Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет конструкций составных

Значительные объемы экспериментальных исследований по оценке влияния на характеристики трещиностойкости различных эксплуатационных и технологических факторов, переход к аттестации материалов по характеристикам трещиностойкости, расширение области их применения в расчетах и при выборе материалов привели к необходимости создания специализированных баз данных [33-34]. Накопление и систематизация экспериментальной информации имеют важное самостоятельное значение (оценка статистических параметров и законов распределения, установление верхних и нижних предельных значений и корреляционных соотношений, функциональное описание зависимости характеристик от анализируемого фактора, оптимизация технологических процессов, состава и структуры материалов и т.д.) и являются обязательной составной частью автоматизированных систем расчета конструкций на прочность, ресурс и живучесть.  [c.22]


В связи с ростом применения аналитических методов для решения всех этих задач требуется большее знание теории конструкций как от тех, кто намеревается работать в автомобильной промышленности, так и от тех, кто уже давно занят конструированием и изготовлением кузовов. Читатель упомянутой третьей категории (специалист-автомобилестроитель) найдет немало интересного для себя в различных подходах, используемых в предлагаемых методиках расчета конструкций. Книга не охватывает полностью машинные методы расчета конструкции автомобиля, однако в ней достаточно отведено места описанию физической сущности явлений, происходящих с составными частями кузова автомобиля. Благодаря этому у читателя разовьется умение чувствовать конструкцию . А это очень важно на стадиях предварительного расчета автомобиля.  [c.12]

Изложенные приемы расчета неоднородных составных труб и дисков являются точными для упругих конструкций и достаточно для целей практики точными для упруго-пластических конструкций.  [c.227]

Возникает, естественно, вопрос, можно ли повысить точность полученного решения для упруго-пластических конструкций. На этот вопрос можно дать положительный ответ. Отметим, что при расчете упруго-пластических конструкций (составная труба или диск за пределами упругости) мы всегда принимали здесь точные выражения для компонентов напряжений в упругих областях. Поэтому точность расчета упруго-пластических конструкций будет зависеть от принятых условий пластичности и соответствия граничных условий действительным условиям работы конструкций.  [c.227]

Расчет и конструирование паяных изделий в настоящее время представляет большие трудности в связи с незнанием многих факторов, определяющих прочность получаемого соединения. Последняя характеризуется не прочностью основного материала (однородного или составного) и не прочностью припоя или шва, а способностью соединения в целом сопротивляться в определенных условиях действующим усилиям. Конструктивная прочность определяется прочностью наиболее слабого места паяного соединения. В первом приближении при расчете конструкций приходится ориентироваться на предел текучести или предел прочности основного материала и на расчетное допустимое усилие F (определяемое с помощью этих двух характеристик прочности) в наиболее слабом месте соединения  [c.105]

При проектировании сложных конструкций, подверженных в процессе эксплуатации разнообразным динамическим воздействиям, большой теоретический и практический интерес представляет проблема создания математической модели конструкции, которая адекватно описывает ее жесткостные и массово-инерционные характеристики. Свободные колебания конструкции описываются системой дифференциальных уравнений, а вопрос о выборе коэффициентов в этой системе, от величины которых зависят массово-инерционные и жесткостные характеристики конструкции, может вызвать определенные трудности. В тех случаях, когда рассматриваются простые конструкции или их элементы, суш,ествует соответствие между коэффициентами уравнений и реальными массовыми и геометрическими характеристиками конструкции. Сложнее обстоит дело, когда для расчета больших составных конструкций используются упрощенные модели. Так, например, крыло летательного аппарата при решении задач аэроупругости моделируется балкой или пластиной. Задание исходных данных, т. е. выбор распределения массово-инерционных и жесткостных параметров в таких моделях всегда носит приближенный характер, и, следовательно, расчет на основе таких данных приводит к ошибкам в определении форм и частот колебаний и, как следствие, критической скорости флаттера.  [c.513]


