Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжа система уравнений

Лагранж 111, 385 Лагранжа — Бертрана теорема 507 Лагранжа — Пуассона случай интегрируемости движения 111, 166, 168,334 Лагранжа система уравнений 239  [c.547]

К барабану приложена пара сил с моментом Мпр. Составить для системы уравнения Лагранжа и определить частоту колебаний, сопровождающих движение тел системы.  [c.383]

В переменных Лагранжа изобарические течения описываются системой уравнений  [c.183]


Для рассматриваемой консервативной системы уравнения Лагранжа имеют вид  [c.327]

Обращаясь к уравнениям (45), мы устанавливаем также, что каждое из этих уравнений является уравнением второго порядка, число же их равно п. Следовательно, общий порядок системы уравнений Лагранжа (22) (легко видеть, что все это верно и для уравнений, представленных в форме (29)) равен 2п. Поэтому для того, чтобы определить движение, нужно задать 2п начальных данных. Этими начальными данными являются значения п координат qi, q и п скоростей (ji,. .., q в начальный момент t = t .  [c.141]

При наличии механических связей, как и при отсутствии их, уравнения Лагранжа имеют одинаковый вид при любом выборе обобщенных координат. Число уравнений Лагранжа равно числу степеней свободы п исследуемой системы, а порядок системы уравнений Лагранжа равен 2п.  [c.156]

Порядок системы уравнений Лагранжа равен 2п, и чтобы задать движение, надо задать 2п начальных данных, т. е. надо  [c.207]

В гл. IV было показано, что система уравнений Лагранжа всегда может быть разрешена относительно старших производных и в стационарном случае сводится к виду  [c.208]

На прямом пути удовлетворяются уравнения Лагранжа системы поэтому все выражения, стоящие в скобках под знаком интеграла в формуле (61), тождественно равны нулю. Отсюда сразу следует, что на прямом пути вариация действия по Гамильтону равна нулю, т. е. что прямой путь является экстремалью рассматриваемой вариационной задачи — на прямом пути действие по Гамильтону достигает стационарного значения.  [c.279]

Эти уравнения называются уравнениями Я -оби. Легко видеть, что каждое из уравнений Якоби имеет второй порядок, что общий порядок системы уравнений Якоби равен 2п — 2 и что подобно уравнениям Лагранжа эта система разрешима относительно старших производных и, следовательно, ири обычных предположениях решение полностью определяется начальными данными.  [c.329]

ЭТОГО нужно было мысленно разорвать данную систему на две части в точке сцепления зубчатых колес / и 2, заменив действие отброшенной части конструкции соответствующей силой реакции связи. В составленную систему дифференциальных уравнений движения войдет сила реакции связи. Лишь после исключения этой силы реакции из полученной системы уравнений можно прийти к формуле (11). Преимущество уравнений Лагранжа, не содержащих сил реакций связей, соверщенно очевидно.  [c.484]

Для составления системы уравнений Лагранжа второго рода следует вычислить частные производные от кинетической энергии Т по обобщенным скоростям и г  [c.501]


Удобным способом составления дифференциальных уравнений малых колебаний системы является использование уравнений Лагранжа. Эти уравнения для системы с одной степенью свободы имеют вид  [c.586]

По сравнению с предыдущим изданием (2-е изд. в 1967 г.) расширены следующие разделы Плоскопараллельное движение , Сложное движение , Дифференциальные уравнения движения , Общие теоремы динамики , Колебания точки и системы , Уравнения Лагранжа увеличено число решаемых типовых задач.  [c.2]

Система уравнений Лагранжа второго рода представляет собой систему s обыкновенных дифференциальных уравнений второго порядка относительно обобщенных координат. Интегрирование этих уравнений дает нам обобщенные коорди наты Qu Qi, , как функции времени и 2s произвольных постоянных интегрирования. Далее на основании формул (3.19) можно получить декартовы координаты в зависимости от времени t и 2s произвольных постоянных интегрирования.  [c.60]

Решение. По условию, маятник движется в одной вертикальной плоскости система имеет две степени свободы и движение описывается двумя уравнениями Лагранжа. Система находится в потенциальном поле тяжести и никаких активных сил, кроме сил тяжести, на систему не действует, поэтому уравнения Лагранжа напишем в виде (263).  [c.442]

Полученная система уравнений движения носит название системы уравнений Лагранжа второго рода. В дальнейшем будет показано, что к такой форме приводятся дифференциальные уравнения для лагранжевых координат произвольной голономной системы материальных точек. В случае движения абсолютно твердого тела первые три обобщенные силы имеют смысл проекций суммарной силы на оси абсолютного репера, а последние три — моментов сил относительно осей е, , е ,, соответственно.  [c.453]

