Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задачи краевые в плоской определение

В заключение остановимся еще на одном вопросе. Выше были сформулированы краевые задачи для бигармонического уравнения. В,отдельных случаях, например в случае второй основной задачи, при плоском состоянии, постоянные Ламе не входят в краевое условие. Это обстоятельство дает основание предположить, что они вообще не оказывают влияния на искомые напряжения. Однако такое утверждение является справедливым лишь для односвязной области. Дело в том, что в случае многосвязных областей для разрешимости соответствующих краевых задач необходимо ввести в решение определенные слагаемые, уже, как правило, содержащие эти постоянные. Поэтому окончательное решение все же оказывается зависящим от упругих постоянных. Подробно этот вопрос рассматривается далее на основе аппарата теории аналитических функций.  [c.283]


Приняты следующие краевые условия. В первой, четвертой и пятой сериях поверхности ротора свободны. Во второй и третьей сериях введены одна и две плоскости симметрии соответственно. Равномерное растяжение реализовано путем запрещения перемещений торцов ротора (цилиндра, пластины) и задания постоянной температуры t = —100 °С). На поверхностях трещин нагрузка отсутствовала. В осесимметричных задачах запрещалось перемещение одного узла (в вершине трещины) по оси вращения г, а в плоских задачах запрещались три перемещения. Сетка в зоне конструкционных концентраторов выполнялась достаточно подробной для определения распределения напряжений в зоне концентратора. В этих расчетах определялись коэффициенты интенсивности напряжений К и компоненты У-интеграла. Для примера в табл. 2.6 и рис. 2.4 даны результаты только для первой серии. Далее отметим особенности основных серий расчетов.  [c.98]

Для определения поля напряжений в однонаправленно-армированном пластике при нагружении в направлении армирования в качестве расчетной модели будем пользоваться повторяющимся элементом структуры материала. Термин повторяющийся элемент означает, что составной материал образуется из геометрически одинаковых элементов, подвергающихся одинаковым механическим воздействиям. В случае осевого нагружения в направлении армирования с некоторым нарушением строгости разделения армированного пластика на повторяющиеся элементы в целях упрощения расчетов воспользуемся расчетной моделью, показанной на рис. 4.1. В этом случае плоская краевая задача решается в квадратурах, и для определения напряжений, возникающих в полимерном связующем, имеем следующие выражения  [c.115]

Физическая теория дифракции метод краевых волн. Рассматривая результаты строгого решения задачи о падении плоской волны на клин, мы уже видели, что кроме геометрооптического поля (падающая и отраженная волны, тень), переходных зон между ними, описываемых функцией Френеля, существуют еще цилиндрические волны от ребра клина. Они проявляются и в освещенной, и в теневой областях. Приближение Кирхгофа, т. е. физическая оптика, тоже дает волны от ребра, но как оказывается, очень неточно. Нужна была какая-то дополнительная идея, позволяющая исправить результаты физической оптики. Эта уточняющая приближение Кирхгофа мысль состоит в том, что при определении поля вдали по току на металле кроме тока в геометрооптическом приближении в (22.1) нужно учесть го/с, обусловленный дифракцией. Таким образом,  [c.244]


Определение компонент напряжений и перемещений в полубесконечном теле при плоской деформации с помощью плоских гармонических функций. Как показал автор ), компоненты напряжений и перемещений в плоско деформированном полубесконечном теле из упругого сжимаемого (или несжимаемого) или чисто вязкого материала, нагруженного на граничной плоскости заданными распределенными напряжениями — нормальными Oy=f x) либо касательными Тхг/ = / (л ) — можно определить путем решения первой краевой задачи для плоской гармонической функции. Хотя при определении формул для напряжений можно использовать функцию напряжений F x,y), мы убедимся, что их можно также определить с помощью плоских гармонических функций, не прибегая к бигармонической функции(л , ).  [c.263]

