Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочки Уравнения интегральные

Цилиндрическая оболочка постоянной толщины под действием кольцевой перерезывающей нагрузки. Этот пример рассмотрен в работе [3] с применением метода упругих решений и в работе [4] сведением дифференциального уравнения изгиба оболочки к интегральному. Случай нагружения является для расчета невыгодным, так как за счет резкого изменения сил и моментов по длине сходимость процесса ухудшается [4]. Вследствие симметрии рассматривается одна половина оболочки. Поскольку упругопластический расчет оказывается существенно сложнее упругого, в обоих решениях использованы упрощающие приемы. Примененные методы требуют задания краевых условий в перемещениях для участка длиной /т, ограниченного областью упругопластических деформаций. Поэтому из интервала интегрирования исключено нагруженное сечение с при-  [c.209]


Цилиндрическая оболочка постоянной толщины под действием кольцевой перерезывающей нагрузки. Этот пример рассмотрен в работе [12] с применением метода упругих решений и в работе [3] сведением дифференциального уравнения изгиба оболочки к интегральному. Случай нагружения является для расчета невыгод-  [c.127]

Основные преимущества такой системы координат заключаются в том, что при ее использовании не требуется вычисления интегралов типа интегрального синуса и в частном случае а = 0 уравнения для усеченной конической оболочки описывают цилиндрическую оболочку.  [c.230]

Уравнения равновесия. Одно из уравнений равновесия может быть составлено в интегральной форме — это сумма проекций на ось симметрии сил, приложенных к конечному участку оболочки рио. 3.5, а, б)  [c.129]

РАСЧЕТ НАПРЯЖЕННО-Д ФОРМИРОВАННОГО СОСТОЯНИЯ РУЛОНИРОВАННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ПУТЕМ СВЕДЕНИЯ ЗАДАЧИ К СИСТЕМАМ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ  [c.344]

Вращающаяся коническая оболочка линейно-переменной толщины с осевой силой Система интегральных уравнений Урал-1 60-120 15 1-3  [c.610]

Во всех задачах о пластинах или оболочках с трещинами, раскрывающимися по типу I, доминирующая часть ядер в (1) и (2), а именно члены с сингулярностью Коши / t — х) одинаковы. Ядра Фредгольма й, / (i,/=1,2) характеризуют особенности геометрии пластины или оболочки. В случае сквозной трещины в пластине интегральные уравнения (1) и (2) оказываются несвязны.ми, т. е. ki2 = О, Й21 = 0. В результате задачу о сквозной трещине в пластине можно решить отдельно для мембранных и для изгибающих нагрузок. Как будет показано ниже, в случае несквозной трещины эти уравнения оказываются связными за счет членов ст(л ) и т х) (которые также неизвестны). Например, для бесконечной пластины уравнения (1) и (2) можно выразить [2—4, 11] в следующе.м виде  [c.247]

Модель в виде линейных пружин, описанная в предыдущем параграфе, легко может быть приспособлена к изучению внутренних трещин, например таких, как на рис, 1(b), В этом случае исходные интегральные уравнения, описывающие сквозную трещину в пластине или оболочке, находящихся под воздействием мембранных или изгибающих нагрузок, те же, что и использованные ранее, и определяются формулами (1) и (2). Основное различие связано с выражениями, определяющими нагрузки <т(х) и m i ), которые эквивалентны напряжениям 022( i, О, хз), действующим в остаточных сечениях, через б и 0 или v(x) и ру(х ), представляющими линейное и угловое раскрытия трещины в плоскости приложения нагрузок (рис. 3), Пусть область внутренней трещины будет определена следующим образом  [c.252]


Из приведенного выше описания модели становится очевидным, что разработанная методика может быть использована при расчете коэффициентов интенсивности напряжений для любых пластин и оболочек, содержащих несквозные трещины, при условии что имеются интегральные уравнения, описывающие соответствующие задачи со сквозными трещинами. Кроме того, имеется надежное решение задачи о трещине в условиях плоской деформации, которое может быть надлежащим образом параметризовано. Итак, распространив этот метод на решение задач  [c.253]

Уравнения 2Л7) и (2.84) представляют собой систему двух нелинейных интегральных уравнений деформации гибкой пологой оболочки относительно двух неизвестных — силы и момента в цилиндрическом сечении [10, 29, 33]. Отметим следующие частные случаи [33].  [c.47]

