Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационные методы и уравнения Эйлера

Методы решения двух последних групп являются приближенны ми лишь условно, так как с их помош,ью можно достигнуть любой точности результатов, если решение допускает уточнение в виде учета последующих членов разложения какой-либо величины или построено в форме последовательных приближений, или связано с малым интервалом при определении значения исследуемой функции. Вариационные методы могут оказаться и точными, если уравнения Эйлера—Лагранжа при исследовании экстремума функционала (например, Э) допускают точное решение или задача имеет конечное число степеней свободы (см. задачу 1.5).  [c.9]


Аналогично показанному в настоящем разделе выводу может быть сделан вывод дифференциальных уравнений равновесия и совместности деформаций в теории упругости, в теории пластин и оболочек и т. д. Одновременно с уравнениями могут быть получены все естественные граничные условия ). Можно показать, что уравнения Эйлера инвариантны при преобразовании подынтегральной функции в функцию от новых независимых переменных. Методы вариационного исчисления удовлетворяют тому требованию, что минимум скалярной величины (функционала) не зависит от выбора координат. Это наиболее естественным образом соот-  [c.448]

В настоящей работе решен цикл новых задач выбора динамически оптимальных законов движения механизмов по различным критериям в вариационной постановке [11—19]. При решении этих задач использованы как методы, связанные с интегрированием уравнения Эйлера для функционала, соответствующего выбранному критерию оптимального движения, так и прямые вариационные методы.  [c.5]

Метод решения. Искомая динамически оптимальная функция находится в результате решения вариационной изо-периметрической (в силу соотношений (1.6) и (1.7)) задачи. В настоящей работе для решения этих задач используются как методы, связанные с интегрированием уравнения Эйлера для заданного функционала, так и прямые вариационные методы.  [c.19]

Для консервативных систем статический и энергетический критерии эквивалентны. Дифференциальные уравнения устойчивости, получающиеся при использовании статического метода, являются дифференциальными уравнениями Эйлера вариационной задачи, к которой приводит энергетический критерий.  [c.267]

Вариационные методы построения криволинейных сеток в областях сложной формы хотя и требуют при их реализации решения довольно трудоемких задач (минимизация функционалов от функций многих переменных или решение соответствующих уравнений Эйлера-Остроградского (Э-О)), тем не менее дают возможность строить сетки с хорошими вычислительными достоинствами. Как пра вило, с помощью вариационных подходов строятся структурированные или блочно-структурированные сетки в односвязных и многосвязных областях. Топология сеток может быть при этом различной.  [c.512]

Мы здесь не предполагаем рассматривать полную вариационную формулировку задачи об устойчивости, но читатель самостоятельно может убедиться, что уравнение Эйлера для функционала (12.3.7) сводится к дифференциальному уравнению (12.2.3) с граничными условиями (12.2.5). Таким образом, энергетический метод приводит к тем же результатам, что и метод Эйлера. Но он позволяет судить об устойчивости прямолинейного состояния стойки. Непосредственной проверкой можно убедиться, что при v x) = С8т тгх/1) и при Р < Ркр = имеет место АЭ > О, т.е. состояние стойки устойчиво, а случаю Р > Ркр соответствует АЭ < О, и поэтому ее состояние неустойчиво.  [c.386]


Следующий 4.2 посвящен точным методам решения экстремальных задач о вертикальном подъеме с помощью аппарата вариационного исчисления и решения соответствующих уравнений Эйлера. Подробно исследуются оптимальные режимы движения, обеспечивающие максимальную высоту подъема ракеты, оптимальный закон программирования тяги реактивного двигателя в однородной и неоднородной атмосфере для линейного и квадратического закона сопротивления среды.  [c.106]

Известным методом были получены дифференциальные уравнения Эйлера—Остроградского и граничные условия для вариационного уравнения (3.39). Ввели множители Лагранжа и обозначили н т  [c.95]