Рассмотрим теперь постановку плоских задач в напряжениях. Для определенности рассмотрим случай плоской деформации случай обобщенного плоского напряженного состояния исследуется совершенно аналогично. Соответствующая краевая задача содержит уравнения равновесия (2.67), граничные условия (2.70) и условия сов.местности Сен-Венана (2.61), которые с учетом выражения для  [c.59]

В случае регулярного распределения волокон определение напряженно-деформированного состояния структурных элементов монослоя при поперечном нагружении сводится к решению плоской краевой задачи для двухфазной двояко-периодической среды. Решение такой задачи позволяет установить поле напряжений в любой точке полимерного связующего по зависимостям следующего вида [19]  [c.292]

Второе допущение, сделанное при разработке модели, проявляется в том, что коэффициент интенсивности напряжений по координате Хи связанный с фронтом трещины, можно аппроксимировать соответствующей функцией, определенной в условиях плоской деформации на пластине, содержащей краевую трещину длиной L xi) (равномерной), причем пластина подвергается воздействию равномерных изгибающего момента М х ) и растягивающего усилия jV(x i), приложенных вдали от места расположения трещины (рис. 1( )). Это допущение позволяет выразить N xi) и М хх) через неизвестные функции gi и g2 из уравнений (1) и (2), которые после этого решаются непосредственно. Снова следует подчеркнуть, что эти два достаточно серьезных допущения позволяют свести практически неразрешимую трехмерную задачу к сравнительно простой задаче о пластине или оболочке.  [c.248]

Дополняя граничные условия в начальной плоскости условиями излучения на бесконечности, получаем краевую задачу для определения среднего поля плоской волны.  [c.244]

Изложенная методика решения задачи об установившихся колебаниях прямоугольника позволяет дать полный анализ как структуры спектра в рассматриваемом диапазоне частот, так и форм колебаний. Конкретные расчеты, результаты которых для спектра собственных частот представлены на рис. 63, выполнены для материала с коэффициентом v = 0,248 (плоская деформация), что соответствует значению v = 0,329 для плоского напряженного состояния. Для тонкой пластинки из такого материала (v = 0,329) в работе [245] приведены обширные экспериментальные данные. Частоты, лежащие в центральных участках плато (см. рис. 63), заключены в интервале 1,4300 < < 1,4333 независимо от геометрических размеров прямоугольника при L > 2. Для L < 2 при движении вдоль плато частоты изменяются в большем диапазоне. Если ориентироваться на данные при L > 2, то, принимая для частоты краевого резонанса значение = 1,4311, находим, что эта величина всего на 0,5% отличается от определенной экспериментально.  [c.187]

Как отмечалось при рассмотрении задачи для конечного прямоугольника, нераспространяющиеся моды с комплексными постоянными распространения играют решающую роль в существовании явления краевого резонанса. Естественно, что рассмотрение полубесконечного волновода при различных условиях возбуждения должно доставить дополнительную важную информацию об этом явлении. Именно это привело к появлению ряда работ, в которых явление краевого резонанса изучалось в полубесконечных телах. Кроме работ [281, 282] плоский случай полубесконечного волновода подробно рассмотрен в работе [158] в связи с решением задачи об отражении первой распространяющейся моды от свободного торца. В работе [158] приведено упрощенное соотношение для определения частоты краевого резонанса. При этом используется лишь одна нераспространяющаяся мода, соответствующая наименьшему по модулю комплексному корню уравнения Рэлея — Лэмба. Данные, полученные из такого соотношения, находятся в хорошем согласии с результатами работы [281], полученными с учетом большего числа нераспространяющихся люд.  [c.264]


