Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкоупругость нелинейная

Ползучесть металлов при нормальной температуре ограничена. При высоких температурах она характеризуется двумя особенностями 1) большая часть деформации ползучести необратима 2) зависимость напряжений от деформаций существенно нелинейна. Поэтому рассмотренная в гл. 13 линейная теория вязкоупругости к металлам неприменима.  [c.304]


Книга является введением в современную механику сплошных сред. В ней изложена общая теория определяющих уравнений и термодинамики сплошных сред. Рассмотрена общая теория деформаций (нелинейный случай), построены модели гиперупругой среды и рассмотрены частные случаи модели пластической среды, вязкоупругость и теория течения вязких жидкостей. В приложениях приведен весь необходимый математический и термодинамический аппарат.  [c.351]

Большое внимание уделено численным методам решения линейных и нелинейных задач механики деформирования упругих, упругопластических и вязкоупругих тел, численным методам решения дифференциальных и интегральных уравнений, а также прямым вариационным методам. В учебнике изложены основные положения метода конечных элементов, что обеспечит лучшую подготовленность студентов к изучению курса строительной механики. Даются понятия о методе граничных элементов.  [c.3]

Исследована задача о напряженно-деформированном состоянии наращиваемого вязкоупругого клина, конечной полосы, полого шара, задача о наращивании вязкоупругого полого цилиндра, находящегося под действием внутреннего давления и подверженного неоднородному старению, а также задача о наращивании вязкоупругого цилиндра при сжатии и кручении. Приводится постановка и решение двух характерных задач нелинейной теории ползучести для неоднородно-стареющих тел с изменяющейся гра ницей. Для каждой из этих задач установлены определяющие уравнения, даны методы их решения и проанализированы результаты численных расчетов. ,  [c.9]

Уравнения состояния (2.5), (2.6) или (2.8) являются основными определяющими уравнениями нелинейной теории ползучести для неоднородно-стареющих тел при объемном напряженном состоянии в случае малых деформаций. Рассмотрению нелинейных соотношений общего вида теории вязкоупругости, а также исследованию специальных частных случаев посвящены работы [334-336, 371, 418].  [c.25]

В этой главе вопрос определения напряженно-деформированного состояния исследован в задаче дискретного и непрерывного наращивания призматического тела, в задаче о наращивании клина, полосы и шара, а также в задаче о кручении наращиваемого вязкоупругого цилиндра. Наряду с этим дается постановка и решение двух характерных задач нелинейной теории ползучести для наращиваемых тел. В каждой из этих задач установлены определяющие уравнения, приведен метод их решения и сформулированы результаты численных расчетов.  [c.78]


Отметим, однако, что не меньший интерес представляет развитие теории стохастической устойчивости вязкоупругих систем и, в частности, использование вероятностных методов при определении функционала критического времени. Это связано, в частности, с тем, что большая часть реальных факторов, влияюш,их на поведение системы, имеет случайный характер. Кроме того, актуальными представляются различные проблемы динамической устойчивости, проблемы влияния скорости нагружения на процесс потери устойчивости, задачи потери устойчивости при ударных нагружениях, выделение основных параметров вязкоупругих систем, влияюш,их на процесс потери устойчивости, задачи тепловой устойчивости и др. Представляет также интерес исследование вопросов устойчивости вязкоупругих систем в геометрически- и физи-чески-нелинейной постановке.  [c.231]

Материалы или конструкции являются нелинейными, если не выполняется одно из условий линейности (условие пропорциональности (2) или условие суперпозиции (3)). В этом разделе мы рассмотрим общую природу и источники нелинейности вязкоупругое поведение полимерных композитов, а также методы аналитического описания нелинейности. Некоторые заключительные замечания относятся к исследованию нелинейных конструкций.  [c.183]

Рис, 20. Сравнение рассчитанного и наблюдаемого поведения бетона с вкраплениями песка и асфальта, подвергающегося неравномерному деформированию. Кружками отмечены точки, вычисленные по нелинейной теории вязкоупругости, штриховая кривая показывает результаты расчета по линейной теории, а сплошная кривая соответствует экспериментальным результатам. Напряжение а (t) указано в фунт/дюйм-, время i в минутах, 8° = 0,0680, =0,0775 мин, 2 = 0,2625 мин. По данным работы [119].  [c.190]