До 1962 г. в точной постановке (в приближении уравнений Эйлера) решались только те вариационные задачи сверхзвуковой газовой динамики, которые допускали упомянутый в связи с Главой 4.11 переход к контрольному контуру (КК) и использование основанного на нем метода контрольного контура (МКК) . Сначала КК был характеристическим, а его использование оказывалось достаточно сложным. В [25] обоснована иная, более простая версия МКК, названная там  [c.364]

В работах [37а—с] развивается метод Био введения обобщенных координат. Путем варьирования по этим координатам вариационное уравнение приводится к системе уравнений Эйлера—Лагранжа. Задача сформулирована для температуры, объемного расширения и роторной части вектора перемещений. Начальные условия заданы для температуры, перемещений и скоростей перемещений. Граничные условия могут быть заданы произвольным образом путем введения дополнительных параметров они удовлетворяются приближенно.  [c.241]

Интенсивное исследование численных методов решения вариационных задач оптимального управления и применение для этой цели ЭВМ началось в пятидесятых годах и развивалось, как уже отмечалось выше, параллельно с развитием общей математической теории оптимальных процессов. Основные усилия прежде всего были направлены на создание методов, использующих необходимые условия оптимальности в форме уравнений Эйлера — Лагранжа. Основные трудности, возникающие здесь, были уже кратко охарактеризованы выше в 8. Напомним их здесь еще раз, остановившись подробнее на примере краевой задачи (6.6) — (6.7). На основании принципа максимума дело сводится к следующей двухточечной задаче  [c.198]

Различные приближенные аналитические методы связаны с вариационными формулировками и основываются на том, что существует тесная связь между вариационными проблемами и соответствующими краевыми задачами, выражаемая дифференциальными уравнениями Эйлера — Лагранжа. Эта взаимосвязь имеет большое значение для теории (см. гл. 4). Для краевой задачи всегда можно сформулировать соответствующую вариационную задачу и искать затем ее решение. При этом были развиты численные методы, чтобы решать вариационную задачу, не применяя дифференциальных уравнений Эйлера — Лагранжа, а посредством так называемых прямых методов вариационного исчисления.  [c.129]

Вариационная задача называется корректно поставленной (устойчивой), если она имеет единственное решение и всякая минимизирующая последовательность сходится к элементу х -В противных случаях вариационная задача называется некорректно поставленной. Однако часто вместо непосредственной минимизации функционала J (х) получают уравнение Эйлера — необходимое условие экстремума функционала J (х) — и из него определяют численными или аналитическими методами решение экстремальной задачи. В связи с этим рассмотрим вопрос о корректности операторных уравнений и их связь с вариационными задачами.  [c.32]

Это уравнение вместе с уравнениями связей (29) составляют замкнутую систему для нахождения решений задачи Лагранжа. Уравнение (31) можно получить методом множителей Лагранжа. Вводя новый лагранжиан S — L—l K.f, и считая Xi.....%т дополнительными координатами, сведем задачу Лагранжа к вариационной задаче без ограничений. Если в новой задаче не принимать во внимание уравнения связей, то уравнения Эйлера—Лагранжа будут иметь вид  [c.45]


При короткой оболочке ( <2хо) или, в том случае, если внешняя нагрузка изменяется по нелинейному закону, следует пользоваться общим методом получить дифференциальное уравнение из уравнения Эйлера вариационной задачи для всей оболочки, определить функцию радиальных перемещений ю(х), а затем и все силовые факторы.  [c.68]

Вариационная формулировка позволяет изучить вопросы, свя занные с понятием согласованности в случае конечно-элементно дискретизации физической задачи. Ранее уже отмечалось, что внут ри одной и той же области функция должна быть дифференцируем столько раз, каков порядок производных в соответствующем урав нении Эйлера (т. е. для стержневого элемента уравнение Эйлер, имеет второй порядок, поэтому функция должна быть не менее чe квадратична). В методе конечных элементов функционал полно системы состоит из суммы функционалов П- для р отдельных облас тей (элементов), т. е.  [c.168]