Для расчета диска на прочность используют систему нелинейных интегральных уравнений (2.77) и (2.84). Расчет на прочность проводят на каждом шаге оптимизации (см. гл. 2 6). В большинстве случаев для учета восстанавливающего эффекта сил растяжения при оптимизации упругой линии меридиана диска достаточно использовать первое квазилинейное решение уравнений пологой оболочки в больших прогибах. Ниже дан один из примеров оптимизации при изгибе.  [c.210]

В методе интегральных спектральных представлений детерминистические операции на первом этапе, по существу, отсутствуют. После подстановки в исходные уравнения стохастических интегралов Фурье, представляющих случайные функции, необходимо выполнить операцию осреднения, в результате которой происходит переход к вероятностным характеристикам изучаемых полей. Нагрузка на оболочку выступает здесь как детерминированный параметр критическое значение этого параметра определяет точку бифуркации решения нелинейной задачи относительно статистических характеристик поля перемещений.  [c.220]

В книге излагается метод граничных элементов для решения линейных и не линейных задач изгиба тонких пластин и пологих оболочек произвольного очер тания. Получены системы сингулярных интегральных уравнений и сделан анали их ядер, пригодный для численной реализации. Предложен метод решения кон тактных задач теории пластин и мембран, включающий поиск неизвестной облас ти контакта.  [c.2]

Для реализации метода граничных элементов необходима матрица фундаментальных решений исходной системы уравнений. В линейных задачах теории упругости и теории пластин фундаментальные решения имеют простой вид, и поэтому метод здесь получил широкое распространение. Для пологих оболочек матрица фундаментальных решений определяется сложными громоздкими выражениями, а для пологой сферической оболочки выражается через специальные функции. Поэтому исследований по решению задач теории пологих оболочек методом граничных элементов мало. В связи с этим актуальной темой исследования является разработка методов граничных интегральных уравнений для решения линейных и нелинейных задач теории пологих оболочек, основанных на применении фундаментальных решений, которые определяются простыми аналитическими выражениями.  [c.4]

Применение метода граничных элементов часто осложняется отсутствием фундаментальных решений дифференциальных уравнений или громоздкими сложными выражениями, определяющими фундаментальные решения. В настоящем параграфе излагается итерационный процесс решения задач изгиба пологих оболочек в геометрически нелинейной постановке, основанный на применении фундаментальных решений задач изгиба и плоского напряженного состояния пластины. Приведены интегральные уравнения непрямого МГЭ. Система нелинейных дифференциальных уравнений в перемещениях (3.1.3) для оболочки постоянной толщины записывается в виде [24]  [c.72]


ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ ПРЯМОГО МГЭ ДЛЯ ГИБКИХ ПЛАСТИН И ПОЛОГИХ ОБОЛОЧЕК  [c.111]

Интегральные уравнения равновесия безмоментной теории. Применение к оболочкам вращения  [c.204]

Первое слагаемое правой части, под которым подразумевается аналитическая часть функции г(5 (S), будет в малой окрестности точки S = So давать напряженное состояние, отвечающее случаю, когда область G свободна от внешних поверхностных сил. Три последних слагаемых соответствуют загру-жению оболочки в точке S = So сосредоточенной силой и моментом. Чтобы убедиться в этом, воспользуемся интегральными уравнениями равновесия (16.26.8) и подсчитаем с их помощью R , Ry, R , Q , Q , Q , положив  [c.236]

Пусть срединная поверхность задается одним из трех векторных уравнений (13.6.2). Тогда решение однородных статических безмоментных уравнений, как было показано в 13.6, выражается через аналитическую функцию г(5 (S). Точкам полного эллипсоида, двухполостного гиперболоида или эллиптического параболоида соответствует вся плоскость комплексного переменного Полюсы комплексной функции напряжения имеют такой же смысл, что и для сферы в точке = So (So отлично от нуля и бесконечности) полюс не выше третьего порядка соответствует сосредоточенным силам и моментам, а полюсы выше третьего порядка дают сосредоточенные воздействия более сложной структуры в точках S = О и S такой же смысл имеют полюсы функций (S) и (S) соответственно. Интенсивность и направление силы и момента, входящих в состав сосредоточенного силового воздействия, можно определить с помощью комплексных интегральных уравнений равновесия. Для оболочек второго порядка они выводятся так же, как для сферы, при помощи равенств (16.26.1), (16.26.2). Опуская подробности, приведем эти уравнения  [c.242]

