Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие методы решения линейных уравнений движения

Если бы периодическое решение системы уравнений движения (22) было известно, то, подставив его в матрицу С и вектор-функцию Р, мы получили бы линейную систему с кусочно-постоянными периодическими коэффициентами. Общее решение такой системы в соответствии с методами, изложенными в работе [1], можно записать в виде  [c.23]

Отмеченные выше существенные особенности диссипативных систем, заключающиеся в том, что любые свободные колебания в системе, предоставленной самой себе, неизбежно затухают, приводят к тому, что для количественного рассмотрения свободных колебаний с учетом потерь нельзя без существенных оговорок пользоваться методом последовательных приближений, в котором за нулевое приближение принимается гармоническое движение. Данный метод может применяться лишь для ограниченных временных интервалов в случае достаточной малости затухания, и поэтому его использование с подобными оговорками существенно снижает его практическую ценность. Это заставляет нас в тех случаях, когда не удается найти прямое и точное решение дифференциального уравнения, описывающего систему, искать другие пути нахождения приближенного решения, учитывающего специфику нелинейных диссипативных систем и пригодного для любого интервала времени. Из возможных методов нахождения приближенного решения следует в первую очередь указать на метод поэтапного рассмотрения н, в частности, на кусочно-линейный метод, а также на метод медленно меняющихся амплитуд. Кусочно-линейный метод, пригодный для любых типов трения и нелинейности, основывается на замене общего рассмотрения движения всей системы в целом решением ряда линейных задач — уравнений, приближенно описывающих различные этапы движения системы, на которых ее можно считать более или менее  [c.45]


Ниже излагается аналитический метод, позволяющий отыскивать общее, частное (при фиксированных начальных данных) и периодическое решения системы дифференциальных уравнений движения машинного агрегата с нелинейным звеном, имеющим кусочно-линейную характеристику.  [c.99]

Из построения следует, что при [t , g+i) движение машинного агрегата описывается системой линейных дифференциальных уравнений с постоянными коэффициентами. Методы отыскания и исследования решений (общего, частного и периодического) системы уравнений движения подробно рассмотрены в гл. III.  [c.175]

Таким образом, матрица С содержит нелинейный элемент ai, вектор-функция F (t, у) — нелинейную компоненту Fz t, v)- Вследствие этого дифференциальное уравнение движения (12.7) является нелинейным общего вида. Учитывая сложность зависимости (U), решение уравнения (12.7) точными методами неосуществимо тем более, что зависимость силового передаточного отношения от скорости обычно задается таблично. Полученные экспериментально такие функции не обладают достаточной гладкостью для существования классического решения системы дифференциальных уравнений движения. Следовательно, задача отыскания точного решения в этом случае не имеет смысла. Решение системы уравнений (12.7) осуществимо методом кусочно-линейной аппроксимации нелинейных зависимостей, в том числе и в случае их табличного задания по экспериментальным данным [29]. Отыскание решения аппроксимирующей системы осуществляется методами, разработанными в гл. II, причем найденное таким образом решение у t), удовлетворяющее условиям аппроксимации  [c.305]

Первый метод, говоря словами Ляпунова, сводится к непосредственному исследованию возмущенного движения и основан на изучении общих или частных решений дифференциальных уравнений (Ь). При выяснении важнейшего вопроса о том, когда можно судить об устойчивости по первому приближению, т. е. ограничиваясь в правых частях уравнений (Ь) линейными членами, требуется изучить поведение решений однородной линейной системы  [c.125]

Класс точных решений уравнений газовой динамики удалось получить, применяя методы теории размерностей и подобия. Основная заслуга в этом принадлежит Л. И. Седову. В 1944 г. он дал общий прием для нахождения решений линейных и нелинейных дифференциальных уравнений в частных производных. Для одномерных неустановившихся течений (которые описы- 331 ваются нелинейными уравнениями) он рассмотрел случаи, когда искомые функции содержат постоянные, среди которых одна или две постоянные с независимыми размерностями. Седов доказал, что если среди размерных параметров, определяющих движение совершенного газа, кроме координаты г и времени t имеются лишь два постоянных физических параметра с независимыми размерностями, то уравнения в частных производных могут быть сведены к обыкновенным дифференциальным уравнениям. Движения газа, определяемые этими условиями, были названы автомодельными. Такими решениями были течения Прандтля — Майера, сверхзвуковые течения около кругового конуса с присоединенным скачком. В 1945 г. Седов нашел точные решения уравнений одномерного неустановившегося движения в случае плоских, цилиндрических и сферических волн (движение поршня в цилиндрической трубе, задача детонации, движение газа от центра и к центру) .  [c.331]