Условный экстремум функционала (3.116) при выполнении ограничивающего условия (3.117) находят обычными методами вариационного исчисления, т. е. составлением и решением уравнения Эйлера  [c.231]

Целью настоящей статьи является анализ проблемы теплоотдачи при вынужденном движении (проблемы Грэтца) с учетом вязкой диссипации и внутреннего тенловыделения с помощью вариационного метода. Вариационные методы и раньше использовались для решения ряда задач теплообмена [3,]. Пользуясь математической терминологией, можно сказать, что основное дифференциальное уравнение чаще всего является самосопряженным. Вариационные формулировки обычно могут быть построены по образцу принципа Гамильтона, который приводит к уравнениям Эйлера — Лагран-н<а. Можно использовать также хорошо известные методы Рэлея —  [c.325]

Отметим, что вариационный метод позволяет получать не только дифференциальные уравнения проблемы, но одновременно и недостающие 1) граничные условия. Эти граничние условия, называемые естественными, не обуславливаются внешними обстоятельствами и вытекают из сути самой вариационной задачи. Удовлетворение естественным граничным условиям необходимо для соблюдения экстремума функционала в той же мере, что и удовлетворение дифференциальному уравнению Эйлера. Совокупность наложенных извне и естественных граничных условий обеспечивает единственность решения вариационной проблемы —из поля экстремалей выделяется одна.  [c.445]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]

Уравнения Эйлера выведены для условий, когда режимные ограничения отсутствуют. При наличии ограничений в форме неравенств уравнения Эйлера будет удовлетворяться лишь в тех зонах, где ограничения не сказываются (в зонах с наличием ограничений уравнения Эйлера превращается в неравенства). Кроме того, согласно вариационному исчислению, при наличии ограничений в форме неравенств, должны дополнительно соблюдаться так называемые уравнения трансверсальности. Последние уравнения отражают условия наилучшего сопряжения линий оптимального режима (экстремалей) с линиями рел<имных ограничений в зонах, где режимные ограничения в форме неравенств сказываются. Число уравнений трансверсальности равно числу указанных точек сопряжения экстремалей, поэтому в сложных задачах число уравнений трансверсальности может быть очень большим. Кроме того, заранее не известны точки сопряжения экстремалей, и приходится записывать уравнения трансверсальности для всех возможных точек сопряжения экстремалей. В силу этого для сложных задач практический учет ограничений в форме неравенств методами классического вариационного исчисления невозможен, и поэтому приходится искать иные решения. Учет ограничений в форме равенств в классическом вариационном исчислении возможен с помощью известных множителей Лагранжа.  [c.36]

Таким образом, существенным недостатком классического вариационного исчисления является практическая невозможность учета в сложных задачах ограничений в форме неравенств. В современной математике разработан ряд методов учета таких ограничений—метод штрафных функций, методы возможных направлений (проекционные методы), метод модифицированных множителей Лагранжа, принцип максимума Понтрягина. Первые два метода, используемые в данной работе, будут рассмотрены ниже более подробно. Анализ метода модифицированных множителей Лагранжа применительно к энергетическим задачам проведен в работах [Л. 47, 48]. Исследования по применению принципа максимума Понтрягина к задаче оптимизации долгосрочных режимов ГЭС только еще начаты в работах Л. С. Беляева, Далина, Шена, Нариты [Л. 48, 95, 96]. Авторы отмечают большую перспективность этого метода решения задачи. Исследования но применению принципа максимума Понтрягина, по-видимому, позволят дать объективную оценку этому методу. В настоящей работе этот метод не рассматривается. Р ешение задачи на основе интегрирования дифференциальных уравнений Эйлера не получило в настоящее время распространения, хотя и не доказано, что оно бесперспективно.  [c.37]


