Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтона преобразование в теории

Гамильтона преобразование в теории модуляции 479 Гельфанда — Левитана интегральное уравнение 563, 565 Геометрическая динамика ударных волн 268  [c.607]

В этом параграфе мы рассмотрим некоторые вопросы применения канонических преобразований в теории возмущений систем, движение которых описывается дифференциальными уравнениями Гамильтона.  [c.388]

Наконец, в лагранжевой механике не существует какого-либо общего метода упрощения функции Лагранжа. Не существует никакого систематического приема для получения циклических переменных и их можно получить лишь путем удачной догадки. В гамильтоновой механике может быть предложен определенный метод получения циклических переменных и упрощения функции Гамильтона. Этот метод сводит всю задачу интегрирования к нахождению одной фундаментальной функции, являющейся производящей функцией некоторого преобразования. Он играет центральную роль в теории канонических уравнений и, как будет показано в следующей главе, предоставляет широкие возможности для различных обобщений.  [c.226]


В распоряжении Гамильтона не было теории канонических преобразований, и он сделал свое открытие, исходя из совершенно иных предпосылок. Главная функция Гамильтона не является абстрактным математическим понятием, которое используется только для получения преобразований специального вида она имеет определенный физический смысл. Для того чтобы пояснить ход рассуждении Гамильтона, начнем с консервативной системы, у которой функция Лагранжа L и функция Гамильтона Н не зависят явно от времени. Именно такие функции встречаются в оптике, и это явилось для Гамильтона исходным пунктом как для оптики, так и для механики. Обобщение на случай неконсервативных систем может быть сделано очень просто задача сводится к случаю консервативных систем путем включения времени t в число механических переменных.  [c.257]

Важная роль производящей функции в задаче о движении. В теории канонических преобразований нет более важной теоремы, чем та, которая утверждает, что произвольное каноническое преобразование полностью характеризуется заданием одной-единственной функции S — производящей функции этого преобразования. Подобным же образом и канонические уравнения характеризуются одной функцией —функцией Гамильтона Н. Эти две фундаментальные функции можно связать между собой определенными соотношениями. Для решения задачи о движении достаточно рассмотреть функцию Гамильтона и попытаться упростить ее с тем, чтобы канонические уравнения стали непосредственно интегрируемыми. С этой целью можно применить подходящее каноническое преобразование, причем это преобразование зависит от одной функции S. Поэтому вместо решения целой системы канонических уравнений можно свести задачу к решению одного уравнения, дифференциального уравнения в частных производных.  [c.264]

Еще раз сформулируем результаты теории преобразований в виде рецепта , излагающего формализм интегрирования (но пусть те, кто понял лишь этот рецепт, не думают, что они постигли всю теорию Гамильтона — Якоби.)  [c.274]

Применим теперь преобразование Ли в теории возмущений. Представим функцию Гамильтона в виде  [c.218]

Значительная часть Второго очерка об общем методе в динамике посвящена построению теории возмущений на основе канонических уравнений и понятия главной функции. Гамильтон предлагает два метода в теории возмущений. Первый метод основан на введении поправок к начальным значениям переменных в невозмущенной задаче. Второй метод, который мы изложим, тесно связан с теорией канонических преобразований уравнений динамики.  [c.14]


Задачи построения полного интеграла уравнения Гамильтона — Якоби и общего интеграла канонической системы, как доказывается в теории дифференциальных уравнений, математически эквивалентны. Степень трудности их, вообще говоря, одинакова. Однако может быть отмечен ряд частных случаев, когда уравнение Гамильтона — Якоби может оказаться более податливым, чем каноническая система. Об этом говорится в п. 10.14. Более важно то обстоятельство, что решение (10), получаемое с помощью теоремы Якоби, является каноническим преобразованием, а это, как мы увидим в главе 11, значительно упрощает форму уравнений возмущенного движения.  [c.537]