Для осциллятора, имеющего лишь одну степень свободы, п=2. В этом случае, согласно выражению (5.1), уравнение движения осциллятора становится линейным неоднородным уравнением, для решения которого теория дифференциальных уравнений предлагает ряд методов. Можно показать, что общее решение полного (неоднородного) уравнения L x)=f t) является суммой общего решения соответствующего однородного уравнения Ь (л )=0 и частного решения неоднородного уравнения. Так как решение однородного уравнения соответствует собственным колебаниям исследуемой системы, при действии внешних возмущений движение этой системы представляется наложением свободных и вынужденных колебаний.  [c.181]

Хотя решение (175.2) является совершенно общим в том смысле, что любые движения стержня могут быть представлены таким образом, при изучении колебаний оно неудобно, так как не позволяет простым способом обнаружить собственные частоты колебаний. Метод, который мы применим для задач о колебаниях, называется методом разделения переменных или методом Фурье. Заметим прежде всего, что уравнение (175.1) является линейным уравнением и его решения обладают следующими очевидными свойствами  [c.383]

В настоящей главе изучение движения простейшей модели снаряда в виде одномерного движения материальной точки обобщено на случай двух- и трехмерного движения. Отсюда естественно возникает проблема оптимизации траектории, которая оказывается тесно связанной с целым рядом смежных проблем. Простейшей задачей из этого круга проблем является задача определения оптимального управления, когда динамические характеристики снаряда заданы и требуется найти такую траекторию, которая оптимизирует некоторую заданную величину. Для случаев, когда поле сил зависит от скорости и координат снаряда, дана общая постановка задачи оптимизации траектории, а в случаях, когда силовое поле однородно или когда сила зависит от расстояния линейно, оказывается возможным получить решение в замкнутой форме. Это особенно важно в применении к баллистическим снарядам (нанример, снарядам дальнего радиуса действия класса земля — земля или носителям спутников), где расстояние, проходимое за время выгорания топлива, мало по сравнению с земным радиусом. Простой и в то же время почти оптимальной траекторией в этих случаях оказывается траектория гравитационного разворота при движении снаряда в плотной атмосфере и затем переход на траекторию, определяемую соотношением (2.6). Хотя точного решения уравнений движения по траектории гравитационного разворота не существует, все же можно построить ряд графиков, позволяющих во многих случаях подбирать требуемые значения параметров. Если ограничиться лишь получением решений, удовлетворяющих условию стационарности, то обычными методами вариационного исчисления можно исследовать те задачи оптимизации, в которых масса снаряда, программа скорости истечения и время выгорания, так же как и программа управления, являются варьируемыми функциями. Для того чтобы найти решения, являющиеся действительно максимальными или минимальными в определенном смысле, нужно проводить специальное исследование каждого отдельного случая, так как не всегда решение, удовлетворяющее требованию стационарности, является оптимальным, и наоборот. В тех задачах, где скорость истечения есть известная функция времени, как, например, это имеет место в жидкостных ракетных двигателях, из анализа следует лишь то, что оптимальной программой для М ( ) будет, как правило, программа импульсного сжигания топлива. Поэтому для получения практически интересных результатов необходимо проводить более глубокий анализ, с учетом таких факторов, как параметры двигателя, топливных баков и т. д., при одновременном учете характера траектории полета снаряда. Для выполнения такого рода анализа используется схема расчета, где анализ различных элементов Конструкции и групп уравнений (одной  [c.63]


Если задаться видом функции д х ), то, вычисляя интеграл (72), получим потенциал скоростей возмущений, а дифференцирование по г и а позволит вычислить и проекции скорости У( и ЕД Наоборот, задаваясь формой обтекаемого тела, можно, переходя от потенциала скоростей возмущенного движения к полному потенциалу продольного обтекания тела однородным потоком с заданной скоростью на бесконечности и написав условие непроницаемости поверхности тела, по.пучить интегральное уравнение, в котором д (х ) будет неизвестной функцией. Заменяя потенциал скоростей на функцию тока. Карман ) разработал метод приближенного интегрирования соответствующего интегрального уравнения, основанный на замене интеграла конечной суммой. Однако метод Кармана не был достаточно общим и, кроме того, требовал решения в каждом отдельном случае системы большого числа линейных алгебраических уравнений, что делало его на практике слишком трудоемким.  [c.299]