Рассмотрим резонатор, образованный круглыми плоскими зеркалами и заполненный неоднородной усиливающей средой, характеризующейся комплексным пользователем преломления п (г) (цилиндрическая симметрия задачи). Выбор такой геометрии резонатора для этой задачи определен тем, что во-первых, большинство конструкций газового лазера имеет цилиндрическую симметрию во-вторых, для этой симметрии методом дифференциальных уравнений нами уже получено аналитическое решение АР, что дает возможность проверки метода интегральных уравнений. В дальнейшем мы покажем, что полученные интегральные уравнения для плоского АР легко трансформировать на резонаторы произвольной геометрии. Исходным будем считать уравнение (2.73) этого параграфа, которое описывает поле заданного резонатора. Взамен этого дифференциального уравнения мы должны получить интегральное уравнение. Как известно, в случае вакуума п = 1) при краевых условиях Кирхгофа интегральное уравнение имеет вид  [c.98]

ГОСТИ И механика разрушения. В гл. 1 содержится обзор этих методов в контексте общих краевых задач, которые могут относиться к любой из названных областей или к ним всем. Остальные главы посвящены методам граничных элементов в механике твердого тела. В гл. 2 дается обзор сведений из теории упругости, которые затем постоянно используются в остальной части книги. В гл. 3 вводится решение Фламана для линии сосредоточенных сил, действующих на границе полуплоскости, и для этого случая разрабатывается простой метод граничных элементов. Цель состоит в том, чтобы показать, как математическое решение элементарной задачи может быть преобразовано в вычислительную технику для решения более сложных проблем. В гл. 4 и 5 построены два непрямых метода граничных элементов для плоских задач. Идея прямых методов (эта терминология разъясняется в гл. 1) развивается в гл. 6 с помощью скорее физических, чем математических соображений. В гл. 7 иллюстрируются некоторые обобщения методов граничных элементов и технические приемы, позволяющие увеличить точность решения. Некоторые из этих приемов общие, а другие специально созданы для определенных классов задач. Особое внимание уделяется тому, как для решения этих задач строятся вычислительные программы. И наконец, в гл. 8 даны примеры приложений методов граничных элементов в горной геомеханике и инженерной геологии. Эти примеры подобраны таким образом, чтобы проиллюстрировать ту помощь, которую оказывает метод граничных элементов, облегчая понимание физических процессов.  [c.8]

Многие важные практические проблемы в науке и технике сводятся к математическим моделям, которые принадлежат классу задач, известных как краевые задачи. Для любых краевых задач характерно наличие некоторой области R, лежащей внутри границы С. Реальная задача в области R моделируется дифференциальным уравнением в частных производных, решение которого отыскивается при определенных ограничениях — условиях, заданных на границе области. Если область R трехмерная, то С представляет собой ограничивающую ее поверхность в двумерных задачах R—плоская область, а С—ограничивающий ее контур.  [c.9]

Методики определения искомых величин, принятые в энергомашиностроении [142, 174], опираются на известное решение классической задачи Ляме о полом цилиндре, нагруженном равномерным давлением по внутренней и внешней поверхностям. В этом случае напряженное состояние диска предполагается плоским, осевые деформации и напряжения — малыми или пренебрежимо малыми, остальные компоненты тензора напряжений — равномерно распределенными по толщине диска, и предположения справедливы для дисков с небольшими осевыми размерами ступицы, когда радиальные деформации превалируют над изгибными. Однако применение удлиненных лопаток последних ступеней потребовало создания дисков со значительными осевыми размерами ступицы. Для таких дисков характерны большие изгибные деформации центральной втулки и существенная неравномерность радиальных и тангенциальных напряжений в осевом направлении. В этом случае результаты, полученные по формулам плоской задачи, не отражают действительно возникающего НДС в диске. К тому же использование формул Ляме для определения напряжений на поверхности соприкосновения диска с валом возможно лишь при одинаковой длине сопрягаемых цилиндров и дает удовлетворительный результат в средней части зоны контакта, на достаточном удалении от торцов диска, где можно пренебречь влиянием краевого эффекта [119].  [c.208]

