Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Численное решение дифференциальных уравнений в частных производных методом конечных разностей

В целом МКЭ очень эффективен при решении многих задач расчета электромагнитного поля, особенно в областях с криволинейными границами. Однако применение МКЭ требует развитых программных средств ввода исходных данных, генерации и оптимальной нумерации узлов конечных элементов, организации наглядного вывода результатов и их обработки. При расчете поля в областях с простой границей МКЭ не имеет преимуществ перед методом конечных разностей. Поэтому в дальнейшем, где это особо не оговаривается, численное решение дифференциальных уравнений в частных производных осуществляется МКР.  [c.97]


Можно считать общепризнанным, что метод конечных элементов является эффективным способом численного решения дифференциальных уравнений с частными производными. Это в особенности верно для эллиптических уравнений, где сразу проявились его преимущества по сравнению с конечно-разностным методом. Метод конечных элементов служит хорошим примером весьма трудной темы, развитие которой стало возможным только благодаря тесному сотрудничеству между инженерами, математиками и специалистами по численному анализу. Принимая во внимание широту интересов его приверженцев, нетрудно понять, почему по методу конечных элементов не написано книги, которая отражала бы должным образом все возрастающий поток публикаций, ему посвященных. Целью нашей книги было заполнить пробел между хорошо известными работами Зенкевича (1976) и Стренга и Фикса (1977), в которых соответственно нашли отражение запросы инженеров и математиков. В старинном споре о сравнительных преимуществах методов конечных разностей и конечных элементов мы не становимся ни на одну сторону — нас вполне удовлетворяет, что есть два таких мощных метода численного решения дифференциальных уравнений с частными производными.  [c.7]

Для реальных задач построить аналитическое решение зачастую не удается. Даже когда определяющие дифференциальные уравнения в частных производных линейны, область R может оказаться неоднородной, геометрия—нерегулярной, а граничные условия — трудно описываемыми простыми математическими функциями. В таких случаях, используя численные методы, при помощи вычислительных машин можно найти приближенное решение. Численные методы решения краевых задач можно разделить на два отчетливых класса класс, который требует использования аппроксимаций во всей области R, и класс, который требует использования аппроксимаций только на границе С. В первый класс входят методы конечных разностей и конечных элементов, во второй — методы граничных элементов.  [c.10]

Существуют два основных численных. метода решения уравнений в частных производных метод конечных разностей и метод конечных элементов. Они отличаются сп н обами получения системы уравнений для значений искомых функций в узловых точках. Метод конечных разностей базируется непосредственно на дифференциальном уравнении и граничных условиях, а метод конечных элементов — на эквивалентной вариационной постановке задачи.  [c.69]


Математические модели называют функциональными, если они отражают процессы, протекающие в объекте при его функционировании, или структурными, если они отражают топологические или геометрические свойства объекта. Типичными функциональными моделями на микроуровне являются дифференциальные уравнения в частных производных с заданными краевыми условиями. Для их решения в САПР применяют методы конечных разностей или конечных элементов. Функциональные модели на макроуровне представляют собой обыкновенные дуфференциальные уравнения. Наибольшее распространение для их решения получили неявные или комбинированные методы численного интегрирования. Для моделирования на метауровне наравне с обыкновенными дифференциальными уравнениями используют модели массового обслуживания и логические уравнения.  [c.80]

Анализируя рассмотренные выше построения, следует указать, что метод весовой линии имеет несомненные преимущества по сравнению с другими графическими методами. В первую очередь это простота и точность, так как отпадает двойственность построения, присущая другим методам. Операции с параллельными и пересекающимися векторами (силами) следует простому закону сложения краевых и параллельных составляющих. Вычисление центров масс стержневых систем и механизмов, по методу весовой линии значительно проще, чем по существующим способам. Упрощается также исследование давлений в кинематических парах механизмов и определение реакций опор в стержневых системах. Методом весовой линии весьма просто производится бесполюсное интегрирование и дифференцирование, так как закон распределения сил соответствует закону изменения функции q = f (х). При этом первообразная функция (вес фигуры, заключенной между кривой q = f [х) и координатными осями) представляет собою интеграл. В дискретном анализе понятие бесконечно малая величина" заменяется понятием конечно малая величина со всеми вытекающими отсюда представлениями о производной в конечных разностях и численным интегрированием (вычислением квадратур). Полигоны равновесия узлов в стержневых системах, построенные по методу весовой линии, проще диаграмм Л. Кремоны, так как позволяют вычислять усилие в заданном стержне не прибегая к определению усилий в других стержнях, необходимых для построения диаграмм Кремоны. Графическое решение многочленных линейных уравнений (многоопорные валы и балки, звенья, имеющие форму пластин, и т. д.) производится по опорным весам или коэффициентам при неизвестных. Такой путь наиболее прост и надежен для проверки правильности решения. Впервые в технической литературе. дано графическое решение дифференциальных уравнений для балки переменного сечения на упругом основании и для круглых пластин с отверстиями, аналитическое решение которых требует сложного математического аппарата. В заключение отметим предельно простое решение дифференциальных уравнений теории упругости (в частных производных) указанным методом.  [c.150]

