Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения в вариациях Лагранжа

Можно заметить, что уравнения в вариациях (15) также можно получить в рамках мысли Лагранжа. Действительно. Если общее решение уравнений (14), зависящее от 2rt постоянных, подставить в уравнения (14), мы получим тождество, не зависящее от численных значений этих постоянных. Тождество это можно дифференцировать по постоянным. Дифференцируя один  [c.282]

Это уравнение, которое называют вариационным уравнением Лагранжа, в отличие от уравнения в вариациях (1.29) справедливо только для консервативных систем. Из уравнения Лагранжа следует, что в положении равновесия полная потенциальная энергия консервативной системы имеет стационарное значение. Справедливо и обратное утверждение если полная потенциальная энергия имеет стационарное значение, то система находится в положении равновесия.  [c.24]


Задача об устойчивости заданного движения материальной системы может рассматриваться с различных точек зрения. Речь может идти, во-первых, о разыскании оценок отклонений обобщенных координат и обобщенных скоростей от их значений в опорном движении в любой момент времени, когда начальные возмущения достаточно малы. Об основывающемся на этом воззрении определении устойчивости движения по Ляпунову кратко говорилось в п. 11.10, а составлению уравнений возмущенного движения — уравнений в вариациях — были посвящены пп. 11.14—11.17. Во-вторых, может рассматриваться лишь орбитальная устойчивость, когда вопрос о протекании во времени возмущенного движения отодвигается на второй план, а изучаются лишь траектории возмущенного движения и устанавливаются критерии их близости к опорной траектории. При этом часто, ограничивая постановку задачи, рассматривают только консервативные возмущения — такие, при которых на возмущенных траекториях сохраняется то же самое значение постоянной энергии /г, что и на опорной траектории. Принцип стационарного действия Лагранжа оказывается при этой постановке задачи наиболее приспособленным методом исследования орбитальной устойчивости, поскольку траекториями как опорного, так и возмущенного движений являются геодезические линии многообразия / элемента действия, т. е. простейшие геометрические  [c.721]

Если при этом существует функция Лагранжа (см. 94), то гамильтонова и лагранжева формы (21i) —(21г) 101 уравнений в вариациях обладают одними и теми же инвариантами группы монодромии. Действительно, переход от гамильтоновой к лагранжевой форме уравнений движения выполняется в силу изложенного в 6—8 с помощью преобразования, рассмотренного в 147. Если данное периодическое решение не представляет собой точку равновесия, то на основании сказанного в 148 можно гарантировать, что по крайней мере один, а следовательно, в силу 151 по крайней мере два из мультипликаторов si,. .., sjn равны 1. Таким образом, по крайней мере два из характеристических показателей 11,. . ., Xzn равны нулю.  [c.135]

Требование независимости вариаций 6Qi и 8pi играло в этом доказательстве весьма существенную роль. Это обстоятельство подчеркивает основное различие между методами Лагранжа и Гамильтона. В методе Лагранжа поведение системы описывается ее обобщенными координатами qi и обобщенными скоростями qi. Но переменная qi тесно связана там с переменной qi, так как она равна производной от qi по t. Поэтому при выводе уравнений Лагранжа мы должны были выражать вариации б г через независимые вариации 6 j. Это делалось с помощью интегрирования по частям, в результате чего появлялись члены d I dL  [c.252]


На стр. 336 и сл. Остроградский делает несколько замечаний по поводу той части Аналитической механики , в которой Лагранж выводит уравнение движения механики из принципа наименьшего действия в связи с принципом живых сил. Остроградский считает ход рассуждений Лагранжа неточным (стр. 336). Он основывает свои возражения на том, что на основании уравнения живых сил существует зависимость между некоторыми вариациями, которые Лагранж считает независимыми.  [c.905]

Выражения составляемые из левых частей интегралов уравнений, были впервые введены Пуассоном в небесной механике при развитии метода Лагранжа вариации элементов эллиптических орбит с приложением этого метода к задаче о вращении Земли. Эти же выражения, как мы видели, ввел Гамильтон при разработке общей теории возмущений. В настоящее время выражения is носят название скобок Пуассона. Большое значение скобок Пуассона для аналитической механики и для теории уравнений в частных производных было особенно отмечено Якоби в его Лекциях по дина- 21 мике .  [c.21]

Начало основных понятий теории интегральных инвариантов можно найти в гидродинамике при выводе уравнений движения жидкости и в исследованиях вихревых движений идеальной жидкости, выполненных Г. Гельмгольцем и Кельвином вместе с тем можно увидеть частные примеры интегральных инвариантов и в работе Лагранжа о методе вариации произвольных постоянных.  [c.36]

