Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Функция Гамильтона. Канонические уравнения механики или уравнения Гамильтона

ГЛАВА XX. ФУНКЦИЯ ГАМИЛЬТОНА. КАНОНИЧЕСКИЕ УРАВНЕНИЯ МЕХАНИКИ ИЛИ УРАВНЕНИЯ ГАМИЛЬТОНА  [c.364]

Принципом Гамильтона можно воспользоваться также для непосредственного вывода канонических уравнений механики — уравнений Гамильтона. Выразим кинетический потенциал L через функцию Гамильтона Н. Как было показано в I части курса (стр. 512), функция Гамильтона  [c.131]


Если построена обобщенная функция Гамильтона и уравнения движения непотенциальной системы приведены к гамильтоновой форме, то для таких систем справедливы все основные теоремы и методы гамильтоновой механики потенциальных систем, в частности теорема Остроградского — Гамильтона — Якоби об интегрировании канонической системы уравнений. На доказательстве этих утверждений не останавливаемся, поскольку оно проводится так же, как указано, например, в работе [16].  [c.169]

Уравнения (132.5) называются каноническими уравнениями механики, или уравнениями Гамильтона. Уравнения Гамильтона представляют собой систему обыкновенных дифференциальных уравнений первого порядка. Интегрирование этих уравнений дает 25 величии с/,, (/2..... qs, Ри Рг,. ..у Ps в функции времени t и 2s  [c.369]

В своих Лекциях Якоби значительно развил теорию канонических уравнений Гамильтона, существенно расширив класс механических систем, к которым она применима. Изложив принцип Гамильтона и выведя канонические уравнения для любых механических систем, обладающих силовой функцией, в которую может входить время, Якоби применяет к этим уравнениям теорему С. Пуассона, открытую им в связи с другими задачами механики.  [c.212]

Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]


Обычные задачи механики приводят к функциям Лагранжа, не содержащим производных выше первого порядка. В общем же случае в вариационных задачах могут встретиться в подинтегральном выражении производные вплоть до т-го порядка. Эти задачи также могут быть преобразованы к нормальному виду при помощи канонического интеграла. Поэтому канонические уравнения Гамильтона могут считаться нормальным видом, к которому приводится любая  [c.199]

Наконец, в лагранжевой механике не существует какого-либо общего метода упрощения функции Лагранжа. Не существует никакого систематического приема для получения циклических переменных и их можно получить лишь путем удачной догадки. В гамильтоновой механике может быть предложен определенный метод получения циклических переменных и упрощения функции Гамильтона. Этот метод сводит всю задачу интегрирования к нахождению одной фундаментальной функции, являющейся производящей функцией некоторого преобразования. Он играет центральную роль в теории канонических уравнений и, как будет показано в следующей главе, предоставляет широкие возможности для различных обобщений.  [c.226]

Это действительно так, если считать, что основная задача механики состоит лишь в интегрировании уравнений движения. Но такая ограниченная точка зрения была бы несправедливостью по отношению к далеко идущим исследованиям Гамильтона. Пользоваться непосредственно главной функцией Гамильтона действительно нельзя, и приходится прибегать к методу Якоби, но тем не менее главная функция Гамильтона остается важной и интересной функцией и служит гораздо более глубоким целям, чем простое интегрирование канонических уравнений. Поэтому сравнение tt -функции Гамильтона с S-функцией Якоби заслуживает того, чтобы на нем остановиться. Постигнув все тонкости теории Гамильтона, мы придем к заключению, что в теории Гамильтона два уравнения в частных производных столь же необходимы и естественны, как одно уравнение в теории Якоби.  [c.292]

В предыдущем параграфе мы убедились в том, что вполне возможно выбрать совокупность канонически сопряженных переменных, соблюдая следующие требования а) гамильтониан системы является функцией только половины переменных, и б) для периодических систем, уравнение Гамильтона — Якоби которых может быть решено методом разделения переменных, можно выбрать угловые переменные таким образом, что они изменяются за период на единицу. Причины, по которым вводятся переменные такого вида, что гамильтониан зависит лишь от половины из них, более или менее очевидны, но причины введения переменных действие — угол значительно хитрее. II действительно, эти переменные оказались на авансцене лишь с возникновением старой квантовой механики, и причина возникшего к ним интереса была связана с тем, что переменные действия оказались так называемыми адиабатическими инвариантами. Мы определим  [c.172]

