Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод контрольного контура

Метод контрольного контура  [c.65]

Изложенные здесь результаты оптимизации формы тел, обтекаемых плоскопараллельным или осесимметричным сверхзвуковым потоком совершенного газа, а также оптимизации формы сверхзвуковых сопел были обобщены на случай несовершенного газа Крайко [17]. В дальнейшем Крайко [39] развил обладающий своими достоинствами метод неопределенного контура, позволяющий, как вариант метода контрольного контура, сводить определенные вариационные задачи с двумя независимыми переменными к одномерным задачам.  [c.174]


До 1962 г. в точной постановке (в приближении уравнений Эйлера) решались только те вариационные задачи сверхзвуковой газовой динамики, которые допускали упомянутый в связи с Главой 4.11 переход к контрольному контуру (КК) и использование основанного на нем метода контрольного контура (МКК) . Сначала КК был характеристическим, а его использование оказывалось достаточно сложным. В [25] обоснована иная, более простая версия МКК, названная там  [c.364]

Для тел с произвольным удлинением решить задачу с использованием метода контрольного контура не удается. Этот метод позволяет искать решение только среди гладких контуров. Кроме того, метод контрольного контура можно применять лишь тогда, когда задаваемые величины (изопериметрические условия) удается выразить через интегралы по контрольному контуру в нелинейной постановке этого нельзя сделать, например, при задании объема тела или его боковой поверхности.  [c.180]

В [1, 2] был рассмотрен только случай tf < то, для которого при г/ = о задача решена точно, а при р ф 0 приближенно (в рамках использования плоского течения типа простой волны ). Ниже время tf может быть любым. Для tf = то точное решение методом неопределенного контрольного контура [3] найдено для всех р. Здесь под точным решением понимается сведение исходной задачи построения оптимальной траектории поршня к численному решению нескольких задач одномерной нестационарной газовой динамики методом характеристик (МХ). В одной из решаемых МХ задач известно распределение параметров на концевом участке экстремальной (7 -характеристики,  [c.311]

Установлено, что известное решение [1, 2], полученное для неоднородных потоков и дающее гладкий оптимальный контур, в подобных случаях должно быть заменено решением, при котором образующая оптимального тела содержит не менее одного излома. Конфигурации такого типа не могут быть исследованы с помощью перехода к контрольному контуру. Поэтому для получения необходимых условий экстремума применен общий метод множителей Лагранжа в форме, развитой в [3-5.  [c.534]

В этом методе вся область течения D теплоносителя (контур АЭУ) разбивается на конечное число М ячеек - контрольных объемов - так,  [c.93]

Рз2 = os (z , Ут)- Известно, что из этих девяти уравнений независимыми являются только три [72]. Поэтому из двенадцати уравнений (5.20) и (5.21) независимыми являются только шесть. Из этого следует, что матричное уравнение замкнутости контура позволяет получить большее число уравнений, чем это требуется для определения положений звеньев механизма. Наличие избыточных уравнений можно отчасти отнести к преимуществам метода, а не к его недостаткам. Выбрав из двенадцати уравнений шесть независимых, остальные шесть уравнений можно использовать как контрольные.  [c.125]


Схема типа Л2а представляет собой удвоенную схему типа Л/а. Контролируя диаметр изделия в двух сечениях, она обеспечивает соблюдение предельных контуров изделия (в осевом сечении), ограниченных полем допуска, но не определяет величины и направления конусности. Эта схема пригодна в том случае, если допуск на конусность определяется допуском на диаметр. Принцип контроля по этому методу положен в основу некоторых контрольных приспособлений и автоматов [7].  [c.264]

Модель крыла прямоугольной формы имела те же размеры, что и в примере к работе 4.1.1 6=0,1 ж /=0,9 м А=0,012 м. Как было отмечено, при таких размерах модели загромождение рабочей части для угла атаки а=15° составляет примерно 4%. В этом случае влияние границ потока на профиль в центральном сечении практически исключено. Таким образом, в пределах границ воздушного потока трубы с открытой рабочей частью выполняется условие, позволяющее при применении метода импульсов перейти от замкнутого контура к двум контрольным сечениям.  [c.182]

Независимо от [6] аналогичный вывод как результат попытки решения сформулированной выше вариационной задачи в рамках уравнений Эйлера и метода контрольного контура был установлен в [8, 9. Там же для совершенного газа с я = Л ъ плоскости Voq J построены кривые Л(Уоо5Сг) = О и обнаружено, что в зависимости от Voo это уравнение (относительно а) имеет от одного до трех корней. Кроме того, оно выполняется в тривиальном случае а = о оо, где а - угол Маха. Этот корень отвечает клину с г = 0.  [c.466]

Пусть оптимальная конфигурация на рис. 1 не имеет внутренних изломов. Тогда решение можно, как и нри отсутствии контактного зазрыва [1, 2], провести методом контрольного контура. Взяв на ас, аН и сЬ за независимую неременную ф и учтя, что в т значение фт = фа  [c.536]

При знаке равенства (т.е. при уь > Уд) оно совпадает с условием (2.3), также нолученным методом контрольного контура. Естественность, совпадения условий на п6 п в точке Ь с условиями, нолученными ранее, очевидна. В силу сверхзвукового характера течения, участок кЬ, как и любой концевой участок тела, должен быть оптимальным, причем так как тангенциальный разрыв проходит выше точки п, то его построение проводится методом контрольного контура.  [c.541]