Как известно (см. первую главу), основные граничные задачи плоской теории упругости для тел с разрезами сводятся к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. В некоторых частных случаях граничных контуров 70, 95] (круговая граница, бесконечная прямолинейная граница, система коллинеарных разрезов) возможно понижение порядка этой системы уравнений, что позволяет более эффективно находить ее численное решение. В данной главе (см. также работы 59, 60]) получены модифицированные таким образом сингулярные интегральные уравнения, когда в рассматриваемой области имеется прямолинейная конечная или полубесконечная треш,ина. (Случай конечной прямолинейной треш,ины рассмотрен в работах [58, 104].) Указанный подход, когда граничное условие на прямолинейной треш,ине выполняется тождественно, позволяет не только эффективнее находить численное решение задачи, но и сравнительно просто изучать действие сосредоточенных сил и разрывных нагрузок на берегах трещины, а также рассматривать краевые разрезы. Решение задач для областей с прямолинейной тре-Ш.ИНОЙ представляет особый интерес в механике разрушения (определение /С-тарировочных зависимостей для опытных образцов с трещинами, развитие трещин около концентраторов напряжений).  [c.102]


В случае регулярного распределения волокон определение напряженно-деформированного состояния структурных элементов однонаправленно-армированного пластика при поперечном нагружении сводится к решению плоской краевой задачи для двухфазной двоякопериодической среды. Такое решение при помощи функций напряжений в виде рядов получено в [13]. Это решение позволяет установить поле напряжений в любой точке полимерного связующего по зависимостям следующего вида  [c.117]

Однако Стокс показал также, что аналогичные краевые задачи для плоских, ползущих течений, определенные соотношениями (12.4), (12..5а) и (12.6), решения не имеют ). Этот парадокс Стокса будет разрешен в п. 5, 6 путем более тщательного исследования течения при больших радиусах шара  [c.338]

При исследовании оболочек нулевой кривизны и пологих оболочек, срединная поверхность которых изометрична плоской пластинке, нередко за вспомогательное принимается состояние пластинки, что упрощает построение ядер, но вместе с тем меняет и их структуру. В последнее время выдвинута идея о применении фокусированных ядер, т. е. быстро затухающих вспомогательных состояний, для улучшения сходимости вычислительного процесса (Н. А. Кильчевский, 1960 Н. А. Кильчевский, X. X. Константинов и Н. И. Ремизова, 1966). Пока же весь этот круг вопросов характеризуется различными постановками задач, выдвижением новых способов и отсутствием конкретного опыта, добываемого прж решении задач приведения до логического конца, т. е. до определенной системы двумерных уравнений. Наибольший интерес представляет решение задач, при которых напряженное состояние оболочки должно быть найдено при помощи уравнений теории упругости (например, краевые эффекты типа Сен-Венана, состояние около сосредоточенной нагрузки, около фронтов распространения возмущений и т. д.).  [c.265]

В методе годографа С. А. Чаплыгина [108] в качестве независимых переменных рассматриваются компоненты скорости. В этих переменных плоские потенциальные течения описываются линейными уравнениями, однако соответствующие краевые задачи оказываются линейными лишь для узкого класса течений с заранее известной областью определения в плоскости годографа (обтекание клина, струйные течения). И все же метод годографа продолжает использоваться в газодинамике как при качественных исследованиях, так и при решении задач численными методами.  [c.28]

Уравнения (20.44) и (20.45) эквивалентны исходной краевой задаче, математически эквивалентной уравнениям (20.38) — (20.40), если выполняются указанные выше условия. Но теперь для решения задач (20.44) и (20.45) требуется определить лишь функции е Х, Х2,1) и хту,[хи Х2,1), т. е. размерность задачи уменьшена на единицу. Сохраняя в бесконечных системах уравнений (20.44) или (20.45) операторы только до определенного порядка, будем получать усеченные системы— гиперболические аппроксимации. Это эквивалентно сохранению всех членов до определенной степени [2.521 (1961). Например, из уравнений (20.44) в первом приближении следует одномодовая гиперболическая аппроксимация — обобщенное плоское напряженное состояние  [c.140]