Перейдя к механике, Гамильтон показал значение в ней своего нового вариационного принципа, а его характеристическая функция для задач механики ( функция Гамильтона Н) оказалась, при довольно широких условиях, совпадающей с энергией механической системы. Зная, как выражается функция Н через координаты и импульсы составляющих систему материальных точек, можно сразу составить дифференциальные уравнения, определяющие координаты и импульсы. Получающаяся система дифференциальных уравнений ( канонические уравнения ) равносильна системе уравнений движения, в частности — системе уравнений Лагранжа второго рода, но обладает некоторыми особыми свойствами, облегчающими ее исследование.  [c.208]

Е — единичная матрица размерности п). Уравнения (13) в компонентах имеют ту же структуру, что и канонические уравнения Гамильтона в аналитической механике. Системы уравнений, приводимые к виду (13), а также соответствующие механические системы называют каноническими. Наиболее важный пример механических систем канонического типа — системы с идеальными голономными стационарными связями, нагруженные силами, которые выражаются через силовую функцию. Сели силовая функция — периодическая функция времени, то уравнения движения можно привести к виду (13) с периодической матрицей Н t).  [c.118]


Геометрическое представление движения в пространстве 2к измерений впервые предложил американский физик Д. Гиббс (1839—1903), который и ввел понятие фазового пространства, считая, что ряд являются ортогональными координатами 2й-мерного евклидова пространства. Использование фазового пространства вносит ряд преимуществ при изучении движения механических систем. Так, например, на многие вопросы механики нельзя дать удовлетворительный ответ, рассматривая одно частное решение системы, соответствующее определенным начальным данным. Необходимо знать все множество траекторий. Движение может начинаться из любой точки /г-мерного пространства в произвольном направлении. В фазовом пространстве задание одной точки Р однозначно определяет всю траекторию. Для полного решения канонических уравнений Гамильтона необходимо знать величины <7,- и р как функции времени 1 я 2к постоянных интегрирования, которые можно интерпретировать как значения 2к координат фазового пространства в момент = 0. Рассматривая 2к координат как различные измерения в фазовом пространстве, можно изобразить полное решение канонических уравнений в упорядоченном виде без пересечений в виде бесконечного множества кривых, заполняющих 2 - -1-мерное пространство (пересечение кривых означало бы, что в одной и той же точке возможны две касательные к кривой, а канонические уравнения при отсутствии особых точек определяют единственную касательную).  [c.468]

Для системы (6), имеющей интегральный инвариант вида (3), также известно обратное утверждение инвариантность интеграла Пуанкаре-Картана может быть положена в основу механики, так как из этой инвариантности вытекает, что движение системы подчиняется каноническим уравнениям Гамильтона [25]. Однако теперь ситуация является более сложной, поскольку в интегральном инварианте используется ещё одна пара сопряжённых переменных. Наличие в интегральном инварианте (3) функции Н и условие, что система имеет вид (7) с гамильтонианом Н, дают лишь тривиальный случай по совпадению. Причины, по которым доказательство обратного утверждения для интегрального инварианта Пуанкаре-Картана, приведённое в [25], мы не считаем убедительным, будут отмечены ниже.  [c.227]

Пусть N — пространство положений натуральной системы, XI,..., Хп — локальные координаты на Л , а у I,..., — импульсы. Координаты х,у являются каноническими на Т М, и в этих переменных симплектическая структура П имеет стандартный вид П = с1у А х,. Рассмотрим дополнительно некоторую замкнутую 2-форму на Л Г = Гу х)(1х Л (формой гироскопических сил. Сумма двух форм П-ьГ определяет новую симплектическую структуру на пространстве кокасательного расслоения многообразия N. Если Я — некоторая функция на Т М, то пара (П -Ь Г, Я) задает некоторую гамильтонову систему с гамильтонианом Я эту систему назовем системой с гироскопическими силами. Ясно, что наличие гироскопических сил не изменяет полной энергии Я. К форме П -Ь Г можно применить теорему Дарбу и представить ее в каноническом виде. Для этого, пользуясь замкнутостью формы Г, запишем локально Г = Г, Г = Гк х)(1хк. Тогда в переменных х,у имеем П -Ь Г = 2<1у Л (1х -Ь 2 Л Х = (1 у -Ь Г ) Л Х . Следовательно, переменные х, у, определяемые равенствами = х , У к — Ук + Рк х, ..., х ) 1 к п) будут каноническими координатами для новой симплектической структуры. В новых переменных уравнения Гамильтона имеют канонический вид с функцией Гамильтона Я(х, г/ - Г) = Н х,у).  [c.24]