В большинстве проведенных к настоящему времени работ по исследованию микромеханического поведения композитов явно или неявно предполагается, что компоненты композиционного материала являются линейно упругими. Однако при приложении нагрузки многие из этих материалов, в особенности материалы, которые обычно используются для изготовления матрицы, не сохраняют своих линейных свойств. Для некоторых материалов эта нелинейность может быть хотя бы частично обусловлена вязкоупругостью — временными эффектами, которые обсуждались в гл. 4. С другой стороны, как только приложенная нагрузка превосходит определенное значение, равное пределу текучести материала, для большинства материалов обнаруживается нелинейность, не зависящая от временных факторов. Этот последний тип нелинейности, проявляемый вне упругой области, называется пластичностью. Таким образом, термин упругопластическое поведение обычно означает, что рассматривается процесс нагружения в целом.  [c.197]

Нелинейное вязкоупругое поведение, источ-НИКИ нелинейности 184  [c.555]

Во многих исследованиях предполагалось, что ползучесть описывается линейными законами вязкоупругости и наследственности, свойственными материалам с ограниченной ползучестью (бетон, полимеры). В меньшей степени использовались нелинейные законы, характерные для материалов с неограниченной ползучестью (металлы при повышенных температурах). Малоизученными остаются также вопросы, связанные с влиянием дополнительного температур-  [c.3]

Исследованию устойчивости жестко защемленных по краю пологих сферических оболочек под действием равномерного внешнего давления, выполненных из материала, ползучесть которого описывается соотношениями линейной вязкоупругости, посвящены работы [11, 55, 56, 80, 81, 85, 89, 92]. Поскольку материал обладает ограниченной ползучестью, задача устойчивости может ставиться на бесконечном интервале времени. В ряде указанных работ определяется значение длительной критической нагрузки. Разрешающие уравнения строятся с учетом нелинейности геометрических соотношений. Время, при котором оболочка теряет устойчивость под действием давлений, превышающих длительное критическое, определяется моментом резкого возрастания скорости осесимметричного прогиба (хлопка).  [c.9]


Линейная теория вязкоупругости и термовязкоупругости как одна из моделей механики сплошной среды возникла давно, однако большое значение она приобрела в последнее время, главным образом в связи с созданием разнообразных полимерных материалов и пластмасс и их применением в различных областях народного хозяйства. Широкое развитие получили различные теоретические и экспериментальные исследования в области вязкоупругости, в том числе линейная и нелинейная теории деформирования вязкоупругих материалов.  [c.3]

В предположении, что деформации малы (геометрическая линейность), но зависимость между напряжениями и деформациями нелинейна, эту нелинейную зависимость для вязкоупругого изотропного тела можно представить как  [c.258]

Таким образом, излагаемый подход позволяет выводить и получать различные приближенные уравнения линейных и нелинейных колебаний упругих и вязкоупругих вырожденных систем.  [c.264]

Можно представить себе модель вязкоупругого материала, в которой вместо линейно вязкого элемента по (22.2) установлен нелинейно вязкий элемент по (22.5) или (22.6). В этом случае уравнение механических состояний принимает вид  [c.400]

Как указьшалось, наблюдавшаяся в экспериментах максимальная скорость распространения трещины равна 0,45 В то же время, верхний предел скорости распространения трещины согласно идеализированной теории разрушения равен. Причина уменьшения предельной скорости разрушения может лежать в макроскош1ческих свойствах самого материала, т. е. происходить вследствие эффектов пластичности, вязкоупругости, нелинейного поведения. Однако, независимо от этих эффектов, важен и процесс генерации микроразрушешй и их последующего влияния в вершине трещины, который происходит в течение конечного времени и, следовательно, снижает скорость распространения трещины. Действительно, в том случае, когда разрушение происходит в кристаллах по типу чистого откола , скорость распространения трещины приближается к.  [c.173]

В книге изложены основные соотношения линейной теории упругости, плоскап задача, приведены примеры решения некоторых пространственных задач, задачи изгиба тонких упругих оболочек. Изложены вопросы расчета нелинейно-упругих, упру-гопластимеских тел, а также вязкоупругих тел.  [c.2]

Недостаток знаний о характере разрушения в концевой зоне трещины может компенсироваться разумным моделированием структуры края трещины. Из рис. 39.1 видно, что нелинейно деформированный, частично разрушенный материал сосредоточен в узкой области перед вершиной трещины. Это позволяет при моделировании края трещины заменить концевую область разрезом на продолжении трещины, находящимся под действием равномерно распределенных самоуравновешенных напряжений (см. рис. 4.1), т. е. использовать уже изложенную в 7 б -модель. Напомним, что в б -модели напряжения а в концевой области считаются постоянными и равными либо сопротивлению отрыва, либо пределу текучести материала. Однако это предположение будучи справедливым для упругих и упругопластических материалов, не выполняется для ряда вязкоупругих материалов из-за реономности их свойств. Например, при разрушении полимеров, таких как полиметилметакрилат (ПММА), напряжения в концевой области существенно меняются с ростом трещины, однако размер концевой зоны меняется при этом незначительно (а в довольно широком диапазоне скоростей роста трещины практически постоянен). Более того, как следует из экспериментов, и форма концевой области для трещины, растущей в ПММА, не зависит от длины трещины, т. е. имеет место автомодельность.  [c.313]