Для решений большинства обсуждаемых здесь задач характерна возможность получения оптимального управления и [ , х] в эффективной форме. Это в немалой степени объясняется линейностью уравнений движения управляемого объекта и квадратичным характером подынтегрального выражения в минимизируемом функционале (14.2). В результате во многих случаях оптимальное управление м оказывается линейной функцией от фазовых координат системы (или от величин I/ (i), их заменяющих), если речь идет о линейных объектах. В случае квазилинейных объектов управляющее воздействие строится в виде рядов. При этом процедура построения этих рядов оказывается подобной типичным процедурам метода малого параметра, где порождающие системы снова оказываются линейными. Такое определяющее линейное управление во многих задачах вида (14.1)—(14.2), но с неполной информацией о состояниях X (i), обладает также следующим полезным свойством общая проблема оптимального синтеза делится на две отдельные задачи — на задачу о наилучшем наблюдении фазоьых координат хг t) по доступной измерению функции у (1) и на задачу о наилучшем управлении, причем уже игнорируется неполнота информации о величинах х Решение  [c.208]

В статье рассматриваются стопорные режимы в машинном агрегате с электроприводом постоянного тока. Механическая система схематизирована в виде дискретной цепной крутильной системы с конечным числом степеней свободы. Рассмотрены уточненное и упрощенное математические описания упруго-диссипативных свойств соединений. Динамические процессы в приводном двигателе с независимым возбуждением исследованы с учетом типовых САР скорости. При этом рассмотрены наиболее характерные примеры САР с линейными и нелинейными (задержанными) связями. На основе рассмотрения динамических процессов в механической системе и в проводном двигателе получена система дифференциальных уравнений движения с кусочно-постоянными коэффициентами при уточненном математическом описании динамических харак-геристик звеньев. Предложен эффективный численно-аналитический метод интегрирования системы уравнений движения. Рассмотрены возможные упрощения при приближенном исследовании стопорных режимов Получена система приближенных интегральнодифференциальных уравнений стопорного режима, для которой разработан метод отыскания решения в аналитическом виде. Изложенное иллюстрировано общим примером. Библ. Ill назв. Илл. 9.  [c.400]

Линейное уравнение вида (1.8) с периодическим коэффициентом p(t) общего вида впервые получено американским астрономом Дж. Хиллом в связи с задачей о движении перигея Луны и теперь носит его имя [55]. Дж. Хилл предложил метод решения этого уравнения с использованием определителей бесконечного порядка. Метод Хилла обсуждается в 4. Обобщение теории Хилла на случай системы уравнений дано Д. В. Трещевым и С. В. Болотиным оно изложено в добавлении 2.  [c.86]

Для решения задач динамики механических систем со многими степенями свободы методы, принятые в классической теории механизмов и машин, оказываются несостоятельными. Эти задачи требуют более мощного аппарата общей механики и математики, в частности применения дифференциальных уравнений движения механических систем в лагранжевых и канонических 1еременных, а также теории линейных и нелинейных колебаний.  [c.53]

Мы рассмотрим здесь ангармонические эффекты третьего порядка, происходящие от кубических по деформации членов в упругой энергии. В общем виде соответствующие уравнения движения оказываются очень громоздкими. Выяснить же характер возникающих эффектов можно с помощью следующих рассуждений. Кубические члены в упругой энергии дают квадратичные члены в тензоре напряжений, а потому и в уравнениях движения. Представим себе, что в этих уравнениях все линейные члены перенесены в левые, а все квадратичные — в правые стороны равенств. Решая эти уравнения методом последовательных приближений, мы должны в первом приближении вовсе отбросить квадратичные члены. Тогда останутся обычные линейные уравнения, решение Uo которых может быть представлено в виде наложения монохроматических бегущих воли вида onst-е определенными соотношениями между (О и к. Переходя к следующему, вгорому, приближению, надо положить и = и,, + Uj, причем в правой стороне уравнений (в квадратичных членах) надо сохранить только члены с Uq. Поскольку Uq удовлетворяет, по определению, однородным линейным уравнениям без правых частей, то в левой стороне равенств члены с Uq взаимно сокращаются. В результате мы получим для компонент вектора Uj систему неоднородных линейных уравнений, в правой части которых стоят заданные функции координат и времени. Эти функции, получающиеся подстановкой Uq в правые стороны исходных уравнений, представляют собой сумму членов, каждый из которых пропорционален множителю вида [(к,-к,) г-(й)1-(о,)/] или где tt i, (02 и к , — частоты и волновые векторы каких-либо двух монохроматических волн первого приближения.  [c.145]