Вариационные соотношения (4.5.38) и (4.5.39) представляют слабые формулировки итерационных методов, из которых, задаваясь связью деформаций и перемещений, можно получить в качестве уравнений Эйлера уравнения в перемепгениях для различных задач. Однако значение этих соотношений заключается в том, что они ЯШ1ЯЮТСЯ основой для вывода разрешающих уравнений при различных способах дискретизации задачи, например МКЭ, а также для получения теоретических оценок сходимости методов.  [c.233]

Воспользуемся для решения этой вариационной задачи с интегралом f w s)ds и интегральным условием (3.46) f w s)ds = = onst, методом множителей Лагранжа для функции w t) Xw t) с постоянным множителем Л. Тогда получим решение уравнения Эйлера 2w t) + Л = О, откуда вытекает, что w = onst, Vt G [О, tp].  [c.99]

См. fl.Il, стр, 25, 30—36, 39-—40 [соответственностр. 37, 43—50, 54 русского перевода], Замечание. Основное ( отношение, связывающеё кривизну с изгибающим моментом, впервые было получено Яковом Бернулли, хотя ему не удалось найти правильное значение п<х тоянной, входящей в это соотношение. Тем не менее его работа должна рассматриваться как первый вклад в решение задач о больших прогибах балок. Следуя совету Даниила Бернулли, Эйлер вновь вывел дифференциальное уравнение линии прогибов и приступил к решению различных задач об эластике см. [1.1J, стр. 27 стр. 39 русского перевода], 1.2], т. 1, ip. 30 и 34, а также 1.3], стр. 3 [стр. 17 русского перевода]. В I6.20] приведена известная статья Эйлера о линиях прогиба. После этого задачей об эластике занимался Жозеф Луи Лагранж (1736—1813), выдающийся итальянский математик ), впервые сформулировавший принцип возможной работы и сделавший весьма существенный вклад в динамику. Он рассмотрел консольную балку с нагрузкой на незакрепленном конце (см. 1.1], стр. 39—40 стр. 54 русского перевода], и [1.2], т. 1, стр. 58—61, а также статью Лагранжа [6.21]) краткая биография Лагранжа приведена в[6.4] на стр. 133 и в 6.5] на стр. 250. К числу первых ученых, занимавшихся теорией упругости, относится и Джиованни Антонио Амадео Плана (1781—1864), племянник Лагранжа, исправивший ошибки в работах Лагранжа по теории упругих кривых (см. [1,2], т. I, стр. 89—90, а также работу Плана [6,22]) биографические сведения о нем можно найти в [6.5]. Макс Борн в своей диссертации 6.23] исследовал эластику при помощи вариационных методов (см. [1.13], стр. 927—928 и 932  [c.553]

Метод Ритца в приложении к задачам обработки давлением заключается в том, что выражения (6-39) составляющих вектора перемещения определяются не из основных дифференциальных уравнений вариационного исчисления (уравнения Эйлера — Остроградского), а задаются до некоторой степени произвольно и притом так, чтобы они удовлетворяли условию несжимаемости и основным граничным условиям данной конкретной задачи, а также чтобы 184  [c.184]

Здесь ах,..., —гладкие ковекторные поля на N, линейно независимые в каждой точке, и т < Следуя методу множителей Лагранжа, введем дополнительные координаты Л1,...,Лт и лагранжиан = а -4). Можно показать (см., например, [19]), что экстремали рассматриваемой вариационной задачи находятся из следующей системы дифференциальных уравнений Эйлера — Лагранжа  [c.25]

Кроме методов профилирования плоских и осесимметричных сопел в ЛАБОРАТОРИИ развивались приближенные способы профилирования пространственных сопел максимальной тяги и сопел аэродинамических труб. В [45] развит метод профилирования цилиндрических боковых стенок пространственного сопла максимальной тяги, которое отличалось от плоского дополнительным медленным расширением его верхней и нижней стенок. Вариационная задача решалась в квазитрехмерном приближении, сводящим пространственное течение к двумерному с отвечающими расширению верхней и нижней стенок слагаемыми в условиях совместности на и С -характеристиках. Тяги построенных сопел, определенные в квазитрехмерном приближении, сравнивались с величинами, рассчитанными интегрированием пространственных уравнений Эйлера по маршевой схеме второго порядка аппроксимации. Выполненные сравнения подтвердили высокую точность развитого приближения.  [c.367]