Если толщина плиты по расчету прочности оказывается больше 80—100 мм, то рекомендуется применить другую конструкцию составных сварных опорных частей.  [c.321]

Применения метода конечных элементов к задачам механики деформируемого твердого тела очень обширны. Сюда относятся задачи теории упругости, задачи теории пластин и оболочек, задачи расчета конструкций, составленных из пластин и оболочек, анализ упругопластического и вязкоупругого поведения материала, динамические задачи, расчет составных конструкций. Данная глава посвящена задачам теории упругости. Другие области механики деформируемого тела рассматриваться не будут. Мы обсудим здесь общие случаи одномерных, двумерных и трехмерных задач теории упругости, а также специальный случай задач с осевой симметрией. Кроме того, будет рассмотрена машинная реализация задачи о плоском напряженном состоянии.  [c.211]

Второй вопрос, как и вообще подробный расчет составных балок, излагается в специальных курсах (например, в курсе металлических конструкций). Здесь же остановимся только на расчете соединительных элементов.  [c.311]

Сопротивление материалов является составной частью комплекса дисциплин, которые можно объединить общим названием — теория сооружений (схема 2). Связь теории сооружений с другими дисциплинами показана на схеме 1. Формулируя задачи теории сооружений (схема 4), следует исходить из требований СНиПа (строительных норм и правил), [где для строительных конструкций принят метод расчета по предельным состояниям (схема 3). Предельные состояния обусловлены свойствами реальных материалов (схема 5). При расчете сооружений необходимо обеспечить их надежность, т. е. гарантировать конструкцию от наступления предельных состояний как первой, так и второй групп при соблюдении экономичности.  [c.4]

Унификация и стандартизация составных частей аппаратуры связи ведется путем выпуска как соответствующих стандартов на узлы и блоки, так и стандартов, содержащих нормы расчета и проектирования. Примерами подобных стандартов являются следующие ГОСТ 17464—72 Изделия коммутационные. Основные параметры , ГОСТ 17467—72 Микросхемы интегральные. Корпусы. Типы и размеры , ГОСТ 18614—73 Сердечники Ш-образные из ферритов. Конструкция и размеры , ГОСТ 8525—78 Коробки телефонные распределительные. Технические условия , ГОСТ 23052—78 Боксы кабельные телефонные. Технические условия и др.  [c.18]

Деформация цилиндрической оболочки описывается уравнениями тонких упругих оболочек [48, 49]. При расчете составной конструкции необходимо учитывать некоторые особенности решения этих уравнений. Считается, что движение происходит без рассеяния энергии в материале. Оболочка характеризуется радиусом R, толщиной h и длиной I. Положительные направления отсчета координат, перемещений и усилий показаны на рис. 57.  [c.122]

Расчет составных конструкций будем производить, используя для участков из цилиндрических оболочек матрицу А=А"Т, определенную через матрицу преобразования Т. Принятый ранее порядок нумерации корней Ху позволяет определить Т следующим образом. Рассмотрим корни Хд и Х4, лежащие в первой четверти комплексной плоскости. В некотором интервале изменения частоты корни комплексные, обозначим этот интервал индексом 1 . Аналогично отметим индексом 2 интервал, где оба корня действительные (0 <[ Х4 <[ Хд), индексом 3 — интервал, где Х4 — мнимый корень, а Хд — действительный, причем Ке Хд > 0 и 1т Х4 [> о, и, наконец, индексом 4 — интервал, где оба корня мнимые (1ш Х4 > 1ш Хд [> 0). С помощью принятых обозначений, используя два индекса, можно указать, как расположены корни первый индекс относится к корням Х , Хд, а второй — к Хд, Х4. Например, для рассматриваемой далее оболочки, по мере увеличения частоты от нуля мы последовательно проходим зоны, соответствующие следующим индексам при ш=0— (1,4), (2,4), (3, 4) при ш=1 —(1,3), (1,4), (2,4), (3,4) при ш>1-(1,1), (1, 2), (1, 3), (2, 3), (2,4), (3,4).  [c.125]