Точное решение задачи о свободных колебаниях в нелинейных диссипативных системах в подавляющем большинстве случаев наталкивается на весьма большие и очень часто неразрешимые трудности. Поэтому (как и в случае консервативных систем) приходится искать методы приближенного расчета, которые с заданной степенью точности позволили бы найти количественные соотношения, определяющие движения в исследуемой системе при заданных начальных условиях. Из ряда возможных приближенных методов рассмотрим в первую очередь метод поэтапного рассмотрения. Мы уже указывали, что этот метод заключается в том, что в соответствии со свойствами системы все движение в ней заранее разбивается на ряд этапов, каждый из которых соответствует такой области изменения переменных, где исследуемая система с достаточной точностью описывается или линейным дифференциальным уравнением, или нелинейным, но заведомо интегрируемым уравнением. Записав решения для всех выбранных этапов, мы для заданных начальных условий находим уравнение движения для первого этапа, начинающегося с заданных начальных значений. Значения переменных 1, х, у = х) конца первого этапа считаем начальными условиями для следующего этапа. Повторяя эту операцию продолжения решения от этапа к этапу со сшиванием поэтапных решений на основе условия непрерывности переменных х и у = х, мы можем получить значения исследуемых величин в любой момент времени. Если разбиение всего движения системы на этапы основано на замене общей нелинейной характеристики ломаной линией с большим или меньшим числом прямолинейных участков, то подобный путь обычно называется кусочно-линейным методом. В этом случае на каждом этапе система описывается линейным дифференциальным уравнением. Условие сшивания решений на смежных этапах — непрерывность х я у = х — необходимо и достаточно для системы с одной степенью свободы при наличии в ней двух резервуаров энергии и двух форм запасенной энергии (потенциальной и кинетической, электрической и магнитной). Существование двух видов резервуаров энергии является также необходимым условием для возможности осуществления в системе свободных колебательных движений, хотя для диссипативных систем оно недостаточно. При большом затухании система и с двумя резервуарами энергии может оказаться неколебательной — апериодической.  [c.60]

Существенные осложнения возникают в тех случаях, когда движение в расчетной схеме механизма описывается нелинейными дифференциальными уравнениями. Это имеет место при учете зазоров в системе, при рассмотрении разветвленных схем, при учете одновременной работы нескольких механизмов и т. п. Дело в том, что большинство уравнений этого вида не имеют общего решения и, кроме того, нелинейность исключаег возможность сложения общих и частных решений. В этих случаях, так же как и при линейных уравнениях с переменными коэффициентами, используются приближенные методы [4, 13] или наиболее универсальный имитационный метод определения на грузок,  [c.112]

А. Пшеборский для нелинейного случая, но при линейных относительно ускорений неголономных связях второго порядка вывел уравнения типа Маджи, выраженные в декартовых координатах. Последнее обстоятельство создает определенные неудобства и в известном смысле ограничивает общность его метода. Для рассматриваемого общего случая дифференциальные уравнения движения системы в лагранжевых координатах в форме Воронца — Гамеля, Аппеля — Гиббса и Ценова установил М. Ф. Шульгин 2. Р. Казанину принадлежит любопытная идея преобразования уравнений нелинейных реономных неголономных связей любого порядка в уравнения линейных склерономных связей первого порядка путем введения надлежащих новых параметров. Эта идея, как показывает Казанин, оказывается плодотворной, например, при составлении динамических уравнений движения системы и решении задачи об определении реакций связей.  [c.99]

Общая теория малых колебаний материальной точки приводится во всех курсах теоретической механики. Задача обычно сводится к отысканию решения линейного дифференциального уравнения второго порядка с постоянными коэффициентами. Наибольшие затруднения, по-видимому, представляют вопросы, связанные с определением сил,, создающих колебательное движение, а также составление дифференциальных уравнений, определяющих малые колебания. В простейших задачах линейные дифференциальные уравнения в точности описывают механический процесс. В общем же случае эти уравнения являются лишь приближенными и остаются справедливыми только для достаточно малых колебаний. Методы линеаризации уравнений движения остаются и в настоящее время наиболее простым и эффективным средством решения бТ)льшей части технических задач.  [c.48]