Сформулируем простейшую краевую задачу для определения температурного поля в плоской стейке. Условия задачи должны содержать уравнение теплопроводности в форме  [c.204]

Теоретической основой постановки экспериментальных исследований для многочисленных механизмов, работающих в масляной среде, является контактно-гидродинамическая теория смазки. Контактно-гидродинамический режим смазки является типичным для условий работы зубчатых и фрикционных передач, подшипников, катков и других механизмов. Основная задача теории заключается в определении контактных напряжений, геометрии смазочного слоя и температур при совместном рассмотрении уравнений, описывающих течение смазки, упругую деформацию тел и тепловые процессы, протекающие в смазке и твердых телах. Течение смазки в зазоре описывается уравнениями, характеризующими количество движения, сплошность, сохранение энергии и состояние. Деформация тел определяется основными уравнениями теории упругости. Температурные зависимости находятся из энергетического уравнения с использованием соответствующих краевых условий. Плоская контактно-гидродинамическая задача теории смазки решалась с учетом следующих допущений деформация ци-лидров рассматривалась как деформация полуплоскостей упругие деформации от поверхностного сдвига считались малыми для анализа течения смазки использовалось уравнение Рейнольдса при вязкости смазки, явля-  [c.165]

Подобное исследование приводит к необходимости решения краевой задачи теории упругости в сложной области, которое может быть осуществлено в точной постановке лишь для некоторых идеализированных случаев. Одной из традиционных идеализаций является предположение о неограниченности области, в которой расположены дефекты. Методы определения напряжённого состояния упругих тел вблизи внутренних концентраторов напряжений в виде систем трещин, разрезов и тонких включений изложены в монографиях Н.И. Мусхелишвили [107], Г.Я. Попова [115], Т.Н. Савина [125]. Случаи, когда дефекты расположены вблизи границы упругого тела, не могут рассматриваться в рамках упомянутой выше идеализации. В.В.Можаров-ским и В.Е. Старжинским [104] предложен метод решения плоской контактной задачи для полосы, дискретно спаянной с основанием (имеющей конечное число разрезов на границе их раздела). Система круговых отверстий, расположенных вблизи границы полуплоскости, рассмотрена в [125]. Однако алгоритмы решения задач, развитые в [104, 125] и некоторых других работах, достаточно сложны для конкретных реализаций (особенно в случае исследования смешанных задач теории упругости) и, кроме того,  [c.205]

В разд. III, наибольшем по объему из всех разделов этой главы, изучаются задачи о плоской конечной деформации. Здесь поясняются некоторые подробности методов решения. Краевые задачи в перемещениях можно решать чисто кинематически, не пользуясь ни развернутыми гипотезами относительно связи напряжений с деформациями, ни даже уравнениями равновесия. В краевых задачах в напряжениях и в смешанных краевых задачах необходимо постулировать определенные зависимости, описывающие поведение материала под действием касательных напряжений. Для простоты мы ограничимся исследованием упругого сдвига или квазиупругого поведения пластических или вязкоупругих материалов. Основы теории разд. III заимствованы из работы Пиикина и Роджерса [26].  [c.290]

В практических расчетах элементов конструкций на прочность и устойчивость широко применяются так называемые прикладные теории оболочек. При их создании обычно принимают дополнительные упрощения, которые позволяют получить простые аналитические решения задач. Однако эти теории могут быть использованы для расчета только определенного класса конструкций. Например, рассмотренная в этой главе теория краевого эффекта применяется для определения напряжений лишь на узких участках оболочек, близких к цилиндрическим. Теория пологих оболочек используется при расчете элементов, геометрия которых мало отличается от плоских пластин. С помощью полубезмомент-ной теории удается получить простые формулы для расчета тонкостенного цилиндра, когда изменяемость деформированного состояния по окружности существенно выше, чем вдоль образующей. Теория мягких оболочек применяется при расчете конструкций весьма малой толщины, в тех случаях когда можно не учитывать изгибающие моменты.  [c.146]