Иной путь построения общей квазилинейной теории вязкоупру гости на основе постулата изотропии Ильюшина предложен в ра боте [215]. Эта теория позволила развить методы решения квази статических и динамических задач нелинейной вязкоупругости.  [c.23]

Пример 5.1. В качестве примера рассмотрим гибкую полоску из линейно- или нелинейно-вязкоупругого материала, которая в момент То изгибается в кольцо, склаивается (или сваривается) торцами встык и удерживается, пока это необходимо, в изогнутом положении с помощью зажимов.  [c.300]

Орлов В. С. О решении смешанной задачи нелинейной термо-вязкоупругости.— Тезисы докл. Всесоюзя. научн. конференции Смешанные задачи механики деформируемого твердого тола , Ч. I.— Ростов-на-Дону, 1977, с. 137—138.  [c.324]

Эта глава посвящена главным образом аналитическому описанию линейного вязкоупругого поведения полимерных композитов и их компонентов, а также определению эффективных механических характеристик таких материалов по характеристикам их компонентов. Однако, учитывая, что композиты могут обладать и нелинейными вязкоупругими свойствами, в разд. VI затрагиваются и эти вопросы. Хотя обсуждаются только полимерные композиты, следует иметь в виду, что линейная теория сама по себе не ограничивается изучением таких материалов, но мох ет быть применена каждый раз, когда хотя бы црибли-л<енно выполняются условия линейности.  [c.103]

Нелинейные вязкоупругие определяющ,ие уравнения для полимеров и их экспериментальная проверка были предметом интенсивных исследований в течение последних пяти лет. Однако большинство теорий ограничивалось описанием эффектов обратимой нелинейности и почти всецело относилось к монолитным материалам. Обычно в этих теориях вместо термина обратимая нелинейность употребляется термин затухающая память (fading memory). Для таких теорий характерно представление зависимостей в виде однократных или многократных интегралов. Обзоры подобных теорий имеются в работах [17, 76, 90, 109], а применение их к аморфным и полукристаллическим полимерам можно, кроме того, найти в [71, 78, ПО, 123].  [c.187]


Теория Ферриса для гранулированных композитов была использована при решении плоских задач методом конечных элементов [28]. Однако теории, описывающей нелинейное поведение вязкоупругих волокнистых композитов, по-видимому, не  [c.189]

Глава посвящена влиянию вязкоупругости на термомехаиическое поведение и срок службы композитов с полимерной матрицей. В первую очередь коротко рассмотрено линейное вязкоупругое поведение полимерных смол при температурах выше и ниже температуры стеклования. Далее показан простой способ учета этого поведения при оценке эффективных термомеханических свойств композитов и анализе остаточных напряжений, являющихся следствием термической и химической усадки компонент этих материалов в процессе переработки. Затем изложен анализ колебаний и распространения волн в диапазоне упругих свойств композитов. Особое внимание при этом уделено использованию алгоритма быстрого преобразования Фурье ), Разделы, посвященные линейной вязкоупругости, завершаются описанием процессов трещинообразования на микро- и макроуровне при помощи аналитических методов и алгоритма FFT, В главу также включено обсуждение предварительных вариантов моделей, позволяющих учесть влияние статистической природы дефектов на нелинейное механическое поведение композитов и характер их разрушения под действием переменных во времени нагрузок.  [c.180]

Проявление нелинейного, зависящего от времени, поведения многими из композитов, армированных волокнами или частицами, в значительной степени объясняется явлением микрорастрескивания. Предложенные в настоящее время уравнения состояния позволяют учесть разрушение на микроуровне. Однако если говорить о практически применимых надежных инженерных методах оценки и анализа поведения композитов при многоосном напряженном состоянии, то предмет нелинейная вязкоупругость композитов еще находится в самой начальной стадии разработки.  [c.217]