В работе Хантера [71] решена двумерная задача о качении жесткого цилиндра с постоянной скоростью по вязкоупругому полупространству, причем рассмотрен случай, когда можно пренебречь инерционными силами. Исследование выполнено в рамках линейной теории, деформации считаются малыми, и граничные условия на поверхности относятся к недеформированному состоянию среды. Подход, примененный в работе, заключался в представлений нормальной составляющей поверхностного смещения в виде интеграла от существующего решения задачи о движении распределенной линейной нагрузки, что привело к сингулярному интегральному уравнению отцосительно искомой функции поверхностного давления (вязкоупругий аналог формулы Буссинеска). Решение задачи осуществлялось путем эквивалентного преобразования интегрального уравнения в уравнение с обычным логарифмическим ядром относительно дифференциального оператора давления. Замкнутый вид решения был получен для материала, физические свойства которого описываются одной функцией ползучести и одним временем ретордации. Однако при обобщении результатов этого исследования и распространении их на более общий случай вязкоупругого тела, у которого ползучесть характеризуется конечным числом времен релаксации, метод при-  [c.401]

Мы рассмотрим здесь ангармонические эффекты третьего порядка, происходящие от кубических по деформации членов в упругой энергии. Выписывать в общем виде соответствующие уравнения движения было бы слишком громоздким. Выяснить же характер возникающих эффектов можно с помощью следующих рассуждений. Кубические члены в упругой энергии дают квадратичные члены в тензоре напряжений, а потому и в уравнениях движения. Представим себе, что в этих уравнениях все линейные члены перенесены в левые, а все квадратичные— в правые стороны равенств. Решая эти уравнения методом последовательных приближений, мы должны в первом приближении вовсе отбросить квадратичные члены. Тогда останутся обычные линейные уравнения, решение Uq которых может быть представлено в виде наложения монохроматических бегущих волн вида onst. с опре-  [c.771]

Аналитические методы определения характеристик объектов регулирования основаны на составлении их дифференциальных уравнений. Составление дифференциальных уравнений базируется на использовании основных физических законов сохранении массы, энергии и количества движения. Как правило, таким путем удается получить нелинейное уравнение объекта, аналитическое решение которого в общем случае не может быть получено. Следующим шагом является линеаризация полученного уравнения, т. е. переход к линейной математической модели объекта. Линеаризация обычно проводится путем разложения нелинейных зависимостей в ряд Тейлора в окрестности исходного станционарного режима с сохранением только линейной части разложения и последующим вычитанием уравнений статики. Полученная таким образом линейная модель объекта справедлива лишь при малых отклонениях от исходного стационарного режима. Решение уравнений при ступенчатом или импульсном изменении входных величин позволяет получить соответственно переходные функции (кривые разгона) или импульсные временные характеристики объектов. Решение часто проводят в области изображений Лапласа или Фурье. В этом случае получают соответственно передаточные функции или амплитудно-фазовые характеристики.  [c.817]


Арки и рамы. В. П. Тамуж (1962) рассмотрел движение круговой жестко-пластической арки под действием приложенной в центре сосредоточенной нагрузки. Предполагалось, что движение арки, аналогично-статическому деформированию, происходит с образованием трех пластических шарниров. Далее автор использовал для определения двух независимых параметров, характеризующих механизм деформирования, принадлежащий ему же вариационный принцип, в результате чего задача свелась к решению двух трансцендентных уравнений. Для подтверждения правильности полученных решений необходимо, кроме того, убедиться, что предел текучести не превышен в жестких частях арки. Полученная картина движения в общем удовлетворительно подтверждается экспериментом. Данная работа интересна также как первый пример использования в динамике неупругого тела математического аппарата квадратичного программирования. Если разбить дугу арки на п равных частей, то согласно (2.3) задача сведется к отысканию минимума некоторой квадратичной функции при линейных ограничениях, т. е. к задаче квадратичного программирования. Для решения этой задачи автор предлагал использовать метод Уолфа.  [c.318]


Смотреть страницы где упоминается термин Общие методы решения линейных уравнений движения : [c.460]    [c.509]   
Смотреть главы в:

Теория механизмов и машин  -> Общие методы решения линейных уравнений движения



ПОИСК



Движение, метод

Движения общие уравнения

Линейные уравнения

Метод решения уравнений

Метод решения уравнений движения

Методы линейного

Общие уравнения

Общий метод

Общий метод решения

Решения метод

Решения общих уравнений

Решения уравнения движения

Уравнение метода сил



© 2025 Mash-xxl.info Реклама на сайте