Независимо от [6] аналогичный вывод как результат попытки решения сформулированной выше вариационной задачи в рамках уравнений Эйлера и метода контрольного контура был установлен в [8, 9. Там же для совершенного газа с я = Л ъ плоскости Voq J построены кривые Л(Уоо5Сг) = О и обнаружено, что в зависимости от Voo это уравнение (относительно а) имеет от одного до трех корней. Кроме того, оно выполняется в тривиальном случае а = о оо, где а - угол Маха. Этот корень отвечает клину с г = 0.  [c.466]

Принцип максимума и методы классического вариационного исчисления, рассмотренные выше, приспособлены прежде всего для решения задач о программном оптимальном управлении. Соответствующие дифференциальные уравнения, описывающие оптимальное движение и множители Лагранжа Я, (г), или вектор-функцию г) (0> являются уравнениями типа уравнений Эйлера — Лагранжа и Гамильтона. Они определяют управление в виде функции от времени . Во многих случаях, однако, ставится задача о синтезе оптимальной системы, работающей по принципу обратной связи, и тогда требуется, например, определение управления и в виде функции от текущих фазовых координат Хг 1) объекта. Здесь, конечно, возможен следующий естественный путь решения задачи. Для реализовавшегося в данный момент времени 1 х состояния х х х) решается вспомогательная задача о программном управлении (0[т, а (т)] (i>т), которое минимизирует тот же функционал и при тех же концевых условиях и ограничениях, какие заданы в исходной проблеме синтеза. Далее полагается, что [т, д (т)] = (т )[т, я (т)]7 и такие значения и = [т, X (т) ] при каждом = т > о используются в ходе реального процесса управления. В случае, если алгоритм вычисления ( )[г, д (т)] путем решения вспомогательных программных задач можно осуществлять значительно быстрее, чем протекание самого процесса х (т), такой путь может оказаться целесообразным, тем более, что по ходу процесса при т > 0 приходится на деле лишь корректировать величины (т)[т, а не решать в каждый момент = т заново всю программную задачу. Здесь, правда, еще остается нелегкая чисто математическая проблема, < остоящая в доказательстве того, вообще говоря, правдоподобного факта, что найденные таким путем функции [т, х (т)] при подстановке и = = [ , X ( )] в исходные уравнения (2.1) действительно разрешают проблему синтеза оптимальной системы. Это строгое обоснование того факта, что описанный переход [т, а (т) ] = (т)[т, а (т)] действительно дает оптимальный синтез, наталкивается, например, на следующую  [c.202]