В первом случае все вариации независимы и следствием (4) является обращение в нуль коэффициентов при них в этом соотношении. Получаем уравнения движения Эйлера — Лагранжа  [c.369]

С. А. Чаплыгин вывел свои уравнения для истинных координат, однако, в дальнейшем при решении задачи о плоском неголономном движении он использовал их, введя в качестве независимого параметра длину дуги, которая является квазикоординатой, причем С, А. Чаплыгин не отметил этого обстоятельства. Законность такого использования выведенных уравнений связана с тем, что вид уравнений С. А. Чаплыгина сохраняется и в том случае, когда некоторые из первых т координат (вариации которых приняты за независимые) не входят ни в уравнения связей, ни в функцию Лагранжа , а вместо них введены квазикоординаты. Обычно квазикоординаты вводятся в виде соотношений (как правило линейных) между производными квазикоординат и обобщенными скоростями, причем сами квазикоординаты в силу своей природы входить в эти соотношения не могут. Если I (I < т) — число координат, входящих в функцию L и уравнения связей, тогда, имея в виду применение уравнений Чаплыгина, можно ввести не более т—I квазикоординат.  [c.110]

С—продольная скорость упругих волн, — О при а р. Уравне-ния Эйлера, полученные вариацией лагранжиана (2.48)—волновые уравнения теории упругости. Они не изменятся, если лагранжиан выбрать в ином виде  [c.33]

Если вариации на концах исчезают 8j = Sx = О, условие экстремума дает уравнение движения лучей в форме Лагранжа  [c.13]

На прямом пути удовлетворяются уравнения Лагранжа системы поэтому все выражения, стоящие в скобках под знаком интеграла в формуле (61), тождественно равны нулю. Отсюда сразу следует, что на прямом пути вариация действия по Гамильтону равна нулю, т. е. что прямой путь является экстремалью рассматриваемой вариационной задачи — на прямом пути действие по Гамильтону достигает стационарного значения.  [c.279]

Обратим внимание теперь на то, что справедливо и обратное утверждение если соответствующая а = 0 кривая из пучка, представленного на рис. VI 1.2, такова, что действие по Гамильтону достигает на этой кривой стационарного значения и при а = 0 вариация действия равна нулю, то эта кривая удовлетворяет уравнению Лагранжа, т. е. является прямым путем. Действительно, если положить равной нулю вариацию действия в левой части уравнения (61) и вспомнить затем, что вариации координат б<7у независимы и могут быть выбраны произвольно, то отсюда следует, что выражения, стоящие в скобках под знаком интеграла, порознь равны нулю, т. е. что уравнения Лагранжа удовлетворяются всегда, когда в формуле (61) левая часть обращается в нуль.  [c.280]


Вариации б/ и б/ равны, поскольку 6f = 6F ]/=, =0 в силу того, что как при t = так и при t= ti все кривые рассматриваемого пучка (рис. VI 1.2) проходят через одну и ту же точку расширенного координатного пространства. Поэтому из того факта, что на прямом пути б/ = 0, следует, что на том же пути б/=0, а это значит, что одна и та же кривая является прямым путем для уравнений Лагранжа с лагранжианом L и с лагранжианом L.  [c.283]

Для построенного таким образом семейства можно рассмотреть действие по Гамильтону и вариацию действия. Для вариации действия по Гамильтону воспользуемся формулой (60). Особенность рассматриваемой задачи состоит в том, что все кривые однопараметрического семейства являются прямыми путями и, следовательно, на них тождественно выполняются уравнения Лагранжа. Поэтому интеграл, стоящий в правой части формулы (60), в данном случае тождественно обращается в нуль, и формулы для приращения функционала содержат только проинтегрированную часть  [c.295]

Лагранжа %а и [ip таким образом, чтобы коэффициенты при зависимых вариациях обратились в нуль тогда коэффициенты при независимых вариациях будут также равны нулю, поскольку соотношение (9) должно выполняться и в случае, когда связи не освобождают, т. е. когда 6я и все бср равны нулю. Таким образом, получим систему Зй уравнений  [c.298]

Метод оскулирующих элементов сродни методу Лагранжа вариации произвольных постоянных. В самом деле, пусть изучается движение, описываемое следующей системой обыкновенных дифференциальных уравнений  [c.697]

В заключение отметим еще одно важное применение теоремы 1, С. Л, Зиглин доказал, что дополнительный мероморфный интеграл уравнений Эйлера — Пуассона задачи о вращении тяжелого твердого тела с неподвижной точкой существует только в трех классических случаях Эйлера, Лагранжа и Ковалевской. Если зафиксировать нулевое значение постоянной площадей, то к этим случаям надо добавить еще случай Горячева—Чаплыгина. Этот результат также основан на анализе уравнений в вариациях для некоторых частных решений уравнений Эйлера — Пуассона [64].  [c.371]

