Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ферми — Дирака

Физическая статистика, изучающая свойства вырожденных коллективов, называется квантовой статистикой. Влияние специфики частиц на свойства вырожденного коллектива обусловливает существенное различие между вырожденными коллективами фермионов и бозонов. В связи с этим различают две квантовые статистики. Квантовую статистику фермионов связывают с именами Ферми и Дирака (отсюда, кстати говоря, и происходит термин фермион ) и называют статистикой Ферми — Дирака. Квантовую статистику бозонов связывают с именами Бозе и Эйнштейна (отсюда термин бозон ) и называют статистикой Бозе — Эйнштейна.  [c.115]


Функция распределения для вырожденного газа фермионов. Как уже отмечалось, функция распределения для вырожденного газа фермионов была впервые получена Ферми и Дираком н, имеет следующий вид  [c.120]

Эту формулу для средних чисел заполнения обычно называют распределением Ферм-и — Дирака. Формулы для внутренней энергии и числа частиц те же  [c.447]

Автор, широко образованный педагог, прекрасно сознавая огромное значение статистической термодинамики для решения технических задач, показал формы и методы использования основных результатов статистики Больцмана и квантовых статистик Бозе — Эйнштейна и Ферми — Дирака при рассмотрении важнейших понятий термодинамики, как например внутренней энергии, теплоемкости, энтропии и т. д.  [c.7]

Распределение Ферми — Дирака [17]  [c.98]

Эту функцию распределения впервые вывел Ферми, а затем применил Дирак к свободным электронам металла она известна как распределение Ферми — Дирака и отличается от распределения Больцмана для различных частии на член (+1) в знаменателе.  [c.100]

Это распределение впервые вывел Бозе в 1924 г. для систем световых квантов. Эйнштейн применил его к идеальным газам. Оно известно как распределение Бозе — Эйнштейна и содержит в знаменателе слагаемое (—1) вместо (+1) в распределении Ферми — Дирака.  [c.102]

Общее число различных способов распределения для тех случаев, когда выполняются условия Ферми — Дирака,  [c.103]

Хотя тот же общий принцип применен к распределениям Ферми — Дирака и Бозе — Эйнштейна, явное алгебраическое выражение для X не может быть получено.  [c.104]

Распределение электронов проводимости в твердом теле подчиняется статистике Ферми — Дирака (рис. 2.1). С повышением температуры тепловую энергию воспринимают только внешние валентные электроны, переходящие на еще более высокие энергетические уровни, которые у металлов обычно свободны.  [c.31]

Рис. 2.1. Распределение электронов по энергиям в металле согласно статистике Ферми — Дирака Рис. 2.1. <a href="/info/389143">Распределение электронов</a> по энергиям в металле согласно <a href="/info/188117">статистике Ферми</a> — Дирака

Фаулера — Нордгейма формула 66 Ферми — Дирака статистика 31, 63 Ферми распределение 32, 61  [c.555]

Изложенные положения относятся не только к системе элементарных тождественных частиц, но и к системам, состоящим из тождественных сложных частиц, например к атомным ядрам. Ядра, состоящие из четного числа нуклонов, обладают целым спином и подчиняются статистике Бозе—Эйнштейна. Ядра, содержащие в своем составе нечетное число нуклонов, обладают полуцелым спином и подчиняются статистике Ферми—Дирака.  [c.117]

Для того чтобы могли образоваться замкнутые оболочки нуклонов в атомных ядрах, необходимы два условия 1) нуклоны подчиняются статистике Ферми—Дирака (принципу Паули), 2) движение каждого нуклона характеризуется орбитальным квантовым числом I.  [c.185]

В 1927 г. А. Зоммерфельд для устранения указанного противоречия, сохранив основные исходные положения теории, перенес в нем приемы новой квантовой статистики Ферми — Дирака, указав, что для электронов, подчиняющихся принципу запрета Паули, распределение Максвелла — Больцмана должно быть замене-194  [c.194]

Заменив всюду распределение Максвелла — Больцмана на распределение Ферми— Дирака, Зоммерфельд получил для /Сэл и а выражения  [c.195]