В уравнении теплопроводности можно аппроксимировать конечными разностями производные не по всем независимым переменным. В итоге получится система дифференциальных уравнений (обыкновенных или в частных производных). Если удается получить аналитическое решение такой системы, то оно будет приближенным решением задачи, так как при конечноразностной аппроксимации внесена погрешность в математическое описание процесса тегглопро-водности. Однако обычно такой прием частичной замеггы производных конечными разностями, известный как метод прямых [27], используют для решения полученной системы уравнений одним из эффективных численных методов. Например, для задачи нестационарной теплопроводности- аппроксимация производных по пространственным координатам переводит уравнение в частных производных в систему обыкновенных дифференциальных уравнений (в общем случае нелинейных), которая может быть решена методами численного интегрирования Эйлера-Коши, Рунге-Кутта, Адамса и т.п. [4, 104]. Такую же систему обыкновенных диф -ренггиальных уравнений получают из условия баланса тепловых потоков в дискретной модели тела, состоящей из теплоемких масс и теплопроводящих стержней [27].  [c.210]


Уравнение распространения (2.3.35)-нелинейное дифференциальное уравнение с частными производными, которое, вообще говоря, нельзя решить аналитически, за исключением некоторых частных случаев, когда для решения применим метод обратной задачи рассеяния [27]. Поэтому часто для изучения нелинейных эффектов в световодах необходимо численное моделирование. Для этой цели можно использовать множество численных методов [31-38], которые можно отнести к одному из двух классов 1) разностные методы и 2) псевдоспектральные методы. Вообще говоря, псевдоспектральные методы на порядок или даже более быстрее при той же точности счета [39]. Одним из наиболее широко используемых методов решения задачи распространения импульсов в нелинейной среде с дисперсией является фурье-метод расщепления по физическим факторам (SSFM) [33, 34]. Относительно большая скорость счета этим методом по сравнению с большинством методов конечных разностей достигается благодаря использованию алгоритма быстрого фурье-преобра-зования [40]. В этом разделе кратко описывается фурье-метод с расщеплением по физическим факторам, а также его применение для задачи распространения импульсов в волоконном световоде.  [c.49]

К солшлению, очень многие из таких уравнений не имеют аналитического решения, и чтобы решить их, приходится прибегать к численным методам. Если для решения обыкновенных диффе-ренщ1альных уравнений суш,ествует множество различных методов, то для решения дифференциальных уравнений в частных производных приходится выбирать лишь между методами конечных разностей и конечных элементов. В данной главе вопрос о численном интегрировании дифференциальных уравнений в частных производных рассматривается с точки зрения применения этих лютодов для решения различных технических задач. Дается такл<е классификация часто встречающихся дифференциальных уравнений в частных производных и указываются рациональные пути их численного решения.  [c.103]

Мы видели, что задачи теории упругости обычно сводятся к решению уравнений в частных производных с заданными граничными условиями. Эти уравнения допускают точное решение лишь для границ простой юрмы. Очень часто мы не можем получить точного решения и вынуждены обрагдаться к приближенным методам. В качестве одного из этих методов рассмотрим численный метод, основанный на замене дифференциальных уравнений соответствуюш,ими уравнениями в конечных разностях ).  [c.517]

Численное решение на ЭВМ всей системы дифференциальных уравнений в частных производных для газовой и жидкостной фаз включает пошаговое интегрирование в направлении г от начальных значений, заданных в плоскости 2о вычислительной программой L1SP. В каждой последующей плоскости 2 вычисляется совместное решение для всех переменных во всех узловых точках расчетной сетки (г, 0) с использованием комбинированной схемы прогноза с коррекцией. Для большинства уравнений применяется конечно-разностный метод переменных направлений с использованием центральных разностей по г и 9. На этапе прогноза используются линеаризованные конечно-разностные аналоги этих уравнений — явные по г и неявные по 9. Отдельные подпрограммы решают каждое из конечно-разностных уравнений, а также вычисляют связи уравнений и физические свойства газа в зависимости от соотношения компонентов. Использование отдельных подпрограмм обеспечивает удобство при введении требуемых изменений в модели различных физических процессов. Из-за практических ограничений в отношении объема памяти ЭВМ и времени счета программа 3-D OMBUST содержит не более 15 круговых и 7 радиальных линий расчетной сетки и не более 12 диаметров капель.  [c.158]


Смотреть страницы где упоминается термин Численное решение дифференциальных уравнений в частных производных методом конечных разностей : [c.202]   
Смотреть главы в:

Решение инженерных задач на ЭВМ  -> Численное решение дифференциальных уравнений в частных производных методом конечных разностей



ПОИСК



Me численные (см. Численные методы)

Дифференциальное уравнение в частных производных

Дифференциальные в частных производных

К п частный

Конечные разности

Метод дифференциальный

Метод конечных разностей

Метод конечных разностей при численном

Метод решения уравнений

Метод численного решения уравнений

Методы Уравнения дифференциальные

Методы численные

Методы численные (см. Численные методы)

Методы • решения численные

Производная

Производная частная

Разность фаз

Решение дифференциального уравнения

Решение методом конечных разностей

Решение уравнений в частных производных

Решения метод

Уравнение в частных производных

Уравнение конечное

Уравнение метода сил

Уравнения в конечных разностях

Частные производные

Частные решения

Численное решение уравнений

Численное решение уравнений в частных производных

Численные решения



© 2025 Mash-xxl.info Реклама на сайте