В 1945 г., исходя из инварианта Пуанкаре, Четаев доказал, что если невозмущенное движение консервативной системы устойчиво, то решения уравнений в вариациях имеют все характеристичные числа равными нулю, уравнения в вариациях являются при этом приводимыми и имеют знакоопределенный квадратичный интеграл. Эта фундаментальная теорема Четаева обобщает теорему Лагранжа для равновесий и теорему Пуанкаре — Ляпунова для периодических движений.  [c.15]

Другими частными решениями задачи трех тел, существование которых доказано строго, являются периодические орбиты. Работа Пуанкаре ) представляет обширную теорию этого класса орбит. В гл. XII настоящей книги пример такого рода периодических орбит приводится при рассмотрении теории Хилла —Брауна движения Луны. Метод, примененный для изучения орбит в окрестности периодической орбиты, выбранной в качестве первого приближения в теории Луны, применим в большинстве случаев и к периодическим орбитам в ограниченной задаче. Однако в этом случае уравнения в вариациях больше не являются линейными дифференциальными уравнениями с постоянными коэффициентами, как это было для частных решений Лагранжа. Коэффициенты этих линейных уравнений представляют собой периодические функции времени.  [c.234]

В начале этой главы был рассмотрен вопрос об устойчивости пяти точек Лагранжа в ограниченной задаче трех тел. Что будет с частицей, находящейся в точке Лагранжа, если ее координаты и скорости получат малые приращения Будет ли она колебаться около точки Лагранжа или быстро уйдет от нее Точку Лагранжа в этих случаях называют соответственно устойчивой или неустойчивой. Для того чтобы ответить на вопрос, устойчиво или неустойчиво решение Лагранжа, мы линеаризовывали уравнения в вариациях, решали их и анализировали корни характеристического детерминанта.  [c.168]

Итак, основные этапы развития аналитической динамики таковы первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжев метод вариации произвольных постоянных и аналогичная теория Пуассона и связанные с нею проблемы интегрирования затем Гамильтон представил интегральные уравнения посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или из того условия, что она должна одновременно удовлетворять двум дифференциальным уравнениям в частных производных Гамильтон же нашел новую форму уравнений движения Якоби свел интегрирование дифференциальных уравнений динамики к нахождению полного интеграла единственного дифференциального уравнения в частных производных он же развил теорию последнего множителя системы дифференциальных уравнений движения Остроградский рассмотрел проблему интегрирования уравнений динамики Раус нашел новую форму дифференциальных уравнений движений Пуанкаре развил теорию интегральных инвариантов наконец,  [c.848]

Все эти работы показывали, что русская механика вступила в пору своей зрелости, начало которой было положено исследованиями Остроградского. В работах русских ученых был решен комплекс вопросов о характере вариации в принципе наименьшего действия в форме Лагранжа и о методе вывода из него уравнений движения механики. Глубоко изучена была также строгая математическая форма самого иринцииа наименьшего действия и его связь с уравнениями движения. Выяснение этих вопросов было необходимо для того, чтобы принцип наименьшего действия стал не только безупречным основанием аналитической механики, но и мощным д1етодом исследования в различных областях физики.  [c.220]


Чтобы в условие Лагранжа входили только независимые друг от друга вариации, исключим при помощи р- -д условий все зависимые вариации. Для этого умножаем р уравнений (23) соответственно на X, 1, 2, далее умножаем д уравнений (24) соответсгвенно  [c.449]

Вывод уравнений движения неголономных систем из соотношения (8) теперь уже не вызывает сомнений. Можно идти двумя путями. Или выразить из уравнений (2) вариации Ьд,,. .., Ьд через остающиеся независимые вариации bgi ,,. .., Ьд , подставить эти выражения в равенство (8) и получить из него п — / уравнений, приравняв нулю множители при указанных назависимых вариациях. Придем, конечно, к уравнениям движения (7.10.9). Или использовать-метод множителей Лагранжа — каждое из уравнений (2) умножается на неопределенный множитель и сумма этих произведений (равная нулю) вносится под знак интеграла (8). Приходим к равенству  [c.667]