Учет местной податливости при расчете составной корпусной конструкции позволил также получить более правильную картину взаимодействия деталей узла уплотнения. На рис. 4.9 показаны взаимные повороты сечений фланцев корпуса и крышки в зоне их контакта по площадке В. При отсутствии контактных моментов (рис. 4.9,а) такие же повороты получают площадки контакта, что дает нереальное пересечение деталей. При  [c.137]


Вид решения определяется корнями Ху уравнения F (X) = 0. Минимальную частоту собственных колебаний отдельной оболочки м определим как наименьшее значение, при котором 64 = 0. Этому условию и корню X = 0 соответствуют колебания оболочки как кольца Л = 0. При частоте а> (и влияние сил инерции на деформации оболочки невелико, все корни имеют действительную часть Ке X,- 0. Уравнение (со) = 0 имеет три корня со, со", со". Если частота равна одному из этих значений, то решение имеет особенность, характерную для кратных корней линейных дифференциальных уравнений. Помимо указанных частот имеются другие, когда уравнение Т (X) имеет кратные корни. Поскольку при наличии кратных корней Ху матрица А становится вырожденной, она не может использоваться непосредственно для расчета составной конструкции и должна быть преобразована. Другая цель преобразования матрицы А — получить матрицу с действительными Элементами, так как, используя матрицы с комплексными элементами, мы теряем в точности расчета.  [c.20]

Одно из самых напряженных мест конструкции — соединение вертикальных и горизонтальных элементов рамы. Именно здесь надо прежде всего свести до минимума концентрацию напряжений. А как заставить составные, пакетные , конструкции вести себя как цельные Не отразятся ли особенности новой схемы на точности штамповки Вообще вопросов перед исследователями возникло множество. Пришлось изготовить специальные модели отдельных деталей, узлов, а в конце концов и всего пресса в целом. На них и отрабатывали окончательно конструкцию, проверяли предположения и различные идеи, методы расчетов. Чтобы получить хотя бы общее представление о гигантском прессе, приведем  [c.79]

Многовариантные проектные расчеты проводятся с целью выбора оптимальной конструкции реактора и назначения оптимальных режимных параметров. Они носят оценочный характер, а результаты расчетов сопоставляются слимити-рующими факторами допустимой температурой теплоносителя, оболочки и сердечника твэлов, запасом до кризиса теплоотдачи, допустимой скоростью теплоносителя и т. д. Теплогидравлические проектные расчеты входят составной частью в оптимизационные программы АЭС.  [c.110]

Проведены расчеты для определения формы преломляюгцих поверхностей линз для двухслойного (сплав тротила с гексогеном, сплав тротила с нитратом бария) и трехслойного (сплав тротила с гексогеном, сплав тротила с нитратом бария, сплав тротила с гексогеном) зарядов. Сделаны отливки модельных элементов и разрабатывается методика определения правильности формы детонационной волны. Разработана конструкция составного заряда, состоягцего из двенадцати правильных пятиугольных призм и двадцати неправильных шестиугольных призм. Спроектирован инструмент для изготовления призм в двух вариантах — двухслойном и трехслойном. Инструмент для отливки призм для трехслойного варианта изготовляется в НИИ-6 и должен быть готов 27 августа, инструмент для двухслойного варианта заказан заводу № 70 Министерства сельхозмашиностроения.  [c.599]

Для сплошностенчатых конструкций составного сечения общей площадью до 0,03 м необходимо назначать припуск из расчета на 1 пог. м продольного шва — 0,1—0,2 мм на каждый поперечный стык—1—1,5 мм на каждую пару привариваемых ребер — 0,5 мм. Меньшие припуски даются при более мощных сечениях.  [c.262]

Тяговые расчеты — важная составная часть науки о тяге поездов. Методы тяговых расчетов включают комплекс способов и приемов определения массы состава, скорости движения и времени хода по перегону, расхода топлива, воды и электрической энергии на тягу, решение тормозных задач. К основным нормам для тяговых расчетов относятся данные для определеняя сопротивления движению подвижного состава, силы нажатия тормозных колодок, тормозные пути, коэффициент трения тормозных колодок, коэффициент сцепления колес локомотивов и вагонов с рельсами при тяге и торможении, конструкционные и допустимые скорости движения, расчетные значения силы тяги и скорости локомотивов на подъеме, силы тяги при трогании с места, допустимые значения продольных усилий при различных режимах тяги и торможения, ограничивающие токи и предельные температуры электрических машин электровозов и тепловозов. Эти нормы зависят от типов подвижного состава, их конструкции и условий эксплуатации.  [c.3]

I расчета конструкций, составленных из пластин и оболочек, ана-тз упругопластического и вязкоупругого поведения материала, шамические задачи, расчет составных конструкций. Данная гла-а посвящена задачам теории упругости. Другие области меха-нки деформируемого тела рассматриваться не будут. Мы обсу-ям здесь общие случаи одномерных, двумерных и трехмерны адач теории упругости, а также специальный случай задач с осе-ой симметрией. Кроме того, будет рассмотрена машинная реали-ацня задачи с плоском напряженном состоянии.  [c.211]

Комплексная стандартизация (КС). По определению, данному Постоянной Комиссией СЭВ по стандартизации, — это стандартизация, при которой осуществляется целенаправленное и планомерное установление и применение спстемы взаимоувязанных требований как к самому объегсту КС в целом и его основным элементам, так и к материальным и нематериальным факторам, влияющим на объект, в целях обеспечения оптимального решения конкретней проблемы. Следовательно, сущность КС следует понимать как систематизацию, оптимизацию и увязку всех взаимодействующих факторов, обеспечивающих экономически оптимальный уровень качества продукции в требуемые сроки. К осиовн лм факторам, определяющим качество машин и других изделий, эффективность их производства и эксплуатации, относятся совершенство конструкций и методов проектирования и расчета машин (их составных частей н деталей) на прочность, надежность и точность качество применяемого сырья, материалов, полуфабрикатов, покупных и получаемых по кооперации изделий степень унификации, агрегатирования и стандартизации уровень технологии и средств производства, контроля и испытаний уровень взаимозаменяемости, организации производства и эксплуатации машин квалификация рабочих и качество их работы. Для обеспечения высокого качества машин необходима оптимизация указанных факторов и строгая взаимная согласованность требований к качеству как при проектировании, так и на этапах производства и эксплуатации. Решение этой задачи усложняется широкой межотраслевой кооперацией заводов. Например, для производства автомобилей используют около 4000 наименований покупных и кооперируемых изделий и материалов, тысячи видов технологического оборудования, инструмента и средств контроля, изготовляемых заводами многих отраслей промышленности. КС позволяет организовать разработку комплекса взаимоувязанных стандартов и технических условий, координировать действия большого числа организаций-исполнителей. Задачами разработки и выполнения программ КС являются 1) обеспечение всемерного повышения эффективности общественного производства, технического уровня и качества продукции, усиление режима экономии всех видов ресурсов в народном хозяйстве 2) повышение научно-технического уровня стандартов и их организующей роли в ускорении научно-технического прогресса на основе широкого использования результатов научно-исследовательских, опытно-конструкторских работ и лучших оте-  [c.59]