Теорема 8.4.1. Если д,- — циклическая координата и соответствующая ей непотенциальная сила отсутствует Qi - О, то система уравнений Лагранжа допускает первый интеграл вида  [c.556]

Пример 8.4.3. Пусть силы, не имеющие силовой функции, отсутствуют Qi = 0. Тогда система уравнений Лагранжа имеет вид  [c.559]

Тем самым переменные. .., д Ц заданы посредством системы уравнений Лагранжа второго рода, где С служит функцией Лагранжа. Поскольку С от I явно не зависит, координата I будет циклической, и ей соответствует циклический интеграл  [c.559]

Замечание 8.11.1. Система уравнений Эйлера в приведенном виде совпадает по форме с системой уравнений Лагранжа второго рода. Однако по смыслу в уравнениях Лагранжа функция Лагранжа должна удовлетворять обязательному условию невырожденности по обобщенным скоростям. Вместе с тем в уравнениях Эйлера, применяемых для решения задач на экстремум функционера, аналогичное условие невырожденности подынтегральной функции относительно первых производных может не выполняться. Кроме того, в уравнениях Эйлера под t следует понимать любую независимую переменную (не только время).  [c.601]

Теорема 9.2.1. Система уравнений Лагранжа второго рода эквивалентна системе 2п уравнений первого порядка  [c.631]

Следствие 9.2.1. (Система уравнений Гамильтона). Если Qi = О, то Pi = О, и соответствующая система уравнений Лагранжа эквивалентна системе 2п уравнений первого порядка  [c.632]

Для полного интегрирования системы уравнений Лагранжа необходимо и достаточно получить 2/г первых интегралов этой системы, т. е. 2п соотношений вида  [c.368]

Другое направление в аналитической динамике состоит в отыскании самих интегралов уравнений Лагранжа или другой системы уравнений, им эквивалентной  [c.398]

Система уравнений (IV.203) называется системой уравнений Лагранжа первого рода.  [c.424]

Наконец, найдем число независимых постоянных интегрирования, содержащихся в общем решении системы уравнений Лагранжа первого рода.  [c.33]

После исключения множителей Лагранжа из системы уравнений (I. 22) рассмотренным выше способом получим систему Зя  [c.33]

Действительно, число независимых постоянных интегрирования равно числу независимых первых интегралов или удвоенному числу независимых вторых интегралов уравнений движения. Но кинематические уравнения движения должны удовлетворять уравнениям геометрических и кинематических связей, не зависящим от постоянных интегрирования. Уравнения геометрических связей можно рассматривать как вторые интегралы уравнений Лагранжа первого рода с исключенными множителями kj и рз, а уравнения кинематических связей, соответственно, как их первые интегралы. Итак, среди интегралов рассматриваемой системы уравнений есть к вторых интегралов и I первых, независимых от постоянных интегрирования. Следовательно, число независимых постоянных интегрирования равно 6/г — 2/г — I.  [c.34]


В случае наличия неголономных связей применяются особые системы уравнений, позволяющие найти закон движения системы, не определяя вместе с тем реакции неголономных связей. Далее определяются реакции всех связей из уравнений Лагранжа первого рода. При применении уравнений Лагранжа второго рода в случае наличия неголономных связей приходится вместе с законом движения определять реакции неголономных связей. При этом реакции голономных связей находят из уравнений Лагранжа первого рода.  [c.36]

В предыдущей главе мы обращали внимание на трудности, возникающие при непосредственном при.менении к решению задач динамики системы уравнений Лагранжа первого рода. Основные теоремы динамики системы позволяют в ряде случаев непосредственно, исходя из условий задачи механики, находить первые интегралы дифференциальных уравнений движения. Иногда эти интегралы движения позволяют найти полное решение задачи.  [c.40]

Следовательно, общее решение канонической системы уравнений и системы уравнений Лагранжа второго рода содержат одинаковое количество (2М) постоянных интегрирования.  [c.147]

Применительно к системе без механических связей уравнения Лагранжа имеют одно основное преимущество они ковариантны по отношению к точечным преобразованиям координат. В случае же, когда система стеснена механическими идеальными связями, применение лагранжева формализма имеет дополнительные пре имущества по сравнению с непосредственным применением урав нений Ньютона. Оно позволяет уменьшить порядок системь уравнений, описывающих движение, до 2п, где л —число степе ней свободы, и избежать определения реакций идеальных связей Возможность выписать уравнения движения, не интересуясь нор мальньши реакциями и вообще подсчетом реакций в случае, когда трение отсутствует, является одним из важных преимуществ применения лагранжева формализма к механическим системам со связями.  [c.156]

Полученные выше при решении подавляющего большинства задач динамики системы уравнений могут быть непосредственно выведены с помощью уравнений Лагранжа. Если по условию задачи требуется найти силы реакций связей, то, определив с помощью уравнений Лагранжа ускорения точек системы, применяют принцип освобождаемости от связей к соотве тствующей массе системы с последующим использованием одной из общих теорем динамики либо метода кинетостатики.  [c.473]

Таким образом, метод 5 иттекера дает возможность использовать обобш,енный интеграл анергии для исключения времени t из системы уравнений Лагранжа и приведения ее к новой системе s — I уравнений Уиттекера (4.43), имеющих вид уравнений Лагранжа, в которцх роль аргумента играет переменная q (вместо времени t) и в которые вместо производных qp по аргументу t входят производные q p по аргументу q[. Для построения уравнений Уиттекера (4,43) следует Ьредварительно построить функцию Уиттекера L. Для этого составляется выражение (4.44), в которое вместо q подставляется его выражение, полученное из обобщенного интеграла энергии (4.35). -  [c.106]

Метод вариации постоянных, предложенный Лагранжей ), заключается в следукццем пусть найдено решение системы (9.3) при Q = О (ш=1, 2, s), т, е. определено движение системы под действием основных сил Qm предполагая теперь, что дополнительные силы Q , которые называются возмущающими , достаточно малы по сравнению с основными, решение системы уравнений (9.3) ищут в форме (9.4), причем величины l, С2,. .., 2S считаются уже не постоянными, а медленно меняющимися функциями премени.  [c.239]

В 1...2 доя составления уравнений движения использовалась система аналитических вычислений REDU E. Эта система позволяет не только получить уравнения движения, но и составить программу их интегрирования на одном из алгоритмических языков. В данном параграфе рассматривается иной подход к анализу уравнений движения, а именно их автоматическое получение и интегрирование численными методами. Приводится описание алгоритма, который позволяет в значительной мере сократить количество выкладок, связанных с получением уравнений движения, и затраты труда на программирование при численном интегрировании уравнений движения. В основе алгоритма лежит реализация второго метода Лагранжа получения уравнений движения с помощью численного определения частных производных.  [c.68]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Рассмотренные примеры показывают, что для голономных систем основные теоремы динамики можно рассматривать как проявление свойств циклических координат. Ясно, что удачный выбор лагран-жевых координат в значительной мере облегчает интегрирование и исследование системы уравнений Лагранжа. При выборе координат полезно стремиться к тому, чтобы из них как можно больше оказались циклическими.  [c.560]


Такое рещение системы уравнений Лагранжа будем в дальнейщем называть нулевым решением.  [c.569]

Функция Гамильтона Н в аноничеоких уравнениях играет роль подобную функции Лагранжа в уравнениях Лагранжа. Ее задание равносильно по становке задачи, в связи с этим функция Гамильтона является характеристической функцией механической системы.  [c.91]

В результате система уравнений Лагранжа второго рода представит собой систему из л обыкновенных дифференциальных уравнений (число уравнений равно числу обобщенных координат, т. е. числу степеней свободы для голономной системы) второго норяудка относительно обобщенных координат.  [c.366]


Смотреть страницы где упоминается термин Лагранжа система уравнений : [c.329]    [c.440]    [c.286]    [c.540]    [c.573]    [c.581]    [c.626]    [c.398]    [c.30]   
Курс теоретической механики Том 2 Часть 2 (1951) -- [ c.239 ]



ПОИСК



Баркин. Уравнения Лагранжа для относительного движения механических систем и их возможное применение в учебном курсе

Голономные системы. Уравнения Лагранжа

Дифференциальные уравнения движения механической системы в обобщенных координатах (уравнения Лагранжа второго рода)

Дифференциальные уравнения движения системы в обобщенных координатах (уравнения Лагранжа второго рода)

Дифференциальные уравнения движения системы в обобщенных координатах. Уравнения Феррерса, уравнения Лагранжа первого и второго рода

Дифференциальные уравнения движения системы материальных точек в декартовой системе координат (уравнения Лагранжа первого рода)

Единственность в конфигурационном пространстве Уравнение Лагранжа Лагранжевы системы Геодезические потоки Преобразование Лежандра Примеры геодезических потоков

Задание Д-19. Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

Задание Д-20. Применение уравнений Лагранжа второго рода к исследованию движения механической системы с двумя степенями свободы

Задание Д.21. Применение уравнений Лагранжа II рода к исследованию движения механической системы с двумя степенями свободы

Использование уравнений Лагранжа для описания движения систем с механическими связями

Исследование движения машинного агрегата. Предельные режимы Об уравнениях Лагранжа второго рода для механических систем с переменными массами

Канонические уравнения Гамильтоноваформа лагранжевых систем

Кинетический потенциал. Уравнение Лагранжа второго рода для консервативной системы

ЛАГРАНЖЕВА МЕХАНИКА Уравнения Лагранжа для голономных систем

Лагранжа натуральные системы уравнении

Лагранжева система

Лагранжевы уравнения движения для системы с лишними координатами. Лагранжевы множители

Лекция вторая (Движение несвободней материальной точки. Простой маятник. Движение системы точек, для которой имеют место уравнения связей.. Масса материальной точки. Движущая сила. Лагранжевы уравнения механики)

Механические системы с двумя степенями свободы. Уравнения Лагранжа

Неголономные связи. Лагранжевы уравнения движения для неголономной системы

О составлении уравнений Лагранжа для описания движения в неинерциальной системе отсчета

О составлении уравнений Лагранжа для описания движения в неинерцнальпой системе отсчета

Обобщенные координаты. Уравнения Лагранжа второго рода. Обобщенные импульс и энергия. Принцип Гамильтона. Движение в неинерциальной системе отсчета Движение частицы по поверхности

Общие теоремы динамики системы, выводимые из уравнения Даламбера—Лагранжа

Общие теоремы о движении системы. Уравнения Лагранжа Неголономные системы Общие сведения

Определяющее уравнение Лагранжа. Отделение корней Случай равных корней. Инварианты системы

Особенности применения уравнений Лагранжа второго рода к системам с иеидеальными и иеудерживающими связями

Особенности применения уравнений Лагранжа второго рода к системам с неидеальными и неудерживающими связями

Приведение уравнений Лагранжа второго рода "к системе уравнений первого порядка

Принцип Гамильтона и уравнения Лагранжа для механических систем

Распространение уравнений Лагранжа —Максвеллана электромеханические системы с незамкнутыми токами

Реакции связей. Уравнения движения несвободной материальной системы в декартовых координатах (уравнения Лагранжа первого рода)

Связка решений лагранжевой системы уравнений

Система Лагранжа

Система сил голономиая, уравнения движения в лагранжевых координатах

Структура уравнений Лагранжа для различных классов механических систем. Функция Лагранжа для систем с потенциальными и обобщенно-потенциальными силами

УРАВНЕНИЯ ЛАГРАНЖА Основная задача динамики несвободной системы и понятие о связях

Уравнение Лагранжа 2-го рода для консервативных систем

Уравнение Лагранжа второго рода для систем с несколькими степенями свободы

Уравнение Лагранжа второго рода для систем с одной степенью свободы

Уравнение Лагранжа второго рода для системы е переменными массами звеньев

Уравнения Лагранжа

Уравнения Лагранжа II рода (дифференциальные уравнения движения системы в обобщенных координатах)

Уравнения Лагранжа второго рода для затвердевшей системы

Уравнения Лагранжа второго рода для систем с переменными массами

Уравнения Лагранжа второго рода. Кинетическая энергия системы Функция рассеивания

Уравнения Лагранжа для диссипативных систем

Уравнения Лагранжа для непрерывных систем

Уравнения Лагранжа для систем с неудерживающими связями

Уравнения Лагранжа первого рода для голономной системы

Уравнения Лагранжа равновесия системы

Уравнения Лагранжа с реакциями связей законы изменения импульса, кинетического момента и энергии для систем со связями

Уравнения Лагранжа—Максвелла для электромеханических систем

Уравнения движения для неголономных систем с множителями Лагранжа

Уравнения движения неголономных систем с множителями Лагранжа. Реакции идеальных неголономных связей

Уравнения движения несвободной системы в декартовых координатах (уравнения Лагранжа первого рода)

Уравнения движения несвободной системы в обобщённых координатах. Уравнения движения в независимых координатах (уравнения Лагранжа второго рода)

Уравнения движения несвободных систем Уравнения Лагранжа первого рода

Уравнения движения системы в независимых координатах (уравнения Лагранжа второго рода)

Условия равновесия системы и уравнения Лагранжа в случае существования силовой функции

Электромеханические системы и примеры применения уравнений Лагранжа — Максвелла к исследованию колебаний этих систем



© 2025 Mash-xxl.info Реклама на сайте