Как и в случае конечномерных динамических систем, в области задач об оптимальном управлении системами с распределенными параметрами сохраняют полную работоспособность усовершенствованные методы классического вариационного исчисления. При этом и здесь основное внимание было уделено составлению необходимых условий минимума для экстремальных задач со связями, трактуемыми как проблема Майера — Больца. Главным образом это было сделано для задач, связанных с уравнениями эллиптического типа. Было показано, что в таких типичных задачах, возникающих из проблем оптимального управления, необходимые условия стационарности (уравнение Эйлера и естественные граничные условия, а также условия Вейерштрасса Эрдманна) составляются при помощи обычных приемов. Критерии опираются снова на множители Лагранжа которые здесь зависят уже обычно от пространственных координат, а соответствующие дифференциальные уравнения снова конструируются исходя из подходящих форм функции Гамильтона. Условия стационарности дополняются необходимым условием Вейерштрасса сильного относительного минимума. Разумеется, это условие, которое записывается через условие экстремальности функции Гамильтона на оптимальных решениях, имеет смысл, аналогичный соответствующему условию принципа максимума. Важно, однако, заметить, что при работе с модификациями классических методов вариационного исчисления в случае уравнений с частными производными проявляются некоторые новые черты. В результате получаются условия оптимальности, более сильные, нежели известные в настоящее время обобщения принципа максимума на системы, описываемые уравнениями в частных производных. Упомянутые черты проявляются, в частности, в связи с тем обстоятельством, что приращение минимизируемого функционала при изменении объемного управления (за счет варьирования от оптимального управления) в пределах области достаточно малой меры зависит не только от вариации управления и меры области, но также существенно определяется и предельной формой области варьирования. Таким образом, получается, что при изменении формы области, определяющей вариацию, могут, получаться более или менее широкие необходимые условия экстремальности. Как отмечено выше, эффект анизотропии варьирования пока был получен только классическими методами. Причины этого, по-видимому, различны некоторые работы, посвященные принципу максимума, относятся к таким задачам, где этот эффект вообще не проявляется, в других случаях эффект анизотропии исключался вследствие ограничения при исследованиях лишь вариациями специального вида. Полезно также заметить, что описываемый эффект анизотропии расширяет возможность управления и оптимизации в обширном классе случаев независимо от типа исходных уравнений. Эффективность классических методов вариационного исчисления была проверена на конкретных типах задач. В частности, таким путем была исследована задача об оптимальном распределении проводимости электропроводной жидкости (газа) в канале магнитодинамического генератора электрической энергии. Эта задача как раз доставляет пример вариационной проблемы, где эффект анизотропии варьирования играет существенную роль. Развитию классических методов исследования посвящены работы К. А. Лурье.  [c.239]


Эйлер (Euler) Леонард (1707-1783) — выдающийся математик, механик, физик и астроном. В 1724 г. окончил Базельский университет в 1727 г. поступил адъюнктом в Петербургский университет. В 1741 г. во время бироновщины из России переехал в Берлин, но в 1766 г. вновь приехал в Петербург, где и работал до конца жизни. Эйлеру принадлежит более 850 фундаментальных исследований, из которых свыше 200 статей и книг посвящены проблемам механики. Наиболее известны двухтомная монография Механика, т. е. наука о движении, изложенная аналитическим методом (1753 г.), два тома Алгебры и три тома Интегрального исчисления 1769-1771 гг.). Впервые сделал аппаратом механики дифференциальные уравнения, дифференциальную геометрию, вариационное исчисление. Устранил неполноту первых вариационных принципов Ферма, Мопертюи и И. Бернулли, обосновав принцип наименьшего действия (1753 г.), В Началах движения жидкостей (1757 г.) впервые дал вывод уравнения неразрывности для сжимаемой жидкости и уравнения изменения количества движения, называемого уравнением Эйлера. Не менее известны работы по баллистике и по движению твердого тела. Работы Эйлера оказали огромное влияние на последующее развитие науки. По образному выражению Лапласа, Эйлер стал общим учителем всех нас .  [c.44]

Определение температурного поля произведем прямым вариационным методом. Для этого составим функционал, для которого уравнение (378) было бы уравн ием Эйлера, а граничные условия  [c.183]

Дираком ) и Ленцом и Йенсеном былн указаны модификации уравнения (84.19), которые применимы к системам более общего вида, чем нейтральные атомы. Теория Ленца-Йенсена, которая пользуется вариационными методами, формально эквивалентна первоначальной теории Томаса-Ферми, так как соответствующие их вариационному принципу уравнения Эйлера сводятся для нейтрального атома к уравнению (84.19). Теория Дирака является более общей, так как её уравнения содержат дополнительный член, уменьшающий энергию электрона в точке г на величину, равную обменной энергии одного из электронов системы в области, в которой электронная плотность равна л, именно  [c.406]