Один из этих принципов впервые ввел в теорию упругости выдающийся физик Густав Кирхгоф в одной из своих фундаментальных работ, опубликованной в 1850 г. ). Стремясь в этой замечательной статье развить теорию изгиба тонкой плоской упругой пластинки, он сразу же успешно вывел из экстремального условия для потенциальной энергии линейное дифференциальное уравнение в частных производных четвертого порядка для малых прогибов упругой пластинки (уравнение Лагранжа) и дифференциальные выражения для полной системы двух граничных условий, необходимых для определения формы изогнутой срединной поверхности пластинки. Таким образом, он впервые установил корректные выражения для этих двух граничных условий после многочисленных безуспешных попыток, предпринимавшихся в течение первой половины девятнадцатого столетия математиками французской школы (в том числе Пуассоном). Они утверждали, что поверхность слегка изогнутой упругой пластинки и решение указанного дифференциального уравнения четвертого порядка для прогибов пластинки должны удовлетворять трем независимым граничным условиям, тогда как Кирхгоф установил, что достаточно всего двух ). Он достиг этого применением принципа возможных перемещений, приравняв нулю первую. вариацию определенного интеграла, выражающего полную потенциальную энергию изогнутой пластинки как сумму энергии упругой деформации, вызванной внутренними напряжениями, деформирующими пластинку при изгибе, и потенциальной энергии системы внешних сил (нагрузок), изгибающих пластинку. Внеся вариацию под знак интеграла и применив ее к подинте-гральному выражению, он нашел дифференциальное уравнение  [c.142]

Как и в случае конечномерных динамических систем, в области задач об оптимальном управлении системами с распределенными параметрами сохраняют полную работоспособность усовершенствованные методы классического вариационного исчисления. При этом и здесь основное внимание было уделено составлению необходимых условий минимума для экстремальных задач со связями, трактуемыми как проблема Майера — Больца. Главным образом это было сделано для задач, связанных с уравнениями эллиптического типа. Было показано, что в таких типичных задачах, возникающих из проблем оптимального управления, необходимые условия стационарности (уравнение Эйлера и естественные граничные условия, а также условия Вейерштрасса Эрдманна) составляются при помощи обычных приемов. Критерии опираются снова на множители Лагранжа которые здесь зависят уже обычно от пространственных координат, а соответствующие дифференциальные уравнения снова конструируются исходя из подходящих форм функции Гамильтона. Условия стационарности дополняются необходимым условием Вейерштрасса сильного относительного минимума. Разумеется, это условие, которое записывается через условие экстремальности функции Гамильтона на оптимальных решениях, имеет смысл, аналогичный соответствующему условию принципа максимума. Важно, однако, заметить, что при работе с модификациями классических методов вариационного исчисления в случае уравнений с частными производными проявляются некоторые новые черты. В результате получаются условия оптимальности, более сильные, нежели известные в настоящее время обобщения принципа максимума на системы, описываемые уравнениями в частных производных. Упомянутые черты проявляются, в частности, в связи с тем обстоятельством, что приращение минимизируемого функционала при изменении объемного управления (за счет варьирования от оптимального управления) в пределах области достаточно малой меры зависит не только от вариации управления и меры области, но также существенно определяется и предельной формой области варьирования. Таким образом, получается, что при изменении формы области, определяющей вариацию, могут, получаться более или менее широкие необходимые условия экстремальности. Как отмечено выше, эффект анизотропии варьирования пока был получен только классическими методами. Причины этого, по-видимому, различны некоторые работы, посвященные принципу максимума, относятся к таким задачам, где этот эффект вообще не проявляется, в других случаях эффект анизотропии исключался вследствие ограничения при исследованиях лишь вариациями специального вида. Полезно также заметить, что описываемый эффект анизотропии расширяет возможность управления и оптимизации в обширном классе случаев независимо от типа исходных уравнений. Эффективность классических методов вариационного исчисления была проверена на конкретных типах задач. В частности, таким путем была исследована задача об оптимальном распределении проводимости электропроводной жидкости (газа) в канале магнитодинамического генератора электрической энергии. Эта задача как раз доставляет пример вариационной проблемы, где эффект анизотропии варьирования играет существенную роль. Развитию классических методов исследования посвящены работы К. А. Лурье.  [c.239]

Формули])уя в общем впде, мы можем этот принцип, который был введен в астрономию Лагранжем и именуется методом вариации постоянных, выразить так, что для интегрирования дифференциальных уравнений  [c.196]

В отличие от вариаций в принципе Гёльдера (см. п. 2.5), вариации допустимых путей в задаче Лагранжа должны снова удовлетворять уравнениям (29). Однако при буквальном понимании этого высказывания может возникнуть ряд серьезных затруднений.  [c.44]

Описанные вариации понадобятся нам для доказательства теоремы Нётер чтобы вывести уравнения Лагранжа — Эйлера, надо будет добавить в вариации формы (31.3) к членам, вызываемым параметрами С , еще и произвольные вариации б1ф , т. е. написать вместо (31.3)  [c.195]