Интеграл Ферми — Дирака для валентной зоны имеет вид  [c.245]

Видим, что для определения концентрации электронов и дырок необходимо вычислить интегралы Ферми — Дирака. Эти интегралы  [c.245]

Здесь интеграл Ферми — Дирака f 1/2(11) уже нельзя заменять экспонентой. Ясно, что вырождение в собственном полупроводнике наступает только в том случае, когда эффективные массы электронов и дырок значительно различаются. Примером такого полу-248  [c.248]

Если для расчета электронной тепловой поляризации пользоваться классическими представлениями, то результаты будут примерно такими же, как в случае ионной тепловой поляризации. Ясно, однако, что при описании движения электронов в кристаллах пренебрегать квантовыми эффектами нельзя. Необходимо учитывать, что эффективная масса электронов в кристалле сильно отличается от массы свободного электрона, что электроны в твердом теле подчиняются статистике Ферми —Дирака и т. д. Точные расчеты поляризуемости в этом случае достаточно сложны.  [c.288]

В этих условиях прежде всего необходимо выяснить, какие из понятий, связанных с кристаллом, сохраняют смысл и в применении к неупорядоченным системам. Одно из таких понятий, одинаково пригодное для кристаллических и некристаллических веществ, — это плотность состояний N(E). Оно вводится еще в элементарной теории идеального газа и, как мы видели, широко используется в физике твердого тела. Величина jV( ) d представляет собой число состояний в единичном объеме, допустимых для электрона с заданным спином и с энергией в интервале от Е до E-j-dE. В аморфных веществах состояния могут быть заняты или свободны и произведение E)f E)dE есть число занятых состояний в единичном объеме. Здесь f E) — функция Ферми — Дирака  [c.356]

Ферми —Дирака 178 Разогрев электронного газа 256 Рассеяние на примесях 253  [c.383]

Так как ехр[(е— i)lkT]>0, то vраспределением Ферми—Дирака (квантовая статистика Ферми — Дирака)-.  [c.82]

О равновесном распределении свободных электронов. Электроны относятся к фермионам и как таковые подчиняются статистике Ферми — Дирака. Рассмотрим равновесный электронный газ, характеризующийся температурой Т и уровнем Ферми e г уровнем Ферми называют химический потенциал электронного газа). Среднее число электронов в состоянии с энергией е описывается выражением (3.4.7)  [c.139]

Значит, для вычисления нужно проинтегрировать в пределах от - [ а/т до оо выражение для числа электронов, имеющих скорость от Vx до vx + dvx- Расчет на основании квантовых представлений о распределении электронов в металле согласно статистике Ферми-Дирака дает выражение, известное как формула Ричардсона — Дешмана  [c.63]

Совокупность тождественных частиц может находиться в состояниях только с определенным видом симметрии, т. е. система находится либо в симметричном состоянии (волновая функция симметрична), либо в состоянии антисимметричном (волновая функция антисимметрична). Свойства симметрии обусловлены природой самих частиц, образующих систему, и они сохраняются во времени (так как НР12 — 12 = О)- Это означает, что если в начальный момент времени система находилась в симметричном или антисимметричном состоянии, то никакие последующие воздействия lie изменяют характера симметрии системы. Состояния разного типа симметрии не смешиваются между собой. Различие в симметрии волновых функций или ij) ) проявляется Б различии статистических свойств совокупности частиц, и это оказывается связанным со спином частиц. В. Паули удалось показать, что частицы, обладающие целым спином О, ], 2,... (л-мезоны s = О, К-ме-зоны S = О, фотоны S = 1), описываются симметричными волновыми функциями и подчиняются статистике Бозе—Эйнштейна. Эти частицы часто называют бозонами. Согласно статистике Бозе— Эйнштейна, в каждом состоянии может находиться любое число частиц (бозонов) без ограничения. Частицы же с полуцелым спином Va, /2,. . . (электроны — S = V2, протоны — s = Vj, нейтроны — S = мюоны — S = Vj) — описываются антисимметричными волновыми функциями и подчиняются статистике Ферми— Дирака. Часто их называют фермионами. Согласно статистике Ферми—Дирака в каждом состоянии, характеризуемом четырьмя квантовыми числами (п, /, т, s) (полным набором), может находиться лишь одна частица (принцип Паули).  [c.117]