Первые четыре главы книги посвящены общим уравнениям движения тел, представляющих изолированную систему, известным интегралам, основным формулам эллиптического движения и разложению различных функций в гипергеометрические ряды и по функциям Бесселя. В гл. 5 достаточно подробно излагаются уравнения Лагранжа для оскулирующих элементов, чтобы читатель мог ознакомиться с основными процессами перехода от эллиптической орбиты к возмущениям планет. В гл. 6 рассматриваются различные классы неравенств —вековые, короткопериодические и долгопериодические. Гл. 7 посвящена разложению в ряд возмущающей функции, сначала в теории Луны, а затем в теории движения планет. В гл. 8 —о канонических уравнениях — шаг за шагом излагаются различные теоретические положения и приводятся простые примеры. В гл. 9 подробно рассматривается решение уравнений эллиптического движения при помощи метода Гамильтона — Якоби. В следующих двух главах излагаются элементы теории контактных преобразований. Гл. 12 посвящена теории Луны Делонэ в ней подробно описывается основная операция и дается практический метод получения решения п желаемой форме. В следующих двух главах рассматриваются вековые  [c.7]

Значение теории, развитой в 27—46, заключается в том, что преобразование фазового пространства, рассмотренное в 17, переводит любую систему Гамильтона также в систему Гамильтона тогда и только тогда, когда это преобразование является каноническим.  [c.96]

В механике под преобразованием симметрии мы понимали преобразование, определяемое бесконечно малой производящей функцией, не зависящей от времени в силу определения (14.7), и гарантирующее инвариантность формы функции Гамильтона. В теории поля на первый план вместо формализма Гамильтона выдвигается формализм Лагранжа, поскольку именно он обеспечивает релятивистскую ковариантность. Поэтому здесь при определении преобразования симметрии исходят из плотности лагранжиана и сообразно этому требуют  [c.116]

Связь между рядами (5.163) и (5.165) представляет собой не что иное, как известное в теории вероятностей преобразование рт разложения по моментам к кумулянтному разложению. Каждый коэффициент определяется как кумулянтное среднее гамильтониана  [c.225]

Переход от системы уравнений второго порядка к системе уравнений первого порядка можно осуществлять разными способами, и в результате будут получаться, вообще говоря, различные эквивалентные системы. Среди них особенно простую и симметричную структуру имеет система канонических уравнений Гамильтона. Свойства этих уравнений лежат в основе метода Гамильтона-Якоби исследования движений механических систем, а также современной теории возмущений. Канонические уравнения получаются с помощью преобразования Лежандра.  [c.626]

Ясно, что если е = О, то величины Qi и Д в силу уравнений движения будут постоянными. Тем самым мы еще раз доказали теорему 9.4.2 Якоби. Закон движения, соответствующий функции Гамильтона Но, имеет вид преобразования координат, в котором изменяется только 1, а величины а,-, Д, г = 1,..., 71 принимаются постоянными. Закон движения с функцией Гамильтона Я дается точно такими же формулами, что и закон движения с функцией Гамильтона Но, но координаты 1,..., о , Д,..., Д заменяются решением системы канонических уравнений с функцией Гамильтона еНх.  [c.696]


Возможно, что колебания мало влияют на фазовый переход. Разность энергий представляет собой лишь небольнгую часть полной нулевой энергии колебаний. С другой стороны, возможно, что существенно затрагивается лишь малое число колебаний, однако это маловероятно, так как в переходе, по-видимому, принимает участие большая часть колебаний. Если это заключение правильно, то необходимо иметь возможность рассматривать методами теории возмущений, если не электроны, то колебательные координаты ([120], стр. 913). В этом случае можно было бы соответствующим каноническим -преобразованием заменить электронно-фононное взаимодействие взаимодействием между электронами. Таким образом, можно было бы строго учесть взаимодействие, даваемое (40.11), и попытаться получить хорошее описание электронных волновых функций при помощи гамильтониана, включающего этот тип взаимодействия. (Сохранение только диагональных членов, как это было сделано в теории возмущений, вряд ли может оказаться удовлетворительным приближением.) Тем самым проблема электронно-фонон-ного взаимодействия будет заменена не намного менее трудной проблемой рассмотрения газа Ферми—Дирака с настолько большими взаимодействиями, что к ним нельзя применить методы теории возмущений.  [c.778]