Обоснование схемы. Краевые задачи, предусмотренные п. (1) и (2), представляют собой обобщение задач Я и р, сформулированных в 20.12 различие заключается лишь в том, что в рассматриваемом случае они должны-решаться для оболочки с изломом % и что на А. в каждой задаче должны выполняться два условия сопряжения. Примем, что теоремы существования задач Р п р здесь формулируются так же, как и в 20.12, 20.13. Тогда можно утверждать, что обсуждаемая схема соответствует случаю, когда тангенциальное закрепление — жесткое, т. е. когда изгибания срединной поверхности невозможны, а следовательно, задача Р при любых, достаточно гладких правых частях уравнений и граничных условий имеет решения, зависящие от г констант с/ (s), а задача р имеет решение (единственное) тогда и только тогда, когда выполнены г интегральных требований. В рамках этогО предположения обоснование схемы построения приближения (s) превращается, в сущности, в повторение рассуждений 20.12. Опуская их, оста-. новимся только на следующем обстоятельстве.  [c.319]

Так как в упругопластической области исходные дифференциальные уравнения становятся нелинейными, а коэффициенты переменными, методы их решения существенно усложняются. Однако в данной работе применен способ разбиения интервала интегрирования на участки, в пределах которых коэффициенты уравнений считаются постоянными. При этом использование решения в матричной форме метода начальных параметров также дает существенное преимущество [11]. Поскольку соответствующая этому способу физическая дискретизация конструкций, состоящей из разнородных оболочек, пластин и колец, не отличается, по существу, от случая упругого расчета, то матричный метод расчета, изложенный в работе [9], и составленная на ого основе сомпактная программа расчета для ЭЦВМ оказываются полностью пригодными для упругопластического расчета составных конструкций из элементов оболочек, пластин и колец. Эффективность предлагаемого метода упругопластцческого расчета определяется не только этим удобством. Выполненные расчеты показа-, ли значительно более быструю сходимость последовательных приближений по сравнению с методами, основанными на замене дифференциальных уравнений интегральными [3]. Еще в большей мере, чем при упругих расчетах, сказывается экономичность предлагаемого метода расчета на Э1],ВМ по сравнению с методами численного интегрирования нелинейных дифференциальных уравнений. ,  [c.124]

Приведение ypaвнeни т. с рии упругих пологих оболочек к интегральному уравнени - ти < - Вольтерра в комплексной области впервые было выпол И Н. Векуа 35 .  [c.103]

В связи с задачами о термонапряженности с учетом температурных зависимостей упругих и дилатометрических свойств, а также пластических деформаций, развиваюш ихся во времени, была разработана их трактовка в интегральных уравнениях, позволившая использовать методы итерации (повторения) и средства вычислительной техники и тем самым получить решения при сложных конструктивно заданных граничных условиях и экспериментально определенных уравнениях состояния. На этой основе были разработаны способы расчета на прочность и ползучесть с учетом температурных градиентов дисков и лопаток газовых и паровых турбин, трубопроводов и фланцевых соединений, толстостенных корпусов и несущих оболочек и других неравномерно нагретых конструкций.  [c.40]

Результаты исследований в области теории малых упруго-пластических деформаций, а также обобщение теорем о работе сил упруго-пластических деформирующихся систем позволили рассмотреть предельные состояния конструкций и их элементов по критерию допустимых перемещений и допустимых нагрузок. Применение метода переменных параметров упругости и итерации для составления и решения соответствующих уравнений в ряде случаев в интегральной форме дало возможность решить большой круг конкретных задач расчета по предельным состояниям для брусьев, пластинок, дисков, оболочек, толстостенных резервуаров. Тем самым была найдена возможность использования резервов несущей способности детален и конструкций, связанных с уируго-нластическим нерераспределением напряжений и параметрами диаграммы деформирования материала.  [c.41]


Интересной представляется работа Б. Клосовича [190], являющаяся развитием идей В. Ольшака, где сформулировано уравнение, которому должна удовлетворять функция изменения модуля упругости в толстостенной концентрической неоднородной по радиусу сферической оболочке под внутренним давлением, при условии минимума некоторого интегрального критерия качества. Им же был рассмотрен случай, когда отыскивается неоднородность, обеспечивающая минимальное перемещение поверхности сферы.  [c.42]