В механике систем с конечным числом степеней свободы, равным N, метод Гамильтона состоит в замене уравнений Лагранжа второго рода, которые являются системой N обыкновенных дифференциальных уравнений второго порядка с неизвестными обобщенными координатами, системой 2Л обыкновенных уравнений первого порядка с неизвестными обобщенными координатами и обобщенными импульсами [40]. Метод составления этих уравнений позволяет разрешить их относительно производных искомых функций, в связи с чем они получили название канонических уравнений динамики.  [c.90]

Чтобы ввести уравнения движения в пределы гамильтоновой механики недостаточно, чтобы они были каноническими в общем смысле этого термина. Необходимо, чтобы они были гамильтоновыми каноническими уравнениями, т. е. чтобы они порождались некоторой функцией или тензором Гамильтона.  [c.103]

В связи с тем, что термоупругие процессы сопровождаются рассеянием энергии, описываемым диссипативной функцией Рэлея (5.122), канонические уравнения, как н в случае механики дискретных систем, при действии непотенциальных сил будут неоднородны. Следуя работам [18, 78], определяем функцию Гамильтона для сплошной среды соотношением  [c.153]

Многие задачи небесной механики описываются каноническими дифференциальными уравнениями, задаваемыми функцией Гамильтона Н, содержащей малый параметр 8  [c.186]

Если вместо обобщенных скоростей ввести новые переменные, то система уравнений Лагранжа будет представлять собой систему уравнений, разрешенную относительно производных от этих новых переменных. Гамильтон обнаружил преобразования, которые делают функцию Лагранжа линейной относительно скоростей при одновременном удвоении числа переменных. Благодаря этому преобразованию задачи механики могут быть сведены к каноническим дифференциальным уравнениям. В основе преобразования Гамильтона лежит идея общих преобразований французского математика Лежандра (1752—1833).  [c.446]


Следствие 9.5.4. Существование интегрального инварианта Пуанкаре-Картана есть необходимое и достаточное условие того, чтобы движение еистемы опиеывалось каноническими уравнениями с функцией Гамильтона, входящей в выражение инварианта. Инва-риантноеть интеграла Пуанкаре-Картана может быть положена в основу механики голономных еистем е потенциальными силами.  [c.666]

М. тесно связана со многими др. разделами физики. Ряд понятий и методов М. при соотвотствукщих обобщениях находит приложение в оптике, статистич. физике, квантовой М., электродинамике, теории относительности и др. (см., напр., Действие, Канонические уравнения механики, Лагранжа функци.ч, Лагранжа уравнения механики, Гамильтона — Якоби уравнения, Наименьшего действия принцип). Кроме того, при решении ряда задач газовой динамики, теории взрыва, теплообмена в движущихся жидкостях и газах, динамики сильно разреженной среды (см. Супераэродинамика), магнитной гидродинамики и т. д. одновременно используются методы и ур-ния как теоретич. М., так и соответственно термодинамики, молекулярной физики, теории электричества и др.  [c.210]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]

Сопоставим в заключение методы Гамильтона и Лагранжа. В гамильтоновом формализме основными величинами являются , р, и Н. Гамильтониан можно построить с помощью функции Лагранжа и q и р,. Отсюда непосредственно получаются канонические уравнения и динамические переменные. Однако в гамильтоновом формализме время все же играет особую роль по сравнению с пространственными координатами, являясь, по существу говоря, единственной независимой переменной. С одной стороны, это дает возможность провести далеко идущую аналогию с классической механикой, но, с другой стороны, именно поэтому теория оказывается релятивистски неинвариантной. Напротив, в лагранжевом формализме не вводят функции р,-, Н (хотя это и возможно). В лагранжевом методе исходят из вариационного принципа для лагранжиана системы. Из условий для его экстремума получают уравнения движения, а динамические переменные (энергия — импульс, заряд и т. п.) определяются как инварианты, соответствующие различным преобразованиям системы координат и, в случае теории полей, функций поля. В лагранжевом формализме время входит совершенно симметрично с пространством и теория с самого начала релятивистски ковариантна, но зато аналогия с механикой системы точек оказывается гораздо менее отчетливой.  [c.878]