При 1юстроснии теории р-распада мы должны ввести в рассмотрите некоторое (электронио-нентрингюе) поле, квантом которого и является пара частиц — электрон и антинейтрино, а нуклонам следует приписать некоторый электронно-нейтринный заряд G G 1,4-Ю " эрг-см — постоянная Ферми). Далее можно построить оператор Я, энергии взаимодействия нуклонов с электронно-нейтринным полем из волновых функций -частицы ф, и нейтрино (антинейтрино) ср-. Функции ф,, ф должны удовлетворять уравнению Дирака. Оператор Я превращает волновую функцию протона в волновую функцию нейтрона и наоборот. Это утверждение равносильно предположению о том, что волновая функция начального состояния нуклона, испытывающего р-превращение, зависит не только от п юстранственных н спиновых координат, но и от зарядовой координаты Т, ( 22), которая может принимать только два значения, соответствующие нейтронному или протонному состоянию нуклона. Таким образом, в результате действия оператора  [c.243]

Спин — собственный момент количества движения частицы, измеряемый в единицах //, 17. Одни частицы обладают целым спином и подчиняются статистике Бозе—Эйнштейна (бозоны), другие— иолуцелым спином и подчиняются статистике Ферми—Дирака (фермиоиы).  [c.341]

При температурах, близких к абсолютному нулю, в свойствах жидкости на первый план выдвигаются квантовые эффекты в таких случаях говорят о квантовых жидкостях. Фактически лишь гелий остается жидким вплоть до абсолютного нуля все другие жидкости затвердевают значительно раньше, чем в них становятся заметными квантовые эффекты. Существуют, однако, два изотопа гелия —" Не и Не, отличающиеся статистикой, которой подчиняются их атомы. Ядро Не не имеет спина, и вместе с ним равен нулю и спин атома в целом эти атомы подчиняются статистике Бозе — Эйнштейна. Атомы же Не обладают (за счет своего ядра) спином /2 и подчиняются статистике Ферми — Дирака. Это различие имеет фундаментальное значение для свойстй образуемых этими веществами квантовых жидкостей в первом случае говорят о квантовой бозе-жидкости, а во втором — о ферми-жидкости. В этой главе будет идти речь только о первой из них.  [c.706]

Протон и нейтрон, так же как и электрон, являются ферми-евскими частицами (их спин 1/2), о в отличие от электрона они имеют аномальный магнитный момент. В связи с этим теория Дирака в ее первоначальном виде не может быть применена для описания свойств нуклона. Однако основной результат теории Дирака — получение решения для зарядовосопряженных частиц—сохраняется в теориях, построенных для описания других элементарных частиц. Соответствующая теория, развитая для нуклонов, цредсказывает существование частицы, зарядовосопряженной протону, т. е. имеющей массу, спин и время жизни протона (столь же стабильной, как и протон), отрицательный электрический заряд и равный по величине, но противоположный по направлению магнитный момент. Эта частица называется антипротоном р.  [c.621]

В 1926 Г. Ферми и независимо от него Дирак, математически 41ашли вид функции распределения / электронов по энергиям, которое хорошо описывает поведение электронов как при низких (см. рис. 6.8), так и при высоких температурах (рис. 6.9). Эта функция, получившая название функции распределения Ферми — Дирака, имеет вид  [c.178]

Электроны в этом случае ведут себя как обычные классические частицы идеального газа. Таким образом, при условии ехрХ X [ (f— f)/( вТ )] 1 вырождение электронного газа полностью снимается. Снятие вырождения происходит при температуре 7 р = рМв = 5-10 К. Отсюда становится понятным, почему поведение электронного газа в металлах в отношении многих свойств резко отличается от свойств обычного молекулярного газа. Это обусловлено тем, что электронный газ остается вырожденным вплоть до температуры плавления и его распределение очень мало отличается от распределения Ферми — Дирака при О К.  [c.178]