При расчетах напряжений и деформаций в конструк1щях ВВЭР широкое применение находят методы теории оболочек и пластин, аналитические методы решения краевых задач в зонах концентрации напряжений, а также численные методы решения с применением ЭВМ (методы конечных элементов, конечных разностей, вариационно-разностные и граничных интегральных уравнений). Эффективность применения численных методов резко увеличивается, когда решаются задачи анализа термомеханической на-груженности сложных по конструкции узлов ВВЭР (плакированные корпуса и патрубки, элементы разъема, контактные задачи с переменными граничными условиями, элементы главного циркуляционного контура при сейсмических воздействиях).  [c.8]

Значительные возможности в использовании методов строительной механики в расчетах напряженных состояний осесимметричных несущих элементов ВВЭР открьшаются в связи с расширением применения вычислительной техники в практике проектирования. Матричная запись и решение соответствующих дифференциальных уравнений на ЭВМ позволили в компактной и единообразной форме при сравнительно небольших затратах машинного времени (измеряемого десятками секунд) получать распределение напряжений в таких сложных зонах корпусов реакторов, как фланцевое соединение главного разъема [9, 10, 12]. В таком расчете представляется возможным учесть ступенчатое изменение толщин, несовпадение средних радиусов оболочек, условия взаимодействия между элементами. Увеличение числа сопрягаемых элементов и уменьшение их высоты (до долей толщин) позволяет заменить сложный профиль в зоне сопряжения ступенчатым и получить напряжения, характеризующие концентрацию напряжений. Вводя в такие расчеты интегральные функции пластичности или переменные параметры упругости, можно получить данные о перераспределении напряжений в упругопластической области [12, 15].  [c.35]

Расчет напряженно-деформированного состояния рулоиировапной цнлянд-рической оболочки путем сведения задачи к системам интегральных уравнений /  [c.391]

Приводится методика решения задачи об упругой работе рулонированной-цилиндрической оболочки при действии внутреннего давления. Контактные взаимодействия в оболочке описаны с учетом сил трения и деформативности макрошероховатостей соприкасающихся поверхностей. Для предложенной расчетной модзли сформулирована система разрешающих интегральных уравнений, которая решается методом коллокации.  [c.391]

А А . .. Ап Uo, Ui Fo, 0 = Ui, U l, 0, 0 , причем A- = = A ( -f- -Й). Здесь в фигурных скобках вектор-столбец U dUldx, Q, М , Aj— обычная переходная матрица (см., например, [3]) участка балки между сечениями xj, Е — единичная матрица четвертого порядка, В — матрица, у которой единственный отличный от нуля элемент r i = к. Численное решение такой задачи не представляет трудности, когда число участков не слишком большое. Таким образом, можно сконструировать модель агрегата, где общ,ая рама представлена в виде комбинации небольшого числа простейших элементов тина балок, пластин, оболочек простейшего вида. К такой модели рамы прикрепляются элементы указанного выше типа. Комплексная функция действительного аргумента к (со) выбирается по данным экспериментального определения жесткостей подсистем в точках соединения их с рамой. Для определения с (р) по известному к (со) необходимо было бы решить интегральное уравнение. Здесь рассматривается простейший случай, когда с (р) задано и решение может быть получено в замкнутой форме или в виде зависимостей между основными безразмерными параметрами задачи.  [c.70]

Оболочка вращения произвольной формы с любыми распределенными нагрузками и произвольным температурным полем (осесимметричная задача). Пример — диище цилиндрического резервуара Система интегральных уравнений Стрела 10 60-200 160 1-2  [c.610]

Для других случаев концентрации напряжений используются в основном приближенные способы, основанные на применении соответствующих кинематических гипотез или численных методов (метод уттругих решений, конечно-элементный метод, метод интегральных уравнений и др.). Однако указанные способы применяют в основном в исследовательских, а не инженерных целях, поскольку решение многих задач для различных режимов эксплуатации в случае статического, и особенно циклического нагружения конструкций требует значительного машинного времени и большого объема исходной информации. Получаемые при этом результаты примени.мы для конкретных конструкций, материала и уровня нагрузок. Практика инженерных расчетов базируется в основном на применении задач теорий упругости пластин, оболочек и стержней или на использовании результатов прямого экспериментального изучения местных напряжений и деформаций. Последнее, как известно, применяется для весьма ответственных машин и конструкций в силу сложности и трудоемкости экспериментов по анализу процессов эксплуатационного нагружения.  [c.69]

Рассматриваемая задача представляет собой задачу о внутренней трещине, находящейся в сравнительно тонкостенном конструкционном элементе, для исследования которого применяют теорию пластин или оболочек. В обычной системе обозначений, принятой ниже и отнесенной к локальной системе координат, представленной на рис. 1, ui, U2 и Uz — компоненты вектора перемещений, Pi и Р2 — углы поворота нормали к нейтральной поверхности в плоскостях Х1Х3 и Х2Х3, Nij, Мц и Vi (i, j = 1,2) — результирующие мембранных усилий, момента и усилий поперечного сдвига. Принимаем также, что задача о сквозной трещине в пластине или оболочке поставлена и сведена к системе интегральных уравнений. В [11—16] принято, что неизвестными функциями интегральных уравнений являются производные перемещений поверхности трещины и углов поворота нормалей к нейтральной поверхности. Это является естественным следствием постановки задачи для пластины пли оболочки со смешанными краевыми условиями. В случае симметричной задачи о сквозной трещине в области —а <. Х <. а (расположенной в одной из главных плоскостей кривизны) пластины или оболоч-  [c.245]

В большинстве работ, посвященных теории больших прогибов, рассматриваются оболочки и пластинки постоянной толщины при упругих деформациях. В этих работах использованы вариационные методы (метод Бубнова—Галеркина, метод Ритца и др.) [76, 80, 1б4]. Для решения при нагрузках различного вида и граничных условиях необходим большой объем вычислений. Разложение функции прогиба в ряд и удержание ограниченного числа членов приводит к потере точности. Для расчета пологой оболочки переменной толщины при произвольной осесимметричной нагрузке следует применять численные методы. В настоящем параграфе алгоритм расчета строится на методе интегральных уравнений. Параметры упругости полагаются переменными, что позволяет в дальнейшем использовать это решение для рассмотрения упругопластического состояния материала диска.  [c.40]


Линеаризованные физически нелинейные задачи для гладких и ребристых оболочек. Учет приобретенной анизотропии на примере линеарнзапни физически нелинейных задач теории малых упруго-пластических деформаций при использовании метода переменных параметров упругости рассмотрен в [П. 3]. В этом случае связь между компонентами усилий и деформаций для гладких и ребристых оболочек можно представить в форме (I 20) гл. 4 Д.ЧЯ неоднородных анизотропных оболочек. В этих уравнениях коэффициенты упругости являются функциями напряженно-деформированного состояния. Прн решении данной нелинейной задачи методом переменных параметров упругости физические соотношения на каждом шаге линеаризации сохраняют форму (1.20) с постоянными коэффициентами упругости. Часть коэффициентов в эти.х соотношениях обращается в нуль, а вид других зависит от интегральных физических характеристик сечения (например, [П. 6]). Уравнения равновесия и геометрические завнснмостн, естественно, остаются одинаковыми для теории малых упруго-пластических деформаций н линейной теории неоднородных анизотропных оболочек.  [c.219]

В работе получены интегральные уравнения метода компенсирующих нагрузок и результаты решения задач изгиба ортотроп-ных и многосвязных пластин разработаны алгоритмы решения МГЭ задач изгиба пластин сложной формы, дано развитие методики определения предельных значений потенциалов для задач изгиба и плоского напряженного состояния пластины предложен способ вычисления расходящегося интеграла с особенностью типа при г->0, предложены итерационные процессы решения прямым и непрямым МГЭ линейнь(х и нелинейных задач теории пологих оболочек, основанные на применении фундаментальных решений задач изгиба и растяжения пластины постоянной толщи-  [c.4]

Если задан полюс комплексной функции напряжений г) (С), то можно подсчитать интенсивность несамоуравновешенной части соответствующего сосредоточенного воздействия, т. е. найти входящие в него силу и момент, при помощи интегральных уравнений равновесия. В 14.13 они были получены для произвольной оболочки. Перепишем их в виде равенств  [c.231]

Н. Карасевым и Ю. П. Артюхиным [16]. В ряде публикаций эффект поперечного обжатия интерпретируется как сминание некоторого поверхностного слоя (пусть даже фиктивного). Это сминаине может быть следствием шероховатости поверхности, реального обжатия материала пластины под штампам, если пластину рассматривать с позиции теории упругости,и т. д. Введение упругого слоя при рассмотрении контактных задач теории упругости предложено еще И. Я. Штаер-маном [20]. Такая модель обсуждалась И. А. Биргером при рассмотрении контакта стержней [6], пластин и оболочек [7], М, В, Блохом [8, 9, 10, 11 — для пластин и при осесимметричном контакте оболочек, Г. Я. Поповым [18] — при анализе интегральных уравнений контактных задач для тонкостенных тел.  [c.184]