Расчет и выбор посадок с натягом. Посадки с патягом предназначены в основном для получения неподвижных неразъемных соединений без дополнительного крепления деталей. Иногда для повышения надежности соединения дополнительно используют шпонки, штифты и другие средства креилення, как, например, при крепле-ппи маховика на коническом конце коленчатого вала двигателя. Относительная неподвижность деталей обеспечивается силами сцепления (трения), возникающими на контактирующих поверхностях вследствие их деформации, создаваемой натягом при сборке соединения. Благодаря надежности и простоте конструкции деталей и сборк1г соединений эти посадки применяют во всех отраслях машиностроения (например, при сборке осей с колесами на железнодорожном транспорте, венцов со ступицами червячных колес, втулок с валами, составных коленчатых валов, вкладышей подшипников скольжения с корпусами и т. д.).  [c.222]

Т.1. Задачи на составные конструкщш Среди задач на ПСС чуть большей сложностью и разнообразием выделяются задачи на составные конструкции, т.9. задачи, в которых рассматривается равновесие системы связанных друг с другом тел. В этих задачах больше неизвестных сил, несколько слогнее составлять уравнения равновесия увел твается и слохмость расчетов. Но самое главное - появляется необходимость анализа систем сил, действующ на каждое из тел в конструкции, и выбора на ос-  [c.67]

Несколько простых задач для тренировки навыков в составлешш плана при решении задач на составные конструкции приведены в конце учебника. Посмотрите эти задачи. Расчеты в них максимально. прости. Проверьте свое понимание теш.  [c.71]

В последующие годы под руководством М. К. Тихонравова была спроектирована более совершенная метеорологическая ракета, которая, согласно расчету, должна была развивать скорость до 1340 м/сек. Наконец, еще в 1939 г. по мере расширения исследовательских и экспериментальных работ советские ракетостроители предложили конструкцию двухступенчатой ракеты (рис. 129). Первой ступенью ее служила нижняя (хвостовая) пороховая ракета весом 3,5 кг, второй ступенью — верхняя ракета весом 3,56 кг, впервые в мировой практике снабженная воздушно-реактивным двигателем (ВРД). При испытаниях 19 мая 1939 г. эта составная ракета под действием порохового двигателя поднялась на высоту 0,625 км, достигнув скорости 105 м/сек, затем первая ступень ее автоматически — при срабатывании аэродинамического тормоза — отделилась от второй ступени и упала на землю, а вторая ступень, продолжая движение под действием воздушно-реактивного двигателя и развив скорость до 224 м/сек, поднялась на высоту 1,8 км. В дальнейшем опыты с запуском двухступенчатых ракет неоднократно повторялись [18].  [c.421]

Потери в конструкциях. Выше говорилось о потерях в материалах и в отдельных однородных упругих элементах. Рассмотрим теперь потери в конструкциях, которые составлены из многих элементов, изготовленных из различных материалов. Очевидно, что общие потери в конструкции складываются из потерь в ее составных элементах. Однако вклад этих элементарных потерь в общие потери различен и существенным образом зависит от формы колебаний конструкции в целол1. Так, потери машины, установленной на амортизаторы, зависят от того, насколько близко к пучностям или узлам собственной формы колебаний машины расположены амортизаторы. Потери в простейшей конструкции — однородном стержне — зависят от того, совершает он из-гибные, продольные или крутильные колебания. На одной и той же частоте потери этих трех форм движения различны, так как обусловлены разными физическими механизмами демпфирования. Для расчета общих потерь в конструкции, таким образом, требуется знать не только потери в отдельных ее элементах, но и форму колебаний всей конструкции. Ниже приводятся примеры расчета потерь в двух типичных составных машинных конструкциях и обсуждаются полученные результаты. Такие расчеты необходимы при проектировании машинных конструкций с оптимальными демпфирующими свойствами.  [c.218]