Дальнейшее обобщение линейной теории вязкоупругости состоит в переходе к нелинейным уравнениям вида (10.41) или (10.42), т. е. к соотношениям указанного вида при нелинейных операторах Р и R. Нелинейная теория вязкоупругостн позволяет получить достаточно хорошее описание ползучести бетона и полимеров при различных режимах, в том числе неизотермических. В то же время этой теорией не охватываются необратимые процессы, протекающие мгновенно (атермическая пластичность) такие явления, как было указано, характерны в первую очередь для металлов. Тела, обладающие упругостью, вязкостью и пластичностью, описываются теорией упруго-вязко-пластических сред. Реологические уравнения этой теории уже не могут быть представлены в виде (10.41) или (10.42) (даже при нелинейных операторах Р и R ) подобно тому, как соотношения между напряжениями и деформациями для упруго-пластического тела нельзя записать в виде конечных (функциональных) связей. В рамках упомянутой теории и следует искать описание поведения металлов при достаточно высоких температурах.  [c.754]

Третьей характерной кривой является график зависимости между напряжением и деформацией для определенного момента времени. Ясно, что для любого момента времени этот график будет представлять собой прямую линию с постоянным углом наклона. Линейная зависимость напряжений от деформаций (В каждый момент времени есть следствие неявного предположения о линейности моделей, состоящих из пружин и цилиндров с поршнями. Эта линейная зависимость в общем случае очень важна при исследовании напряжений и деформаций поляризационно-оптическим методом, так как она позволяет распростра- нить результаты, полученные на моделях из вязкоупругого материала, на натуру из упругого материала. Большая часть вязкоупругих материалов обладает линейной зависимостью между напряжениями и деформациями в определенных пределах изменения напряжений и деформаций (или даже времени). Существуют и нелинейные вязкоупругие материалы, полезные в некоторых специальных задачах. Однако в большинстве случаев приходится выбирать материал с линейной зависимостью между напряжениями и деформациями и следить за тем, чтобы модель из оптически чувствительного материала не выходила в ходе испытания за пределы области линейности свойств материала. При фотографировании картины полос момент времени для всех исследуемых точек оказывается одним и тем же. Если используются дополнительные тарировочные образцы, то измерения на них необходимо проводить через тот же самый интервал времени после приложения нагрузки, что и при исследовании модели. Читатель, желающий подробнее ознакомиться с использованием расчетных моделей для анализа свойств вязкоупругих материалов, может обратиться к другим публикациям по данному вопросу, в частности к книге Алфрея [1] ).  [c.122]

Влияние предварительного нагружения на динамические свойства материалов было показано на рис. 3.8. Во многих случаях, например для опор двигателя, этот эффект довольно важен, особенно когда требуется достичь хороших изолирующих характеристик при высоких частотах колебаний. Здесь также учитывается влияние температуры окружающей двигатель среды. Так, для того чтобы изготовить резиноподобные материалы с разнообразными изолирующими и демпфирующими характеристиками, необходимо изучить их свойства как функции динамических и статических деформаций. Однако, поскольку здесь возможно большое число комбинаций параметров, становится трудным организовать испытания материалов. С другой стороны, можно использовать подход, при котором влияние различных внешних условий можно разграничить так, что будет достаточно провести испытания заданного материала для определения как статических, так и динамических характеристик порознь, а затем воспользоваться аналитическими методами для оценки их совместного влияния. В работе [3.11] была предложена общая теория комбинированного линейного динамического и нелинейного статического поведения вязкоупругих материалов. Аналогичный подход, дающий более простые результаты и основанный на уравнении Муни — Ривлина [3.12, 3.13], обсуждается ниже. Сначала рассматривается нелинейное статическое представление на основе уравнения Муни — Ривлина, а затем оно распространяется на динамическое поведение  [c.124]

Постоянные и функциональные параметры уравнений механических состояний металлических (при высоких температурах) и полимерных материалов существенно зависят от температуры, что весьма осложняет расчеты деформаций при нестационарном термомеханическом нагружении. Сравнительно легко эти трудности обходятся лишь в том частном случае, когда от температуры зависят одни лишь временные, но не силовые параметры. В этом случае при некоторых дополнительных условиях может быть установлена температурно-временная аналогия, по которой процесс неизотермического нагружения может сводиться к изотермическому в приведенном времени, зависящем на каждом отрезке действительного времени от отношения фактической температуры к температуре приведения. Метод температурно-временной аналогии описан в [7, 92], причем он относится в равной мере как к уравнениям вязкоупругости, так и к рассмотренным выше уравнениям вязкопластичности. Однако в области физической нелинейности материала от температуры зависят не только временные, но и силовые параметры уравнений состояний. В таких условиях удобен следующий формальный прием преобразования ступенчатого неизотермического режима нагружения к эквивалентному изотермическому режиму [63].  [c.63]