Осесимметричный контакт сферических оболочек. Контакт оболочки с жестким шаром, радиус которого немного отличается от радиуса оболочки, рассмотрен в работе П. А. Лукаша, Н. М. Леонтьева [45] (1959) на основе теории Кирхгофа—Лява. Эта же задача решена В. А. Бондаренко [17], В. М. Толкачевым 169] опять-таки с помощью теории Кирхгофа—Лява. В статье [17] использован метод расчлеиеиня оболочки по границе зоны контакта с последующей стыковкой решений. В работе [69] задача сведена к решению интегрального уравнения для нормальной реакции. В этой же статье рассмотрен еще контакт двух оболочек. Контактная реакция в этом случае представляет собой погонные усилия, приложенные по кругу, внутри которого оболочки не касаются друг друга. Эта задача изучалась также в статье Ц. Десильва и П. Тзая [74]. Авторы строят решение для нормальной реакции которое априори обращается в нуль на границе зоны контакта. Физически это разумно, но математически некорректно [69], так как в рамках теории Кирхгофа—Лява не удается получить решение для нормальной реакции, обращающееся в нуль на границе зоны контакта.  [c.211]

В разд. 8.2 рассмотрено взаимодействие жестких штампов с тонкой круговой цилиндрической оболочкой по дугам окружности поперечного сечения. Дается подробное решение названной задачи от вывода исходного интегрального уравнения до численного расчета. Так как путь решения данной задачи является характерным для всех других контактных задач, следует на нем остановиться. На основе результатов гл. 6 записывается изгнбная поперечная деформация срединной поверхности оболочки в некоторой точке дуги окружности поперечного сечения от единичной сосредоточенной силы, приложенной в некоторой другой точке той же окружности. Иными словами, строится функция влияния, которая выполняет роль функции Грина при записи интегрального представления для из-гибиой деформации от произвольной нормальной погонной нагрузки, приложенной по дуге окружности поперечного сечения. П-ри записи такого представления существенную роль играет то, что главнаи часть функции Грина (логарифмическое ядро) записывается в явном замкнутом виде, остальная регулярная часть (регулярное ядро) записана в виде тригонометрического ряда. Сходимость такого ряда весьма хорошая (как 1/п при больших п), она исследована в гл. 6. Найденная нагибная деформация оболочки приравнивается разнице между исходной кривизной оболочки на линии контакта и кривизной основания штампа, которая предполагается несколько меньшей, чем кривизна оболочки. Так получается исходное интегральное уравнение с логарифмическим разностным ядром вида а — ар  [c.319]

В следующем разд. 8.6 описана задача включения для бесконечно длинной цилиндрической оболочки с продольными ребрами (стрингерами), нагруженными на концах сосредоточенными силами. Результаты разд. 8.6 опубликованы в работе Э. И. Грнголюка и В. М. Толкачева [20], более подробный вывод уравнений задачи и больший объем численных результатов содержится в статье [21]. Задача включения приводится к сингулярному интегральному уравнению с ядром типа а — ао  [c.320]


Смотреть страницы где упоминается термин Оболочки Уравнения интегральные : [c.206]    [c.167]    [c.210]    [c.252]    [c.254]    [c.7]    [c.128]    [c.288]    [c.322]    [c.242]   
Прочность устойчивость колебания Том 2 (1968) -- [ c.137 , c.139 ]



ПОИСК



Интегральные уравнения и односторонние ограничения некоторых контактных задач теории упругости, пластин н оболочек

Интегральные уравнения основных граничных задач для оболочек с разрезами

Интегральные уравнения прямого МГЭ для гибких пластин и пологих оболочек

Интегральные уравнения равновесия безмоментной теории. Применение . к оболочкам, вращения

Ковнеристов Г. Б., Басюк П. Г. Расчет напряженно-деформированного состояния рулонированной цилиндрической оболочки путем сведения задачи к системам интегральных уравнений

Оболочки уравнения

Уравнения интегральные



© 2025 Mash-xxl.info Реклама на сайте