Для решения задачи о головной части профиля или тела вращения, имеющей минимальное сопротивление при произвольном задании длины и концевого поперечного размера Ю. Д. Шмыглевский (1958, 1960) применил метод контрольного контура. Им были получены необходимые условия экстремума, из анализа которых следовало, что этим методом решение задачи можно найти лишь в некоторых частных случаях в случае плоского течения эти частные решения соответствуют полученным Г. Г. Черным (1950).  [c.180]

Информацию, необходимую для построения при р ф О или So ф onst концевых участков оптимальной траектории в схемах рис. 1, и г, получим, как упоминалось, методом неопределенного контрольного контура (МНК). Для этого, согласно (1.9), выразим А через интеграл по пока неопределенному, по фиксированному контрольному контуру alf. Интеграл по части контура, лежащей ниже (7 -характеристик или ас, при варьировании траектории не изменяется. Поэтому при решении вариационной задачи важен лишь его отрезок If. Если If в плоскости 0ж задать уравнением х = х(ф) и его следствием х = х (ф) то для А с учетом сказанного получим  [c.325]

ТИТОВЫХ пятен определяется визуально на световом экране в отраженном свете по характерному полуметаллическому блеску, в спорных случаях магнетит отличается от биотита путем расщепления детали. Биотит при этом приобретает более светлую и коричневую окраску, магнетит остается черным. Площадь пятен проверяется на сетчатом экране при размерах клетки 1 мм. Размеры круглых отверстий контролируются калибрами или оптическим методом на проекторе. Формы и размеры контура детали в целом и отдельных отверстий, а также правильность размещения отверстий проверяются одним из двух оптических методов с помощью инструментального микроскопа путем замера координат отдельных точек либо с помощью проектора путем проектирования изображения детали на тщательно вычерченный шаблон, масштаб которого соответствует увеличению, принятому при контроле данного изделия. На шаблоне непосредственно наносятся по обе стороны каждого контура границы полей допусков. Метод проектора и шаблона отличается большей наглядностью контроля и большей скоростью, но требует большой работы по предварительному изготовлению контрольных шаблонов — экранов, отдельных для каждого изделия. Метод инструментального микроскопа более универсален, и микроскоп всегда готов к действию, но измерения отнимают больше времени и результаты ненаглядны, они получаются после обработки ряда отсчетов, погрешности заметить труднее.  [c.189]


Для разметк и контроля фигуры ручья в плане (по плоскости разъема и на дне ручья) применяют контурные шаблоны. На этих же шаблонах иногда фиксируют линии для участков ручья, а также наносят контуры в глубину , т. е. линии, соответству-юш,ие внутренним углам ручья, которые получаются от пересечения различных кривых поверхностей и плоскостей фигуры. Кроме сбш,его контурного шаблона при сложной фигуре применяют также контурные шаблоны на отдельные элементы. Для проверки профиля ручья в продольной и поперечной плоскостях применяют профильные шаблоны, а для заточки фрез контршаблоны. Профильные шаблоны в зависимости от сложности профиля изготовляют для нескольких сечений. Профильные шаблоны могут быть обш,ие для заданного сечения ручья и поэлементные для проверки профиля отдельных участков. Число шаблонов зависит от сложности профиля и постоянства сечения ручья в зависимости от его длины. Метод обработки влияет на необходимое количество шаблонов. При обработке ручья на копировальных стайках требуется меньшее количество шаблонов, чем прн обработке на фрезерном станке. Для проверки отдельных переходов применяют иногда вспомогательные шаблоны. Допуск на изготовление шаблона принимается от /3 до /5 допуска на изготовление ручья. Ручей, соответствующий размерам штампуемой детали, изготовляют обычно в обеих половинках штампа, поэтому обе половинки не должны иметь перекосов. Смещение ручьев верхней половинки штампа по отношению к нижней допускается в пределах 0,05—0,25 мм в зависимости от размера и требуемой точности поковки. Отсутствие смещения достигают тем, что всю механическую, электроимпульсную или электрохимическую обработку ведут относительно постоянных баз, которыми являются две взаимно перпендикулярные боковые стороны кубика. Эти поверхности служат также базой при установке штампа на молоте. Базовые поверхности (контрольный угол) обрабатывают на передней и одной из боковых сторон под углом 90° 5 на высоте 60— 100 мм.  [c.243]

Такой метод метрологического обеспечения производства весьма сложен, трудоемок и значительно удлиняет цикл ТПП. В настоящее время на технологическую подготовку производства затрачивают несколько млн. чел.-ч, из которых на создание плазово-шаблонной оснастки и контрольно-макетных средств падает около 12—20%. Эти цифры достаточно убедительно говорят о том, что одной из центральных проблем ТПП остается проблема совершенствования методов связанного воспроизведения форм и размеров изделий и увязки технологической оснастки. Пути решения этой проблемы заключаются не только в автоматизации и механизации производства плазово-шаблонной оснастки, но и в создании принципиально новых методов изготовления технологической оснастки с использованием бесплазовых и безмакетных методов ее увязки. Очевидно,, что такие методы должны базироваться на математическо.м моделировании поверхностей и программной обработке оснастки. А средствами монтажа и контроля должны являться лазерные и оптические приборы, системы, и измерительные устройства, способные не только обеспечить идентичное воспроизведение базовых поверхностей и осей, но и взаимозаменяемость конструктивных элементов по наружным контурам, стыковым поверхностям и выводам внутренних коммуникаций изделий.  [c.8]


Смотреть страницы где упоминается термин Метод контрольного контура : [c.167]    [c.473]    [c.541]    [c.547]    [c.555]    [c.163]    [c.73]    [c.220]   
Смотреть главы в:

Аналитические исследования динамики газа и жидкости  -> Метод контрольного контура



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте