Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтона при канонических преобразованиях

Ковариантность уравнений Гамильтона при канонических преобразованиях. Если преобразование (4) является каноническим, то в новых переменных система уравнений (1) снова будет иметь гамильтонову форму. Более точно, имеет место следующее утверждение.  [c.343]

Теорема. При каноническом преобразовании (А) любая гамильтонова система дифференциальных уравнений (1) переходит снова в гамильтонову систему [вообще говоря, с другой функцией Гамильтона t))  [c.290]


Из этого результата мы еще раз получаем уже известное Следствие. При каноническом преобразовании канонические уравнения сохраняют свой вид, а также величину функции Гамильтона.  [c.237]

Углубленный курс классической механики долгое время считался обязательной частью учебных планов по физике. Однако в настоящее время целесообразность такого курса может показаться сомнительной, так как студентам старших курсов или аспирантам он не дает новых физических понятий, не вводит их непосредственно в современные физические исследования и не оказывает им заметной помощи при решении тех практических задач механики, с которыми им приходится встречаться в лабораторной практике. Но, несмотря на это, классическая механика все же остается неотъемлемой частью физического образования. При подготовке студентов, изучающих современную физику, она играет двоякую роль. Во-первых, в углубленном изложении она может быть использована при переходе к различным областям современной физики. Примером могут служить переменные действие— угол, нужные при построении старой квантовой механики, а также уравнение Гамильтона — Якоби и принцип наименьшего действия, обеспечивающие переход к волновой механике, или скобки Пуассона и канонические преобразования, которые весьма ценны при переходе к новейшей квантовой механике. Во-вторых, классическая механика позволяет студенту, не выходя за пределы понятий классической физики, изучить многие математические методы, необходимые в квантовой механике.  [c.7]

Положив здесь и = Н, мы получим следующую формулу для изменения гамильтониана при бесконечно малом каноническом преобразовании  [c.287]

Функция W известна как характеристическая функция Гамильтона. Мы видим, что она осуществляет каноническое преобразование, в котором все новые координаты являются циклическими. В предыдущей главе мы говорили, что в случае постоянного И такое преобразование, в сущности, целиком решает задачу, так как интегрирование новых уравнений движения становится при этом тривиальным. Канонические уравнения для Р,-фактически снова подтверждают, что импульсы, соответствующие циклическим координатам, являются постоянными  [c.309]

Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]


Этот поразительный результат был впервые получен Гамильтоном, хотя и в несколько другой интерпретации. Он по-новому освещает роль канонических преобразований при изучении движения. Все движение механической системы может рассматриваться как задача о преобразованиях. Последовательные положения фазовой жидкости представляют собой непрерывно меняющееся отображение пространства самого на себя. Это отображение все время каноническое.  [c.254]

При заданной производящей функции уравнения канонического преобразования могут быть получены с помощью дифференцирований и исключений, что дает возможность выразить в явном виде координаты <7/, р,- через qt, pi. Это означает, что мы получаем в явном виде траекторию С-точки, с началом в заданной точке пространства конфигураций. В этом и заключается выдающееся открытие Гамильтона. При заданной главной функции W вся динамическая задача сводится к дифференцированиям и разрешению конечных уравнений.  [c.260]

Резюме. В то время как производящая функция канонического преобразования является чисто математическим понятием, Гамильтон ввел главную функцию , тесно связанную с интегралом действия. В его геометрической интерпретации эта функция имеет ясный смысл. Она задает расстояние между двумя точками в соответствующим образом определенном метрическом пространстве, являясь при этом функцией координат этих двух точек. Главная функция Гамильтона является производящей функцией того частного канонического преобразования, которое связывает два состояния фазовой жидкости, принадлежащие двум различным моментам времени, причем связывает их непосредственно, без помощи какой-либо промежуточной внешней точки.  [c.263]

Цепь наших рассуждений, приведшая к распространению свойств консервативных систем на произвольные реоном-ны системы, основывалась на добавлении к фазовому пространству двух новых измерений t и pt. Можно действовать и другим методом, оставляя время t независимой переменной и сохраняя обычное фазовое пространство. Можно рассмотреть каноническое преобразование qi, pi в Q/, Pi, не вводя время t в число активных переменных преобразования. Время t входит в -такое преобразование только как параметр, т. е. уравнения преобразования, связывающие старые и новые переменные, непрерывно меняются. При таком зависящем от времени каноническом преобразовании функция Гамильтона Н не является инвариантной. Как видно из уравнения (7.4.13), функция Гамильтона Н для новой системы координат равна  [c.273]