Интегрирование в (7.130) нуяшо провести от дна зоны с До ее потолка. Однако функция Ферми — Дирака при Е>Ер быстро спадает до нуля, и поэтому верхний предел интегрирования в (7.130) заменен на бесконечность.  [c.244]

Для объяснения явления ферромагнетизма в квантовой теории используются два основных подхода. Один из них основан на предложенной Френкелем модели коллективизированных электронов, подчиняющихся статистике Ферми — Дирака. Эта модель учитывает обменное взаимодействие. В теории показано, что при некоторой плотности электронного газа возможно появление самопроизвольного намагниченного состояния вне зависимости от того, что кинетическая энергия электронов при этом увеличивается. Напомним еще раз, что увеличение кинетической энергии связано с тем, что, в силу принципа Паули, электроны с параллельной ориентацией спина не могут з нимать один энергетический уровень. Поэтому при перевороте спина электрон вынужден занять состояние с большей энергией. В настоящее время, однако, существует мнение, что газ электронов проводимости, по-видимому, не является )ерромагнитным ни при каких условиях. Строгое доказательство этого пока отсутствует. В то же время ни в одном эксперименте не было обнаружено ферромагнетизма металлов, не содержащих атомов или ионов с недостроенными d- или /-оболочками. Появление ферромагнетизма в системе d- или /-электронов связано с аномально высокой (по сравнению с s-электронами) плотностью состояний в - и /-зонах.  [c.337]

Фермионами называются частицы, обладающие полуцелым спином (электроны, протоны и т. п.). Свое название они получили от статистики Ферми—Дирака, которая описывает свойства кол1ек1 ввов таких частгщ. Частицы, обладающие целым спином (или спином, равным нулю), подчиняются статистике Бозе— Эйнштейна я называются бозонами. Принцип Паули запрещает находиться в одном энергетическом состоянии двум фермвонам с одинаковыми квантовыми числами. Свойства бозонов таковы, что вероятность нахождения их а состоянии с данной энергией тем больше, чем больше частиц же находится в этом состоянии.  [c.192]


Эти термины происходят от фамилий ученых, активно исследовавших статистические свойства соответствующих частиц. Имеются в виду выдающийся итальянский физик Энрико Ферми, который совместно с Дираком выполнил фундаментальные исследования по статистической теории электронов (на основе этих работ возникла стятистика Ферми — Дирака), и индийский физик Бозе, исследова-  [c.80]

Для равновесного газа квазичастиц функция v e) имеет универсальный вид, зависящий от характера статистик квазичастиц данного типа (статистика Бозе — Эйнштейна или статистика Ферми — Дирака). Так, для фононов она описывается выражением (6.1.13), а для электронов проводимости и дырок выражением (6.2.1). Что же касается спектра G,(e), то для квазичастиц индивидуального происхождения (электроны проводимости и дырки) он описывается выражением (6.2.6) с заменой электронной массы на определяемую структурой данного кристалла зс х зективную массу электрона проводимости или дырки, а для квазичастиц коллективного происхонадения (фононы, магноны и другие) он существенно зависит как от типа квазичастиц, так и от конкретной рассматриваемой периодической структуры.  [c.148]

В настоящее время известно, что необычные свойства электронов проводимости являются следствием принципа Паули, действующего в металле это заставляет применять к электронам статистику Ферми—Дирака. Заслугой Зоммерфельда [6] является то, что он первый приложил этот принцип в теории перемещения электронов в металлах. Вскоре после работы Зоммерфельда появились работы Хаустопа [7,8] и Блоха [9 —11], в которых взаимодействие между электронами и решеткой рассматривалось с квантовомеханической точки зрения, после чего началось быстрое развитие современной теории металлов. Нужно, однако, отметить, что в период между работами Друде и Лоренца и появлением теории Зоммерфельда было предложено несколько новых теорий электронной проводимости, в которых, кроме вывода различных выражений для электропроводности, теплопроводности и вездесущего числа Лоренца, делались попытки объяснить другие явления.  [c.155]

