обобщенные скорости малыми величинами, ограничимся в дифференциальных уравнениях движения линейными членами. Этот прием, заключающийся в отбрасывании в нелинейных дифференциальных уравнениях членов, содержащих квадрат и более высокие степени обобщенных координат и скоростей, называется линеаризацией уравнений. Такая линеаризация, естесавенно, в известной мере искажает действительную картину движений, однако чем меньше отклонения системы от положения устойчивого равновесия, тем точнее будут описывать линеаризованные уравнения движение системы. Линеаризация дифференциальных уравнений позволяет получить замкнутое решение для таких систем, для которых нахождение интегралов точной.  [c.585]

Л е о н о в Г. А, Об устойчивости нелинейных регулируемых систем с несдинственным положением равновесия // Автоматика и телемеханика,— 1971,- № 10.  [c.302]

Состояния равновесия. Нелинейной системе может соответствовать несколько состояний равновесия их число равно числу действительных корней уравнения (15). По структуре фазовых диаграмм вблизи особой точки можно определить устойчивость пли неустойчивость соответствующего состояния равновесия физически реализуемыми являются только устойчивые состояния равновесия (см. п. 3). Для систем с одной степенью свобод111 особые точки, соответствующие дискретным устойчивым и неустойчивым положениям равновесия, всегда чередуются на фазовой плоскости. Основные типы особых точек представлены в табл. 7, более подробно ронрос рассматривается в п.  [c.24]

По существу, все механические системы описываются нелинейными уравнениями. Для исследования поведения систем в окрестности положения равновесия применяют метод линеаризанди уравнений движения поведение системы приближенно описывается линейными уравнениями. Если положение равновесия устойчиво, то движение системы называют линейными колебаниями. Этот вид движения широко распространен в природе и технике.  [c.136]

Для систем дифференциальных уравнений общего вида такая нейтральная устойчивость может быть разрушена сколь угодно малыми нелинейными добавками. Для систем Гамильтона дело обстоит сложнее. Предположим, например, что квадратичная часть функции Гамильтона в положении равновесия (которая и определяет линейную часть векторного поля) знакоопределена. Тогда функция Гамильтона имеет максимум или минимум в положении равновесия. Следовательно, это положение равновесия устойчиво (по Ляпунову, но не асимптотически) не только для линеаризованной системы, но и для полной нелинейной системы.  [c.351]

Автоколебания могут возникнуть в определенных нелинейных автономных динамических системах, в которых потребление энергии на преодоление диссипативных сил компенсировано потреблением порций энергии от не колебательного источника, причем это потребление регулируется автоматически, самой системой в процессе ее движения (см. т. 2. гл. I). В фазовом пространстве установившимся автоколебаниям соответствует устойчивый предельный цикл (см. т. 2, гл. II). В автоколебательных системах с мягким самовозбуждением состояние равновесия находится внутри предельного цикла. Поэтому оно неустойчиво, и система из состояния равновесия запускается самопроизвольно без помощи внешних факторов. В системах с жестким самовозбуждением область неустойчивых движений на фазовом пространстве не включает состояния равновесия. Поэтому запуск из этого состояния возможен только с помощью внешнего воздействия, переводящего систему в область неустойчивых движений. Для достижения этого предусматривают устройство, которое обеспечивает после отключения источника энергии остановку системы в таком положении, при котором она оказывается внутри об."астн неустойчивости и поэтому запускается самопроизвольно при последующем включении.  [c.229]


Смотреть страницы где упоминается термин Устойчивость положений равновесия нелинейных систем : [c.303]    [c.262]    [c.177]   
Смотреть главы в:

Основы теоретической механики Изд2  -> Устойчивость положений равновесия нелинейных систем



ПОИСК



Положение устойчивое

Равновесие системы тел

Равновесие устойчивое

Равновесия положение

Равновесия положение устойчивое

Система Устойчивость

Система устойчивая

Системы нелинейная

Устойчивость положения равновесия

Устойчивость равновесия

Устойчивость равновесия системы



© 2025 Mash-xxl.info Реклама на сайте