ПРАВИЛО (Стокса длина волны фотолюминесценции обычно больше, чем длина волны возбуждающего света фаз Гиббса в гетерогенной системе, находящейся в термодинамическом равновесии, число фаз не может превышать число компонентов больше чем на два ) ПРЕОБРАЗОВАНИЯ [Галилея — уравнения классической механики, связывающие координаты и время движущейся материальной точки в движущихся друг относительно друга инерциальных системах отсчета с малой скоростью калибровочные — зависящие от координат в пространстве — времени преобразования, переводящие одну суперпозицию волновых функций частиц в другую каноническое в уравнениях Гамильтона состоит в их инвариантности по отношению к выбору обобщенных координат Лоренца описывают переход от одной инерци-альной системы отсчета к другой при любых возможных скоростях их относительного движения] ПРЕЦЕССИЯ — движение оси собственного вращения твердого тела, вращающегося около неподвижной точки, при котором эта ось описывает круговую коническую поверхность ПРИВЕДЕНИЕ системы <к двум силам всякая система действующих на абсолютно твердое тело сил, для которой произведение главного вектора на главный момент не равно нулю, приводится к динаме к дниаме (винту) — совокупность силы и пары, лежащей в плоскости, перпендикулярной к силе скользящих векторов (лемма) всякий скользящий вектор, приложенный в точке А, можно, не изменяя его действия, перенести в любую точку В, прибавив при этом пару с моментом, равным моменту вектора, приложенного в точку А скользящего вектора относительно точки В ) ПРИНЦИП (есть утверждение, оправданное практикой и применяемое без доказательства Бабине при фраунгоферовой дифракции на каком-либо экране интенсивность диафрагмированного света в любом направлении должна быть такой, как и на дополнительном экране )  [c.263]

Наконец, Гамильтон связал свою каноническую систему дифференциальных уравнений первого порядка с соответствующим дифференциальным уравнением в частных производных, которому, как выяснилось, удовлетворяет его характеристическая функция Н. Получилась обширная теория. Она дала новую удобную форму уравнений движения, новый подход к проблеме их решения (интегрирования). Она вскрывала более полно и глубоко аналогии между механикой и оптикой, выявила новые возможности геометрической интерпретации, наконец, она вела к выявлению связи между волновыми и кориуску-  [c.208]

Гамильтон считал, что главная функция S должна удовлетворять двум уравнениям в частных производных первого порядка (17) и (18). Это обстоятельство уменьшало, видимо, возможности применения метода к частным задачам механики, Якоби показал, что необходимость соблюдения уравнения (18) совершенно излипшя чтобы иметь возможность проинтегрировать уравнения движения по формулам (16), достаточно найти интеграл лишь одного уравнения (17), содержащий надлежаш ее число параметров. Вместе с тем Якоби показал, что этими параметрами могут и не быть начальные значения координат q. Это существенное улучшение результатов Гамильтона имеет особое значение для применения рассматриваемого метода интегрирования канонических уравнений.  [c.20]

А. К.). В наши дни установлено, что М ногие закономерности микромира (например, взаимодействия элементарных частиц) существенно отличаются от закономерностей макромира и для познания закономерностей микромира понадобились такие разделы математики, которые наверное не были изобретены с целью приложения к экспериментальным наукам и, конечно, не обусловлены достижениями экспериментальной физики XX в. Думаю со мной согласятся многие, если я выскажу утверждение, что геометрию Лобачевского, теорию функций комплексного переменного, вариационные принципы механики, интегральные инварианты для канонических уравнений Гамильтона, открытие планеты Нептун и многое другое нельзя доказательно обусловить развитием техники или научного эксперимента. Исследовательская работа в высших сферах абстракций не менее важна для развития науки и становления новых научных методов. Ф. Энгельс указыва ет в своей знаменитой работе Людвиг Фейербах и конец классической немецкой философии , что во многих случаях научные теории развиваются из самих себя и (подчиняются своим со бственным законам .  [c.6]