Таким образом, если заданы производящая функция 5(д, Q, t) и валентность с канонического преобразования, то связь старых и новых переменных определяется из равенств (48), а функция Гамильтона, отвечающая преобразованной к новым переменным Q, Р системе (1), вычисляется по формуле (54). Мы видим, что при преобразовании системы (1) к новым переменным нужно все вычисления проводить не с 2п функциями (4), а с двумя функциями S и Н. Ясно, насколько это важно при рассмотрении конкретных задач, особенно при большом числе степеней свободы п.  [c.350]

При помощи какого-либо из критериев п. 169 можно проверить, что равенства (65), (66) задают унивалентное каноническое преобразование. В новых переменных функция Гамильтона принимает вид  [c.385]

Для приближенного исследования движения при малых, но отличных от нуля значениях е в механике разработан специальный аппарат теории возмущений, основанный на применении канонических преобразований. Для простоты ограничимся здесь случаем консервативной или обобщенно консервативной системы с одной степенью свободы (п = 1) Функция Гамильтона (17) имеет вид  [c.392]

Можно было бы попытаться аналогичным образом при помощи еще одного канонического преобразования q j p j р уничтожить члены четвертой степени Н 1 в функции Гамильтона Н". Это, однако, не удастся сделать, и в новой функции Гамильтона останутся некоторые члены четвертой степени, имеющие вполне определенную структуру.  [c.401]


Для классической механики основной группой преобразований являются канонические преобразования. Группу преобразований можно определить либо посредством бесконечно малых преобразований, либо посредством инвариантов этой группы. Первый способ, в котором задаются бесконечно малые изменения канонических переменных q , р, при бесконечно малом каноническом преобразовании, выражен уравнениями Гамильтона, второй—инвариантностью действия.  [c.877]

Полученное равенство определяет каноническое преобразование с производящей функцией V Ь, д, а) при переходе от канонических переменных рз к новым переменным ав, Рз- Новые переменные удовлетворяют каноническим уравнениям Гамильтона  [c.602]

Аналогия между механикой и волновой теорией света Гюйгенса основана на представлении процесса движения с помощью канонических уравнений Гамильтона. В общем случае при ударе преобразование переменных состояния не является каноническим. При этом и разрывное движение (включающее, кроме участков непрерывного движения, также импульсивное движение) исходной системы не имеет указанной аналогии.  [c.139]

Примечание. Главная функция Гамильтона представляет собой действие по Гамильтону, вычисленное при переменном верхнем пределе и выраженное через начальные и текущие значения обобщённых координат. Будучи производящей функцией канонического преобразования начальных значений обобщённых координат и импульсов в их текущие значения, главная функция позволяет ответить на вопрос какие  [c.219]

Возникает вопрос, к какой наипростейшей форме можно привести нелинейную часть системы, представленную функцией 7/ (x, у). При этом преобразования переменных, решающие эту задачу, должны удовлетворять трем условиям они должны быть каноническими, они не должны менять квадратичную часть гамильтониана, т.е. Tio, и, наконец, они должны быть в классе полиномиальных функций. Последнее означает, что искомые замены переменных не должны иметь никаких особенностей в нуле.  [c.307]

Пусть А1,...,Л2п — собственные значения линеаризованной канонической системы с гамильтонианом Яг. Можно считать, что Хп+к = —Хк (1 < /г < п). Рассмотрим случай, когда числа Ах,..., Л чисто мнимы и независимы над полем рациональных чисел, т. е. сумма тхАх -Ь. .. -Ь гтг А с целыми тп равна нулю только если все т,- — нули. При этом предположении Биркгоф нашел формальное каноническое преобразование, приводящее систему (1.1) к нормальной форме. В частности, уравнения Гамильтона (1.1) имеют п интегралов в виде формальных степенных рядов по х,у, попарно находящихся в инволюции (см. 11 гл. II).  [c.309]

Интегральные инварианты Пуанкаре. Каноническим11 преобразованиями мы называем такие преобразования, при которых уравнения Гамильтона сохраняют свою форму. Однако при канонических преобразованиях существуют и другие инварианты, в частности интегральные инварианты Пуанкаре. К рассмотрению их мы сейчас и перейдем.  [c.274]

Пример 4. Преобразование одной конкретной гамильтоновой системы к другой её гамильтоновой форме представляет собой пример непредикативного правила. Непредикативность отсутствует при канонических преобразованиях сопряжённых переменных (за счёт расширения множества преобразуемых систем), так как каноническое преобразование не связано с конкретной функцией Гамильтона оно преобразует любую гамильтонову систему снова к гамильтоновой форме. Сопряжённые величины (переменные, числа, функции, уравнения и т.д.) всегда непредикативны.  [c.220]