Записанный так функционал, определенный на пучке (40), носит название действия по Гамильтону и играет важную роль при исследовании движения а потенциэотьных полях. Из сказанного следует, что движение, удовлетворяют, е уравнениям Лагранжа, представляет экстремаль функционала (48). В следующем параграфе мы докажем приведенную выше теорему Эйлера для однопараметрического пучка специального типа, пока же выведем формулу для вариации действия эта формула потребуется нам в дальнейшем.  [c.275]

Так как в силу уравнений (1.32) независимых вариаций координат будет Зи — к, то выберем множители Лагранжа Я,1 ДгДз, Д/1 таким образом, чтобы коэффициенты при k вариациях координат обращались в нуль. Оставшиеся в выражении (1.34) Зп — k вариации координат будут независимы, и поэтому множители ири них также должны быть равны нулю ). Таким образом,  [c.20]


Метод вариации постоянных, предложенный Лагранжей ), заключается в следукццем пусть найдено решение системы (9.3) при Q = О (ш=1, 2, s), т, е. определено движение системы под действием основных сил Qm предполагая теперь, что дополнительные силы Q , которые называются возмущающими , достаточно малы по сравнению с основными, решение системы уравнений (9.3) ищут в форме (9.4), причем величины l, С2,. .., 2S считаются уже не постоянными, а медленно меняющимися функциями премени.  [c.239]

Уравнение (6.44) выражает собой так называемый принцип потенциальной энергии при заданных внешних силах и граничных условиях действительные перемещения ui таковы, что для любых возможных перемещений первая вариация полной потенциальной энергии равна нулю, т. е. полная потенциальная энергия П имеет стационарное значение. Можно показать (теорема Лагранжа—Дирихле), что в положении устойчивого равновесия полная потенциальная энергия системы имеет минимальное значение, т. е. вторая вариация д П>0.  [c.123]

Предположим, что исследуется движение изображающей точки на отрезке М1М2 основной траектории. Выберем траекторию сравнения так, чтобы концы ее отрезка, соответствующего отрезку М М2 основной траектории, совпадали с точками М и М2. Так как постоянные энергии А при движении изображающей точки по основной траектории и траектории сравнения одинаковы, можно утверждать, что промежуток времени, соответствующий переходу изображающей точки из положения М в положение М2 по основной траектории, не равен промежутку времени, необходимому для перехода этой же точки из положения М в положение М2 по траектории сравнения. Поэтому для доказательства принципа Эйлера — Лагранжа следует применять неизохронные (полные) вариации. Рассмотрим общее уравнение динамики  [c.201]

Используя произвол в выборе s множителей подчиним их условию обращения в нуль выражений в каких-нибудь s скобках в равенстве (90). Оставшееся при этом в левой часпг равенства (90) выражение будет содержать k = r — s скобок выражения, заключенные в них, явятся коэффициентами при k = г — S произвольных вариациях б /. Из условия равенства нулю выражений, стоящих в этих k = г — s скобках, получается система г уравнений Лагранжа второго рода с jUHOMureAHMU  [c.420]

Вторую группу методов составляют так называемые прямые методы.. Их характерной особенностью является то, что минуя дифференциальные уравнения на основе вариационных принципов механики упругого тела строятся процедуры для отыскания числовых полей неизвестных функций в теле — перемещений, усилий, напряжений. В гл. 3 при рассмотрении двух основных принципов — Лагранжа (вариации перемещений) и Кастильяно (вариации напряжений) — уже были изложены два таких прямых метода, а именно метод Ритца (см. 3.5) и метод, основанный на принципе Кастильяно (см. 3.7). В дополнение к ним в данной главе излагаются общие основы наиболее эффективного в настоящее время прямого метода — метода конечных элементов (МКЭ). Перечисленные методы либо полностью основаны на вариационных принципах (методы второй группы), либо допускают соответствующую трактовку с использованием этих принципов (методы первой группы). Поэтому часто эти приближенные методы называют вариационными.  [c.228]


Смотреть страницы где упоминается термин Уравнения в вариациях Лагранжа : [c.388]    [c.424]    [c.160]    [c.388]    [c.143]    [c.236]    [c.884]    [c.576]    [c.147]    [c.9]    [c.43]    [c.258]    [c.200]   
Курс лекций по теоретической механике (2001) -- [ c.199 ]



ПОИСК



Вариация

Лагранжа в вариациях

Лагранжева вариация

Уравнения Лагранжа

Уравнения в вариациях



© 2025 Mash-xxl.info Реклама на сайте