Несмотря на то, что в так называемых промежуточных теориях содержались интересные идеи, вопрос об электронах проводимости в металле оставался окончательно нерешенным. Формулируя основы своей теории, использущей статистику Ферми — Дирака для электронов, Зоммерфельд [24 — 26] в 1927 г. писал Именно поэтому на протяжении последних двадцати лет идея электронного газа в металле все более п более дискредитировала себя.).  [c.158]

Согласно принципу Паули, два электрона не могут находиться в одном атоме в одинаковых квантовых состояниях (т. е. обладать четырьмя одинаковыми квантовыми числами). Этот принцип был распространен впоследствии на совокупность электронов в молекуле, а Ферми [27] ч Дсграк [28 применили его к случаю идеализированного электронного газа. Следствием этого явился вывод, что совокупность свободных частиц, подчиняющихся статистике Ферми — Дирака, должна обладать некоторой нулевой кинетической энергией. Верхний предел величины импульса определяется просто линейной плотностью частиц, т. е. p ai . (ср. с соотношением Де-  [c.158]

Теория электронной теплопроводности является частью электронной теории металлов. Одним из первых успехов этой теории было объяснение соотношения между электропроводностью и теплопроводностью, данное Видеманом и Францем [147] и Лоренцем [148] сначала на основании грубой теории Друдэ [149], а потом в более точной теории Лоренца [150] и, наконец, с помощью теории Зоммерфельда [151], в которой рассматривается свободный электронный газ, подчиняющийся статистике Ферми—Дирака. Как будет показано в п. 13, это соотношение может быть найдено из очень общих соображений необходимо лишь предположение о наличии общего времени релаксации для процессов, определяющих электро-и теплопроводность.  [c.224]


Смотреть страницы где упоминается термин Ферми — Дирака : [c.82]    [c.244]    [c.180]    [c.195]    [c.244]    [c.245]    [c.330]    [c.157]    [c.159]   
Физика твердого тела Т.2 (0) -- [ c.43 , c.45 , c.54 , c.56 ]

Физика твердого тела Т.1 (0) -- [ c.43 , c.45 , c.54 , c.56 ]



ПОИСК



Вывод распределений Бозе - Эйнштейна и Ферми - Дирака с помощью большого канонического ансамбля

Вязкость Применения распределения Ферми — Дирака. Металлы и белые карлики Основное состояние ферми-газа в одномерном случае

Дирак

Кинетические коэффициенты выражение через интегралы Ферми— Дирака

Плотный газ. Элементы квантовой статистики Ферми — Дирака для электронного газа

Приложение Б. Интегралы Ферми—Дирака и расчет явлений переноса

Применение статистики Ферми-Дирака к электронному

Применения распределения Ферми — Дирака. Металлы и белые карлики

Распределение Максвелла — Больцмана сравнение с распределением Ферми — Дирака

Распределение Ферми — Дирака в пространстве скоростей

Распределение Ферми — Дирака вывод

Распределение Ферми — Дирака классический предел

Распределение Ферми — Дирака при термоэлектронной эмиссии

Распределение Ферми —Дирака

Распределение частиц по энергиям. Функции распределения Ферми — Дирака и Максвелла — Больцмана

Распределения Бозе—Эйнштейна и Ферми—Дирака

См. также] Приближение времени релаксации Распределение Ферми — Дирака Уравнение Больцмана

Статистика Возе — Эйнштейна 206— Ферми — Дирака

Статистика Ферми — Дирака и Бозе—Эйнштейна

Статистика Ферми—Дирака. Идеальный ферми-газ

Ферма

Ферми

Ферми — Дирака распределени

Ферми — Дирака распределение электронов

Ферми — Дирака статистика

Ферми — Дирака фононов

Ферми — Дирака функция распределения

Ферми —Дирака интеграл

Фермий

Функция Ферми I 56. См. также Распределение Ферми — Дирака

Функция Ферми Дирака



© 2025 Mash-xxl.info Реклама на сайте