В настоящей главе предварительно рассмотрен ряд упрощений, применимых ПРИ определении нестационарных температурных полей плоских тел на основе выподненных решений, и изложены методики оценок соответсхвующих погрешностей, а затем проведен анализ исходных допущений, сделанных при постановке и решении линейной краевой задачи теплопроводности.  [c.464]

Однако этим не исчерпывается значение краевых задач для слоя резины с жесткими лицевыми поверхностями. Так, в ряде работ (В. И. Малый, В. Л. Бидерман и др.) применялся приближенный метод определения напряженного состояния армирующих слоев плоских ТРМЭ, основанный на раздельном решении краевых задач для резиновых и металлических слоев.  [c.63]

Определение критических чисел из трансцендентных уравнений (6.14), (6.15) требует громоздких вычислений, поэтому в первых исследованиях устойчивости равновесия слоя с твердыми границами использовались приближенные методы решения краевой задачи для нейтральных возмущений. Впервые значения минимального критического числа Рэлея были найдены Джефрисом с помощью метода конечных разностей [ ], а затем, более точно, — методом Фурье Р]. Исследование границы устойчивости на основе точных характеристических уравнений было проведено Лоу [ ] и особенно обстоятельно — в известной работе Пеллью и Саутвелла [ ] ). В последней работе был также предложен вариационный метод нахождения критических чисел Рэлея для плоского слоя. Дальнейшее развитие вариационный метод получил в работах Чандрасекара (см. [ 2]). Весьма эффективным оказался также метод Галеркина (см. 7 и 8).  [c.43]

Таким образом, амплитуды возмущений ф(л ) и 0(л ) определяются из системы обыкновенных линейных однородных уравнений с однородными граничными условиями. Краевая задача (43.11) — (43.13) является характеристической нетривиальное решение существует лишь при определенных значениях параметра X. Декременты находятся как собственные числа краевой задачи соответствующие собственные функции ф и 0 определяют структуру характеристических возмущений скорости и температуры. Собственные значения X зависят от параметров — чисел Грасхофа О и Прандтля Р, а также от волнового числа к. Поставленная краевая задача является несамосопряженной, и поэтому ее собственные числа X, вообще говоря, комплексны X = Хг + 1Х . Вещественная часть Хг определяет скорость затухания или нарастания возмущений. Мнимая часть Х дает частоту колебаний при О возмущения распространяются в потоке в виде плоских волн с фазовой скоростью с = Х к.  [c.304]

Рассматривалась задача определения направления и величины скорости плоского подземного потока по переносу импульса индикатора приближенное решение для плоско-радиальной фильтрации было дано Э. А. Бондаревыми В. Н. Николаевским (1961). Ряд решений (прй постоянном коэффициенте диффузии) предлагался Е. В. Тес люком, Г. Ф. Тре-биным и Ю. М. Островским (1963), а также В. И. Абрамовой и Г. П. Цыбульским (1962). Последние авторы выполнили с помощью ЭВМ также анализ постановки линейных и плоско-радиальных краевых задач позже ими было дано точное аналитическое решение (операционным методом) для плоско-радиальной задачи конвективной диффузии.  [c.646]

Под плоской задачей теории упругости понимают плоскую деформацию упругой среды, параллельную заданной плоскости (деформация длинного цилиндра со свободными основаниями), либо плоское ее напряженное состояние (деформация тонкой пластинки силами, лежащими в ее плоскости). Определение упругого равновесия в этих случаях сводится к решению краевых задач для бигармонического уравнения. К бигармоничес-скому же уравнению сводятся задачи равновесия упругих пластинок, подверженных нормальной нагрузке. Плоские задачи и задачи об изгибе пластинок в математической их формулировке весьма сходны между собой, сходны и методы их решений. Поэтому целесообразно совместное рассмотрение этих двух типов задач.  [c.40]