Анализ осесимметричной потери устойчивости жестко защемленных по краю пологих сферических оболочек лри ползучести на основе метода конечных элементов лроведен в работе [94]. Реологические свойства материала описаны нелинейными соотношениями вязкоупругости.  [c.10]

В главе 2 исследованы нелинейные физические эффекты, обусловленные вязкоупругими свойствами жидкости. Отличительная черта большинства рассмотренных задач - наличие в потоке сильного разрыва гидродинамических параметров. Получено новое точное решение полных уравнений движения жидкости выполнен анализ релаксационных свойств вязкого касательного напряжения и завихренности. Изучены условия, в которых изотермическая жидкость Максвелла проявляет гиетерезисную нелинейность, Представлены закономерности поведения вихря скорости под воздействием вязкоуирзтости, переменной плотности, зависимости теплофизических параметров жидкости от температуры. Подробно изучен "трансзвуковой" эффект для вихря скорости на линии сильного гидродинамического разрыва. Проанализированы условия движения, при которых диссипативная функция отрицательна,  [c.4]

Если изотермическое течение происходит в отсутствие массовой силы [F = 0), то при Л1 = О имеем для завихренности 2 ) = <т,2 /Это означает, что вихрь скорости прямо пропорционален вязкому касательному напряжению, если жидкость либо ньютоновская либо вязкоупругая с оператором субстанциональной производной в реологическом уравнении состояния. Линейная связь со и г,, для некоторых изотермических и неизотермнче-ских течений ньютоновских и вязкоупругих жидкостей была отмечена ранее в п. 1.2.3 (рис. 1.1), и. 1.5.1 (рис. 1.14), п. 1.5.2 (рис. 1.18), п. 2.1.1 (рис. 2.1). Если релаксация вязких напряжений отсутствует у - 0), и жидкость нелинейно-вязкопластичная (1.8), то в классе движений (2.57)-(2.59) зависимость т,2 =т,2((у) - дробно-степенная функция  [c.76]


Смотреть страницы где упоминается термин Вязкоупругость нелинейная : [c.204]    [c.206]    [c.307]    [c.307]    [c.379]    [c.554]    [c.225]    [c.334]    [c.33]    [c.70]    [c.10]    [c.323]    [c.195]    [c.248]   
Основы гидромеханики неньютоновских жидкостей (1978) -- [ c.206 , c.230 ]

Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.754 ]

Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.58 ]



ПОИСК



Вязкоупругие среды линейные нелинейные

Вязкоупругость

Вязкоупругость нелинейная, —, nonlinear. —, nichtlinear

Задачи нелинейной теории вязкоупругости

Материалы нелинейно вязкоупругие — Виды

Методы решения задач нелинейной вязкоупругости

Модель нелинейная вязкоупругая

Модель нелинейно-вязкоупругая — Напряжения 462—466 — Результаты по намотке с постоянным натяжением

Нелинейная теория вязкоупругости

Нелинейная теория термо- и вязкоупругости

Нелинейная теория тиксотропной вязкоупругости

Нелинейное вязкоупругое г- — аналитические методы

Нелинейное вязкоупругое поведение

Нелинейное вязкоупругое поведение источники обратимая нелинейность

Нелинейное вязкоупругое поведение источники однородность первой степени

Нелинейное вязкоупругое поведение, источники нелинейности

Нелинейное вязкоупругое поведение, источники нелинейности определение

Нелинейное вязкоупругое поведение, источники нелинейности эффект Муллинса

Нелинейные вязкоупругие свойства полимеров при одноосном нагружении

Нелинейные вязкоупругие среды

О системах аналитических вычислений на ЭВМ, ориентированных на решение плоских задач нелинейной упругости и вязкоупругости

Основные понятия и определения нелинейной теории упругости и элементы нелинейной теории вязкоупругости

Понятия и уравнения нелинейной теории упругости и вязкоупругости

Постановка задачи нелинейной вязкоупругости

Применение различных нелинейных моделей вязкоупругости для описания опытов на ползучесть при плоском напряженном состоянии

Термодинамические ограничения в нелинейной вязкоупругости

Уравнения нелинейной вязкоупругости, учитывающие влияние вида напряженного состояния

Уравнения состояния линейных и нелинейных упруговязких и вязкоупругих систем

ЦвелодубИ.Ю. Об одной обратной задаче для вязкоупругой плоской области с физически нелинейным включением произвольной формы

Численное исследование плоских продольных Уилсон. волн в нелинейном вязкоупругом материале

Эксперименты по релаксации напряжений в стекле и латуни исток нелинейной вязкоупругости. Кольрауш



© 2025 Mash-xxl.info Реклама на сайте