Заметим, что в дальнейшем преобразование произвольной системы Гамильтона к системе с функцией //простой структуры удается осуществить с ромощью свободного канонического преобразования. Свободное же каноническое преобразование не является точечным. Таким образом, неточечные канонические преобразования играют суш,ественную роль в теории гамильтоновых систем.  [c.154]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]

Тем не менее для того, чтобы обнаружить существенное различие между этими двумя функциями, не нужно даже прибегать к помощи второго уравнения в частных производных. В теории Якоби энергетическая постоянная Е была одной из новых переменных Qn- Кроме энергетической постоянной Е, в рещении содержалось лишь п — 1 констант интегрирования. В теории Гамильтона все переменные находятся в равном положении и энергетическая постоянная играет роль заданной константы, а не переменной. Гамильтоново решение уравнения в частных производных является не полным, а -сверхполнымъ, так как оно содержит на одну константу больше, чем полное решение. Однородность по всем переменным является характерным свойством, отличающим гамильтонову U -функцию от S-функции Якоби. Эта однородность приводит к тому, что преобразование, определяемое функцией W, в корне отличается от S-преобразования.  [c.293]

Однако блестящего успеха принцип наименьшего действия добился тогда, когда оказалось, что он не только сохранил значение, но и пригоден для того, чтобы занять первое место среди всех физических законов в современной теории относительности Эйнштейна, которая лишила универсальности такое множество физических теорем. Причина этого в основном заключается в том, что величина действия Гамильтона (а не Мопертюи) является инвариантом относительно преобразований Лоренца, т. е. что она независима от специальной системы отсчета наблюдателя, производящего измерения. В этом основном свойстве лежит также глубокое объяснение того, на первый взгляд неудачного обстоятельства, что величина действия относится к промежутку, а не к моменту времени. В теории относительности пространство и время играют одинаковую роль. Вычислить из данного состояния материальной системы в определенный момент времени состояния будущего и прошедшего является по теории относительности задачей такого же рода, какзадача — из процессов, разыгрывающихся в разное время в определенной плоскости, вычислить процессы, происходящие спереди и сзади плоскости. Если первая задача обычно характеризуется как собственно физическая проблема, то, строго говоря, в этом заключается произвольное и несущественное ограничение, которое имеет свое историческое объяснение только в том, что разрешение этой задачи для человечества в подавляющем числе случаев практически полезнее, чем второй. Поскольку вычисление величины действия материальной системы требует интегрирования по пространству, занимаемому телами, то, чтобы пространство не получило предпочтения перед временем, величина действия должна содержать также интеграл по времени.  [c.587]

После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби систематически развита специальная теория. Эта теория имела особое значение для небесной механики и для классической теории атома Бора—Зоммерфельда. Построение этой теории заключает в себе три последовательных этапа. Прежде всего необходимо найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Галгильтона. Затем надо установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона—Якоби.  [c.827]


Как нами выше уже было отмечено, во второй половине XIX в. в первую очередь в работах Софуса Ли выявилась органическая связь механики в форме Гамильтона—Якоби с теорией преобразований.  [c.841]

Преобразуем соотношения, входящие в постановку рассмотренных задач, таким образом, чтобы избежать необходимости обращения тензоров и деления на скалярные функции, входящие в решение задачи, при применении метода Ньютона-Канторовича. Это нужно сделать потому, что в результате выполнения указанных операций в правой части линеаризованных уравнений, решаемых на каждом шаге метода, появятся функции сложной структуры, которые практически невозможно будет проинтегрировать аналитически. Для выполнения таких преобразований используем теорему Гамильтона-Кэли [59]. В силу этой теоремы для произвольного неособенного тензора второго ранга Т справедливо тождество  [c.87]

Основное в динамике Гамильтона— Якоби— вариационный принцип, связанный с оптико-механической аналогией, теория интегрирования канонических уравнений Гамильтона и уравнение в частвсых производных Гамильтона — Якоби в связи с касательным преобразованием. Внутренний смысл всей этой математической схемы заключен в ее связи с принципом Гюйгенса, в возможности представлять механическое движение не только в виде перемещения тела (системы точек), но и в виде развертывания касательного преобразования поверхностей равного действия, в глубокой связи траектории луча с некоторой поверхностью (волновой или действия ), выражающей взаимосвязанность корпускулярного и волнового аспектов движения в механике и физике.  [c.216]

Циклический вариант взаимосвязи симметрия — сохранение , заключающийся в том, что каждой обобщенной циклической координате отвечает некоторый.сохраняющийся обобщенный импульс, по существу говоря, был известен уже Лагранжу который и закон сохранения энергии связывал с цикличностью временной координаты В 70—80-х годах XIX в. эта идея Лагранжа была существенно развита и применена к анализу не только механических, но и физических систем в работах Рауса (1877 г.), Гельмгольца, В. Томсона и Тэта, Дж. Дж. Томсона и др. (1879—1888 гг.). Разработанная на основе метода циклических координат (называемых также игнорируемыми , отсутствующими , киностеническими , скоростными и т. д.) теория скрытых движений позволяла механически интерпретировать лагранжианы, имеющие значение в теории теплоты и электродинамике. Вместе с тем упомянутые исследователи не обращали достаточного внимания на, так сказать, нетеровский аспект метода циклических координат. Ведь циклический характер некоторой координаты означает, что движение системы, как целого, соответствующее этой координате, никак не сказывается на свойствах системы. А это эквивалентно инвариантности (или симметрии) системы (ее лагранжиана или гамильтониана) относительно преобразования, характеризующего циклическое движение. Таким образом, устанавливается непосредственная связь между симметриями типа однородности и изотропности пространства с законами сохранения типа импульса. Характер циклической координаты (трансляционный иди вращательный)  [c.236]

В теории гамильтоновых систем особое место занимает класс преобразований, сохраняюгций гамильтонову форму уравнений, так называемых канонических преобразований. Если ограничиться лигпь такими преобразованиями, то мы не только сохраняем удобную для анализа форму уравнений, но и упрощаем задачу исследования. Многие выводы можно получить из анализа одной функции - гамильтониана задачи, а не более сложного, хотя и эквивалентного, объекта - системы уравнений.  [c.303]

Настоящая лекция посвящена центральному разделу гамильтонова формализма — теории канонических преобразований. В отличие от лагражева формализма, роль которого сводится лишь к выводу уравнений движения, гамильтонов подход позволяет, в принципе, получить решение как каноническое преобразование, не обращаясь непосредственно к уравнениям. В реальной ситуации приходится использовать приближенные методы теории канонических преобразований, изложенные в лекциях 27-31.  [c.261]

Эта схема успешно использована для колебательной диагона-лизации КВ гамильтониана, преобразования оператора дипольного момента двухатомных молекул и оператора дипольного момента в молекулярной системе координат для многоатомных молекул. В теории КВ переходов в многоатомных молекулах описанный метод применяют для частичной диагонализации по колебательным квантовым числам полного КВ гамильтониана. В этом случае по-прежнему используют (6.7), но в отличие от обычной схемы условие диагональности Я1 в базисе собственных функций Яо заменяется требованием диагональности Я1 в базисе только гармонических колебательных функций.  [c.174]

Подобным же образом, как и в только что приведенном примере, можно также показать [8], что суш ествует каноническая система дифференциальных уравнений с аналитической функцией Гамильтона Н, для которой вообще нет никаких сходящихся интегралов д(х, у), кроме самой Н и сходящихся степенных рядов относительно Н. В случае п = 2 для построения такой функции Н можно исходить опять из формул (18) и (19), но нри этом 1/q нужно заменить еще более быстро стремящейся к нулю функцией от q. Точнее, любую функцию Гамильтона с квадратичной частью i xiy + РХ2У2) произвольно малым изменением коэффициентов членов высших порядков можно превратить в такую, которая уже обладает указанным свойством, т. е. у которой отсутствуют другие сходящиеся интегралы. В связи с этим можно упомянуть теорему Пуанкаре [9]. В ней рассматриваются функции Гамильтона H z, 11), которые, кроме z, . .., Z2n, зависят еще от параметра , причем аналитически около точки = 0. Тогда теорема гласит, что при некоторых предположениях относительно H z, 0) и производной H z, 0), которые в общем случае вьшолнены, не существует других сходящихся степенных рядов по 2п + 1 переменным, . .., Z2n и /i, являющихся интегралами системы Гамильтона, соответствующей функции H(z, 11), кроме степенных рядов по самим Н ъ л. Однако в теореме Пуанкаре ничего не говорится о фиксированных значениях параметра jjL. Мы уже упоминали выше, что система Гамильтона в случае линейно независимых собственных значений Ai,. .., Л может приводиться к нормальной форме подстановкой, задаваемой расходящимся степенным рядом, если не существует п независимых сходящихся интегралов здесь мы построили такой пример. Теперь можно было бы думать, что множество чисто мнимых корней (f = 1,. .., гг), для которых преобразование в нормальную форму представлено расходящимися рядами, имеет п-мерную меру Лебега, равную нулю, как это было  [c.280]

Уравнения (8.2) появились, по-видимому, впервые в вариационном исчислении как условие согласованности полей экстремалей (которые, как известно, описываются каноническими уравнениями). Правда, там обычно рассматриваются лишь самосопряженные (потенциальные) поля. Поле в вариационном исчислении обозначает п-параметрическое семейство непересекающихся экстремалей оно порождает и-мерное инвариантное многообразие в 2и-мерном фазовом пространстве (см. [12, 19]). Условие согласованности поля обычно записывают в виде уравнения (8.4), которое является аналогом уравнения Эйлера (1.2) из гидродинамики. Преобразование Ламба (переход от (8.4) к (8.2)) применялось в теории гамильтоновых систем в связи с анализом линейных по импульсам инвариантных соотношений (см. [43, 57]). И.С.Аржаных [3] обобщил уравнение Ламба на негамильтоновы системы (в частности, неголономные) и распространил метод Гамильтона—Якоби для их точного интегрирования. Однако до работы [33] уравнение (8.2) обычно не связывали с идеями гидродинамики.  [c.86]


Затем к системе с функцией Гамильтона Л применяем теорию возмущений Депри-Хори, описанную в главе 11. В результате ползшим функцию Гамильтона, содержащую только долгопериодические члены. Сделав затем несложное каноническое преобразование, можно из гамильтониана исключить независимую переменную т.  [c.256]

Во многих руководствах по небесной механике большие разделы посвящены каноническим уравнениям Гамильтона, методу Гамильтона—Якоби и теории контактных преобразований . Детальное изучение этих вопросов выходит за пределы нашей книги, однако, принимая во внимание важную роль, которую они иг рают в динамике, здесь будет приведен очень краткий перечень основных сведений. Более полное изложение читатель может нанти в книгах Смарта, Штерна или Пламмера, указанных в списке рекомендуемой литературы в конце главы.  [c.215]

Якоби, в котором ищут такое каноническое преобразование, которое обращало бы функцию Гамильтона системы в нуль — такая функция Гамильтона не зависит от времени явно, сохраняется, но не имеет никакого отношения к энергии системы. Теперь мы видим, в чем тут дело — в классической механике из двух гамильтонианов Яр и Ящ остается аналог только гайзенбергова гамильтониана Яг — он-то и обращается в нуль в процедуре Гамильтона — Якоби, которая аналогична переходу к шредингеровой картине. В квантовой теории в этой картине возникает другой гамильтониан Яш, который управляет временной зависимостью векторов состояния, — но векторы состояния не имеют классического аналога, и поэтому в классическом рассмотрении этот новый объект исчезает из виду. Впрочем, это исчезновение не совсем бесследно в классическом описании сохраняется величина, связанная с квантомеханическим оператором эволюции U(t,to) (мы не будем сейчас устанавливать характер этой связи)—это производящая функция ф канонического преобразования Гамильтона — Якоби, которая удовлетворяла там уравнению Гамильтона — Якоби (1.77). Поэтому именно это уравнение оказывается классическим следом уравнения Шредингера и может быть получено из него соответствующим предельным переходом.  [c.466]

В учебных пособиях канонические уравнения выводятся по-разному, например, путем анализа приращения функции Гамильтона дН в действительном движении системы путем анализа прир ения ЪН на виртуальном ее перемещении, также путем известного в теории дифференциальных уравнений преобразования Лежавдра. Можно применить вариационный принцип с независимым варьированием координат и импульсов дх,...,д , Рх,---, р 1л т.д. Рассмотрим кратко некоторые способы вывода канонических уравнений.  [c.268]

Она отличается от болыней части ранее изданных курсов теоретической и аналитической механики систематически проведенным подходом, опирающимся на инвариантность и ковариантность законов и уравнений механики по отношению к преобразованиям систем отсчета. На этой идее базируется как и,зложение основных понятий механики, так п обоснование лагранжева и гамильтонова формализма. Большое внимание уделяется leopeMe Э. Нетер и интегральным инвариантам, которые положены в основу изложения теории канонических преобразований и формализма Гамильтона — Якоби.  [c.2]

Книга состоит из десяти глав. По охватываемому материалу I Vi главы соответствуют в целом традиционным курсам механики. Задачи остальных четырех глав связаны с тематикой спецкурса Методы интегрирования канонических систем . В отличие от лагранжева формализма гамильтонов подход позволяет в принципе найти решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. В этом аспекте канонический формализм является мощным рабочим методом, позволяющим получить приближенное решение широкого круга физических и математических задач [1]. Рассмотрены проблемы, относящиеся к интегр ированию нелинейных уравнений, преобразованиям Дарбу и Фрелиха, ВКБ-приближению, определению собственных векторов и собственных значений, гамильтоновой теории специальных функций. Дополнительные преимущества дает метод удвоения переменных, позволяющий использовать канонический формализм для решения нового класса задач алгебраических и трансцендентных уравнений, сингулярио-возму-щенных уравнений, построению Паде-аппроксимантов, обращению интегралов и т. д. Широта диапазона рассматриваемых проблем обусловлена возможностью приведения к гамильтоновой форме нелинейных систем общего вида и универсальностью используемых методов интегрирования.  [c.3]

Как показал Фрелих, для исключения электронно-фононного взаимодействия из гамильтониана можно применять каноническое преобразование, при этом остается лишь взаимодействие между электронами, которое соответствует тому, которое было выведено методами теории возмущений. Если электронно-фононпое взаимодействие велико, то указанная операция не применима лишь для небольшого числа членов с малыми энергетическими знаменателями. При вычислении матричного элемента взаимодействия и колебательных частот эти члены не существенны, но в случае сверхпроводимости они важны. Так как эти члены нельзя рассмотреть методами теории возмущений, они оказывают сильное влияние на волновые функции.  [c.756]


Смотреть страницы где упоминается термин Гамильтона преобразование в теории : [c.311]    [c.574]    [c.8]    [c.395]    [c.505]    [c.328]    [c.42]    [c.197]    [c.288]    [c.110]    [c.315]    [c.576]   
Линейные и нелинейные волны (0) -- [ c.0 ]



ПОИСК



Гамильтон

Гамильтона преобразование в теории модуляции

Гамильтона теория

Зэк гамильтоново

Метод вариации канонических постоянных Производящие функции канонических преобразований Линейные канонические преобразования. Диагонализация гамильтониана. Операторная форма канонических преобразований. Канонические преобразования в классической теории магнитного резонанса Уравнение Гамильтона-Якоби

Преобразование Гамильтона

Теория преобразований



© 2025 Mash-xxl.info Реклама на сайте