Задачей, допускающей эффективное точное решение, является задача о расклинивании бесконечного тела неподвижным клином. Г. И. Баренблатт (1959) получил решение такой задачи для клина постоянной толщины. В отличие от этого случая, когда положение точек схода известно, для клина с закругленной передней кромкой требуется еще определение положения точек схода поверхности трещины с клина. Г. И. Баренблатт и Г. П. Черепанов (1960) исследовали вопрос распространения трещины перед клином с малым закруглением и клином, где форма закругления задается по степенному закону. Здесь проведено исследование случая куло-нова трения, действующего на щеках клина. И. А. Маркузон (1961) сделал дальнейший шаг в исследовании проблемы расклинивания хрупких тел. Он получил зависимость длины трещины от длины клина и исследовал влияние однородных сжимающих или растягивающих напряжений на бесконечности на длину свободной трещины в задаче о расклинивании бесконечного тела клином конечной длины. Задачи расклинивания рассматривались также в работе Г. П. Черепанова (1962) в качестве примера приложения полученного им решения одной линейной краевой задачи Римана для двух функций к смешанным задачам плоской теории упругости.  [c.384]

Изэнтропические одно.мерные движения газа с плоскими волнами представляют собой одну из простейших моделей неустановившихся движений газа. Она наиболее богата как конкретными фактами, так и разнообразными до конца решенными задачами. Исторически на этой. модели отрабатывались не только. многие понятия и аналитические построения нестационарной газовой динамики, но также и алгоритмы численного расчета ее основных краевых задач. Условие изэнтропичности, конечно, является сильно ограничительным, так как оно не позволяет во всей общности рас-с.матривать движения с ударными волнами, в результате прохождения которых по газу энтропия меняется и, вообще говоря, становится переменной по частицам. Однако и здесь возможно искусственное моделирование сильных разрывов, на которые надо наложить определенные условия устойчивости (см., например, [6]).  [c.146]

Второе издание книги полностью переработано. В нем в отличие от первого издания более подробно изложены общие вопросы теорйи пластичности,, а также рассмотрены теория пластичности с анизо- тропным упрочнением, условие пластичности и теория пластичност для анизотропных материалов, напряженное состояние в шейКе образца при растяжении, новые методы построения действительной диаграммы деформирования, большие деформации и пластическая устойчивость цилиндрических и сферических оболочек, численные методы решения краевых задач плоской деформации и примеры йри-менения их, теория ползучести с анизотропным упрочнением, кратковременная ползучесть, использование критерия Треска—Сен-Венана, в решении задач установившейся ползучести, методы решения задач неустановившейся ползучести и примеры их применения, определение времени разрушения в условиях ползучести, вязкоупругость.  [c.3]

Развитие численных методов и применение современных ЭВМ сделало возможным определение эффективных параметров с помощью прямого математического эксперимента. В этом случае рассматриваются поля достаточно простой структуры, моделируются реализации неоднородного по проводимости поля и для каждой из Них решается численно краевая задача. Полученные результаты усредняются и вычисляется эффективная проводимость. Естественно, что такой путь сопряжен с рассмотрением лишь частных задач, весьма трудоемких, однако при достаточно малом по сравнению с размерами области масштабе корреляции дает возможность получить эффективную проводимость сильно неоднородных систем. В последнее время в связи с развитием методов теории протекания в физике твердого тела [38] решен численно целый ряд задач определения эффективной проводимости неоднородных плоских и пространственных решетчатых структур. Эти результаты, кстати, прекрасно коррелированные с теорией самосогласованного поля, частично приводятся в обзорах Эллнотта, Крумхансла, Лиса, Киркпатрика [32].  [c.108]


Смотреть страницы где упоминается термин Задачи краевые в плоской определение : [c.147]    [c.462]    [c.449]    [c.462]    [c.7]    [c.230]    [c.53]   
Механика сплошной среды. Т.2 (1970) -- [ c.481 ]



ПОИСК



I краевые

Задача краевая

Плоская задача



© 2025 Mash-xxl.info Реклама на сайте