В пояснительной записке в разделе Юписание и обоснование выбранной конструкции в подразделе <1Сведения о соответствии изделия требованиям безопасно-стт должно быть проверено наличие а) описания и обоснования принимаемых на данной стадии разработки изделия принципиальных решений (конструктивных, схемных и др.) по безопасности конструкции изделия б) основных норм и требований безопасности по шуму, вибрации, загазованности и др. в) фотографий макетов средств защиты работающих (при необходимости) г) требований безопасности к применяемым в изделии новым материалам, которые должны разрабатываться другими предприятиями (организациями) д) сведений о соответствии требованиям безопасности применяемых в изделии заимствованных (ранее разработанных) составных частей, покупных и комплектующих изделий е) расчетов, подтверждающих работоспособность, надежность и эффективность средств защиты работающих ж) расчетов, подтверждающих правильность принятых решений по выполнению и соблюдению норм и требований по шуму, вибрации, загазованности и др.  [c.441]

При расчете такая конструкция может рассматриваться как составная, состоящая из элементов оболочек и колец (см. 1 гл. 3). Контактное сопряжение фланцев крышки и корпуса схематично представляет собой разрьшное сопряжение, в котором скачкообразно меняется угол поворота нормали к поверхности фланцев, не находящейся в контакте (угловой шарнир в табл. 3.3), а в случае проскальзывания терпит разрыв радиальное перемещение фланцев (шарнир линейный). Контактное сопряжение фланца крышки с нажимным кольцом схематично представляется разрывным сопряжением, в котором скачкообразно меняется величина осевого усилия и изгибающего момента (опора моментная), а при наличии трения терпит разрыв величина перерезывающего усилия (опора силовая).  [c.130]

Упругопластический расчет по предлагаемому методу выполняется для осесимметричных корпусных конструкций и узлов энергетического оборудования, сосудов под давлением, фланцевых соединений, патрубков и других деталей, рассматриваемых как многократно статически неопределимые составные системы из элементов оболочек, пластин, кольцевых деталей и стержней. Различные типовые особенности этих конструкций, такие, как жесткие и упругие закрепления и опоры, шарнирные соединения, разъемные соединения с разнообразными условиями контактирования соединяемых деталей и узлов, разветвления меридиана и тд., рассматриваются как разрьтные сопряжения (см. 1 гл. 3). В каждом приближении упругопластического расчета вьшолняется упругий расчет по следующим рекуррентным матричным формулам метода начальных параметров [2] линейным соотношениям между перемещениями и усилиями на краях рассматриваемых элементов  [c.206]

Тонкостенная цилиндрическая оболочка постоянной толщины является основой рассматриваемых элементов. Части оболочек соединены последовательно и могут иметь кольцевые ребра, расположенные в плоскости поперечного сечения оболочки. Ребро рассматривается как тонкостенная пластинка или как узкое кольцо с недеформируе-мым поперечным сечением. При расчете составной конструкции необходимо учитывать некоторые особенности поведения решений для цилиндрической оболочки, как будет показано далее.  [c.18]

Зо. М и л е й к о в с к и й И. К., Расчет составных стержней методами строительной механики оболочек, сборник Экспериментальные и теоретические исследования тонкостенных пространствен ных конструкций", Стройизлат, 1952.  [c.189]


РК меандрообразного типа не поддается расчету на прочность известными инженерными методами. Особенностью конструкции диска составного МРК является наличие окон для прохода рабочего тела, влияние которых на прочностное состояние диска в некоторой степени аналогично влиянию эксцентричных отверстий [58, 641.  [c.103]


Смотреть страницы где упоминается термин Расчет конструкций составных : [c.47]    [c.237]    [c.24]    [c.129]    [c.328]    [c.12]    [c.263]    [c.35]    [c.18]    [c.320]    [c.125]    [c.206]    [c.5]    [c.227]    [c.207]   
Примеры и расчеты металлических конструкций Изд3 (2006) -- [ c.90 ]



ПОИСК



Пружины сжатия Витки торцевые составные (концентрические) Расчет и конструкция

Реализация алгоритма определения критических нагрузок на Подготовка исходных данных для расчета составных оболочеч- ных конструкций

Составная конструкция

Составные части расчета кинетики деформирования конструкций



© 2025 Mash-xxl.info Реклама на сайте