Так как рассматриваемая система консервативная, то функция Гампльтопа равна полной энергии системы, т. е. Я = Л. Найдем такое каноническое преобразование, при котором бы новая функция Гамильтона пе содержала r.oBoi i координаты q, а новый импульо входил бы в первой стеиеин, т. е.  [c.151]

Как показал Фрелих, для исключения электронно-фононного взаимодействия из гамильтониана можно применять каноническое преобразование, при этом остается лишь взаимодействие между электронами, которое соответствует тому, которое было выведено методами теории возмущений. Если электронно-фононпое взаимодействие велико, то указанная операция не применима лишь для небольшого числа членов с малыми энергетическими знаменателями. При вычислении матричного элемента взаимодействия и колебательных частот эти члены не существенны, но в случае сверхпроводимости они важны. Так как эти члены нельзя рассмотреть методами теории возмущений, они оказывают сильное влияние на волновые функции.  [c.756]

Упрощенный вывод колебательных частот и потенциала взаимодействия, Как указывалось в п. 36, при вычислении потертциала взаимодействия п колебательных частот необходимо учитывать дииженпе электронов, которое стремится экранировать ионы. В последующем мы покажем, как это можно сделать при помощи соответствующего канонического преобразования гамильтониана. Физический смысл задачи в значительной степени может быть затемнен формализмом этого метода, поэтому мы вначале приведем упрощенное приближенное рассмотрение задачи.  [c.760]

В п. 36 отмечалось, что некоторые авторы учитывали влияние движения электронов на колебательные частоты путем канонического преобразования, которое исключает из гамильтониана члены, линейные относительно координат фононов. Здесь мы будем следовать с некоторыми изменениями (см. [19]) исследованию Накаджимы, в котором с самого начала включено кулоновское взаимодействие между электронами. Хотя этот метод и аналогичен методу самосогласованного поля, он позволяет обойтись без слишком грубого адиабатического приближения при изучении движения ионов. Накаджима записывает гамильтониан в форме, эквивалентной следующей  [c.761]


Для волновых функций, удовлетворяющ их (40.2), значения энергии гамильтониана Н при введенных дополнительных переменных будут совпадать со значениями энергии для Н . Путем ряда канонических преобразований можно перейтн от переменных Р , определенных выше, к переменным, представляющим колебания плазмы.  [c.765]

Возможно, что колебания мало влияют на фазовый переход. Разность энергий представляет собой лишь небольнгую часть полной нулевой энергии колебаний. С другой стороны, возможно, что существенно затрагивается лишь малое число колебаний, однако это маловероятно, так как в переходе, по-видимому, принимает участие большая часть колебаний. Если это заключение правильно, то необходимо иметь возможность рассматривать методами теории возмущений, если не электроны, то колебательные координаты ([120], стр. 913). В этом случае можно было бы соответствующим каноническим -преобразованием заменить электронно-фононное взаимодействие взаимодействием между электронами. Таким образом, можно было бы строго учесть взаимодействие, даваемое (40.11), и попытаться получить хорошее описание электронных волновых функций при помощи гамильтониана, включающего этот тип взаимодействия. (Сохранение только диагональных членов, как это было сделано в теории возмущений, вряд ли может оказаться удовлетворительным приближением.) Тем самым проблема электронно-фонон-ного взаимодействия будет заменена не намного менее трудной проблемой рассмотрения газа Ферми—Дирака с настолько большими взаимодействиями, что к ним нельзя применить методы теории возмущений.  [c.778]

Эти соотношения в пределе при Д О переходят в канонические уравнения Гамильтона. Следовательно, канонические уравнения Гамильтона для механических систем, стесненных голоном-ными связями и находящихся под действием сил с силовой функцией, говорят о том, что движение есть непрерывная во времени последовательность канонических бесконечно малых преобразований переменных д, ps.  [c.232]

Интегрирование по частям интеграла (2.15.3) преобразует первый член подинтегрального выражения в —иу. Теперь мы имеем обычную лагранжеву задачу с переменными I/ и и, которая может быть преобразована в гамильтонову форму, что даст две пары канонических уравнений для четырех переменных у, и, pi, р , они заменяют собой одно первоначальное дифференциальное уравнение четвертого порядка для у. Показать эквивалентность канонической системы и первоначального дифференциального уравнения. Очевидно, что этот метод перехода от вторых производных к первым производным применим при любом количестве переменных. В общем случае при наличии производных m-ro порядка следует начать с выших производных, сводя их к производным т — 1)-го порядка затем процесс повторяется до тех пор, пока в подинтегральном выражении останутся одни лишь первые производные. Это и означает, что под-интегральное выражение приведено при помощи преобразования Гамильтона к каноническому виду.  [c.200]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]

При этом следует помнить, что р,- в функции Гамильтона Н заменены на dSldqi. Предположим, что мы можем найти производящую функцию S, удовлетворяющую этому уравнению в частных производных. Тогда мы сможем получить движение фазовой жидкости в виде последовательных фаз зависящего от времени канонического преобразования с заданной производящей функцией 5. После соответствую-щих дифференцирований и исключений это преобразование может быть найдено в явном виде. Уравнения преобразования записываются в такой форме  [c.256]

Эти уравнения снова показывают, что два положения движу-щейся фазовой охидкости связаны друг с другом при помош и канонического преобразования. Теперь, однако, можно сказать больше роль W в уравнениях (7.9.10) показывает, что главная функция Гамильтона является производяш,ей функцией того канонического преобразования, которое переводит движущуюся фазовую жидкость из одного состояния в другое, более позднееЧ  [c.259]

Теория преобразований Якоби. Рассмотрим консервативную механическую систему с заданной функцией Гамильтона Н, не завнсяще от времени /. Преобразуем механические переменные q , q,u Pi,..-, рп в новую совокупность переменных Qi,..., Qn, Pi, Рц с помо1П,ью некоторого канонического преобразования. При этом наложим лишь одно условие, а именно чтобы в качестве одной из переменных, например Q , была взята функция Н.  [c.266]

Резюме. Вместо того чтобы пытаться непосредственно интегрировать канонические уравнения, мы можем применить процесс преобразования. При этом для консервативной системы отыскивается каноническое преобразование, переводящее функцию Гамильтона Н в одну из новых переменных. Для реоном-ной системы ищется зависящее от времени каноническое преобразование, преобразующее Н в нуль. В обоих случаях найденное преобразование решает задачу о движении, так как в новой системе координат канонические уравнения могут быть непосредственно проинтегрированы. Для нахождения искомого преобразования и его выполнения нужно найти какое-либо полное решение уравнения в частных производных Гамильтона — Якоби.  [c.275]

После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби систематически развита специальная теория. Эта теория имела особое значение для небесной механики и для классической теории атома Бора—Зоммерфельда. Построение этой теории заключает в себе три последовательных этапа. Прежде всего необходимо найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Галгильтона. Затем надо установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона—Якоби.  [c.827]


Перейдем теперь от бозе-операторов а (к) и а (к) к новым бозе-операторам (Л) и " (А) при помощи канонического преобразования Боголюбова е целью диагонализаи)ии гамильтониана (69.6)  [c.365]


Смотреть страницы где упоминается термин Гамильтона при канонических преобразованиях : [c.290]    [c.142]    [c.153]    [c.315]    [c.322]    [c.153]    [c.346]    [c.466]    [c.317]   
Смотреть главы в:

Теоретическая механика  -> Гамильтона при канонических преобразованиях



ПОИСК



Вид канонический

Гамильтон

Зэк гамильтоново

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Канонические преобразования. Уравнение Гамильтона Якоби Канонические преобразования определение, основной критерий

Канонические преобразования. Уравнение и теорема Остроградского— Гамильтона — Якоби

Ковариантность уравнений Гамильтона при канонических преобразовани. 171. Канонические преобразования и процесс движения

Метод вариации канонических постоянных Производящие функции канонических преобразований Линейные канонические преобразования. Диагонализация гамильтониана. Операторная форма канонических преобразований. Канонические преобразования в классической теории магнитного резонанса Уравнение Гамильтона-Якоби

Преобразование Гамильтона

Преобразование Лежандра. Гамильтониан. Канонические уравнения. Функционал уравнений Гамильтона. Скобки Пуассона. Теорема Пуассона. Расширенное фазовое пространство. Интегрируемость гамильтоновых систем. Фазовый поТеоремаЛиувилля Канонические преобразования

Преобразование каноническо

Преобразование каноническое

Преобразования канонически

Секулярные члены. Методы усреднения гамильтоновых систем. Каноническое преобразование к медленным переменным. Локализация энергии в нелинейной системе. Параметрический резонанс. Система в быстроосциллирующем поле Заряженная частица в высокочастотном поле Метод удвоения переменных

Уравнения Гамильтона Канонические уравнения и канонические преобразования

Фазовый поток гамильтоновой системы — каноническое преобразование



© 2025 Mash-xxl.info Реклама на сайте