Новая форма уравнений движения элемента сплошной среды дала возможность выразить компоненты тензора Гамильтона через квазиплотность функции Лагранжа. Свертывание этого тензора позволило найти плотность функции Гамильтона. Однако этот процесс привел к выражению плотности (квазиплотности) функции Гамильтона, встречающемуся в монографиях по континуальной механике, где плотность функции Гамильтона вводится посредством определения. Путем обобщения классической методики найдены системы квазиканонических и канонических уравнений динамики сплошной среды. Указаны естественные краевые условия.  [c.4]

Якоби, в котором ищут такое каноническое преобразование, которое обращало бы функцию Гамильтона системы в нуль — такая функция Гамильтона не зависит от времени явно, сохраняется, но не имеет никакого отношения к энергии системы. Теперь мы видим, в чем тут дело — в классической механике из двух гамильтонианов Яр и Ящ остается аналог только гайзенбергова гамильтониана Яг — он-то и обращается в нуль в процедуре Гамильтона — Якоби, которая аналогична переходу к шредингеровой картине. В квантовой теории в этой картине возникает другой гамильтониан Яш, который управляет временной зависимостью векторов состояния, — но векторы состояния не имеют классического аналога, и поэтому в классическом рассмотрении этот новый объект исчезает из виду. Впрочем, это исчезновение не совсем бесследно в классическом описании сохраняется величина, связанная с квантомеханическим оператором эволюции U(t,to) (мы не будем сейчас устанавливать характер этой связи)—это производящая функция ф канонического преобразования Гамильтона — Якоби, которая удовлетворяла там уравнению Гамильтона — Якоби (1.77). Поэтому именно это уравнение оказывается классическим следом уравнения Шредингера и может быть получено из него соответствующим предельным переходом.  [c.466]

Книга состоит из десяти глав. По охватываемому материалу I Vi главы соответствуют в целом традиционным курсам механики. Задачи остальных четырех глав связаны с тематикой спецкурса Методы интегрирования канонических систем . В отличие от лагранжева формализма гамильтонов подход позволяет в принципе найти решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. В этом аспекте канонический формализм является мощным рабочим методом, позволяющим получить приближенное решение широкого круга физических и математических задач [1]. Рассмотрены проблемы, относящиеся к интегр ированию нелинейных уравнений, преобразованиям Дарбу и Фрелиха, ВКБ-приближению, определению собственных векторов и собственных значений, гамильтоновой теории специальных функций. Дополнительные преимущества дает метод удвоения переменных, позволяющий использовать канонический формализм для решения нового класса задач алгебраических и трансцендентных уравнений, сингулярио-возму-щенных уравнений, построению Паде-аппроксимантов, обращению интегралов и т. д. Широта диапазона рассматриваемых проблем обусловлена возможностью приведения к гамильтоновой форме нелинейных систем общего вида и универсальностью используемых методов интегрирования.  [c.3]

Среди нелинейных систем обыкновенных дифференциальных уравнений особую роль играют системы, описываемые одной функцией. В механике и статистической физике центральное место занимают системы Гамильтона, задаваемые в канонической системе координат своими гамильтонианами. В теории поля и в теории нелинейных волн развит гамильтоновский формализм для систем с континуальным числом степеней свободы (см. [111, 89]).  [c.220]


Смотреть страницы где упоминается термин Функция Гамильтона. Канонические уравнения механики или уравнения Гамильтона : [c.800]    [c.22]    [c.450]    [c.80]   
Смотреть главы в:

Курс теоретической механики Ч.2  -> Функция Гамильтона. Канонические уравнения механики или уравнения Гамильтона



ПОИСК



Вид канонический

ГАМИЛЬТОНОВА МЕХАНИКА Уравнения Гамильтона

Гамильтон

Гамильтона уравнения

Гамильтона функция

Гамильтонова механика

Гамильтонова механика Канонические уравнения Гамильтона

Гамильтонова функция

Зэк гамильтоново

КАНОНИЧЕСКИЕ УРАВНЕНИЯ Канонические уравнения Гамильтона

Канонические уравнения (уравнения Гамильтона)

Канонические уравнения уравнения канонические

Механика Гамильтона

Уравнения для функции

Уравнения канонические

Уравнения канонические Гамильтона

Функция и уравнения Гамильтона



© 2025 Mash-xxl.info Реклама на сайте