Уравнения (8.2) появились, по-видимому, впервые в вариационном исчислении как условие согласованности полей экстремалей (которые, как известно, описываются каноническими уравнениями). Правда, там обычно рассматриваются лишь самосопряженные (потенциальные) поля. Поле в вариационном исчислении обозначает п-параметрическое семейство непересекающихся экстремалей оно порождает и-мерное инвариантное многообразие в 2и-мерном фазовом пространстве (см. [12, 19]). Условие согласованности поля обычно записывают в виде уравнения (8.4), которое является аналогом уравнения Эйлера (1.2) из гидродинамики. Преобразование Ламба (переход от (8.4) к (8.2)) применялось в теории гамильтоновых систем в связи с анализом линейных по импульсам инвариантных соотношений (см. [43, 57]). И.С.Аржаных [3] обобщил уравнение Ламба на негамильтоновы системы (в частности, неголономные) и распространил метод Гамильтона—Якоби для их точного интегрирования. Однако до работы [33] уравнение (8.2) обычно не связывали с идеями гидродинамики.  [c.86]

Описанный метод Ритца применяется только к задачам классического вариационного типа, в которых минимизируется выпуклый функционал. Соответствующее дифференциальное уравнение Эйлера самосопряжено и эллиптично. Однако, хорошо  [c.140]

Для составления уравнений движения воспользуемся методом Лафанжа. Уравнения Лафанжа второго рода для описания движения твердого тела можно получить из вариационного принципа Д Аламбера-Лафанжа (1.11), если выбрать на шестимерном конфигурационном многообразии твердого тела локальные координаты. Для этого достаточно, например, задать радиус-вектор полюса Гр как функцию криволинейных координат ( ,, 2, Яз) и выразить компоненты ортогонального оператора Г через углы Эйлера в формуле (1.1). Выполняя преобразования, аналогичные проделанным в 4.9 с заменой суммирования на интеграл по мере, получим уравнения Лафанжа второго рода, описывающие движение свободного твердого тела.  [c.130]

Лагранж (1736—1813). Достижения Лагранжа, этого величайшего математика XVIII века, во многих отношениях параллельны работам Эйлера. Лагранж вполне независимо от Эйлера получил решение изопериметрических задач, сделав это совершенно новыми методами. Он разработал для этой цели новое, вариационное исчисление. Он также понял преимущество вариационных принципов в связи с той свободой, которую мы получаем, описывая положение механической системы при помощи выбираемой по нашему усмотре-ншо совокупности параметров ( обобщенные координаты ). Если принцип виртуальных перемещений и принцип Далам-бера позволили рассматривать механическую систему как нечто целое, не разбивая ее на изолированные частицы, то уравнения Лагранжа добавили еще одно, чрезвычайно важное свойство — инвариантность относительно произвольных преобразований координат Это позволило выбирать системы координат, удобные для данной конкретной задачи. В своей Аналитической механике (1788) Лагранж создал новое, необычайно мощное оружие для решения любых механических задач при помощи чистых вычислений, без каких бы то ни было физических или геометрических соображений, при условии, что кинетическая и потенциальная энергии заданы в абстрактной аналитической форме. Относясь к этому выдающемуся результату со своей обычной скромностью. Лагранж писал в предисловии к своей книге Читатель не найдет в этой книге рисунков. Развитые мною методы не требуют ни каких бы то ни было построений, ни геометрических или механических аргументов — одни только алгебраические операции в соответствии с последовательными едиными правилами . Лагранж таким образом создал программу и основания аналитической механики.  [c.390]

Эйлер создал принципиально новые методы исследования проблем механики, разработал ее математический аппарат и с блеском применил его ко множеству трудных задач. Благодаря ему инструментом механики стали дифференциальная геометрия, дифференциальные уравнения, вариационное исчисление. Синтетико-геометрический  [c.184]


Смотреть страницы где упоминается термин Вариационные методы и уравнения Эйлера : [c.11]    [c.97]    [c.20]    [c.57]    [c.363]    [c.186]    [c.96]    [c.58]    [c.281]   
Теория ядерных реакторов (0) -- [ c.239 ]



ПОИСК



Метод вариационный

Ряд вариационный

Уравнение Эйлера

Уравнение метода сил

Эйлер

Эйлера метод

Эйлера уравнения вариационные

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте