Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разложение уравнения поверхности Д(И) в ряды

Уравнение (2.88) решается путем разложения /(л) в ряд или численным ме-1 ОДОМ, и решение представляется в виде таблицы, из которой, в частности, следует, что при л=0 /"(л) = 0,3321, а при Л 5 / (л) и x/woo = 0,9916. После подстановки /"(0) в выражение (2.84) находится касательное напряжение трения в сечении х на поверхности пластины  [c.111]

Используя метод решения уравнения (284) посредством разложения в степенной ряд для малых и больших значений чисел Sh, получим, что для постоянной температуры поверхности пульса-ционная плотность теплового потока на поверхности  [c.111]


Для плоского штампа полуоси а, а 1—задаются формой его прижатой поверхности. В задаче о неплоском штампе уравнение поверхности S представляется её разложением в степенной ряд, начинающийся, согласно (6.1.2), с членов второй степени относительно Z, tj  [c.311]

В плоских задачах о внедрении в упругое полупространство цилиндрических тел, как правило, предполагается, что поверхность Ej, ограничивающая ударник, является гладкой, а ее направляющая кривая выпукла. Эти вопросы при вертикальном движении ударника и постоянной скорости внедрения рассмотрены в работах В. Д. Кубенко [41], С. Н. Попова [51, 52], В. Д. Кубенко и С. Н. Попова [42]. В первой из них использовано разложение в тригонометрический ряд Фурье по координате х с периодом, равным расстоянию между соседними периодически расположенными на полуплоскости фиктивными штампами. Он выбирается так, чтобы за рассматриваемый промежуток времени соседние штампы не оказывали влияния друг на друга. В трех других работах с помощью интегральных преобразований задача сведена к бесконечной системе интегральных уравнений Вольтерра. Найдены напряжения в центральной точке контакта.  [c.378]

Разложение в степенной ряд уравнения поверхности основания штампа начинается по (1.2) со слагаемых второй степени  [c.304]

В разд. 3.5.1 было показано, что в плоской геометрии обычно существует разрыв в угловом распределении потока нейтронов при ц = О на поверхности (или границе). Было найдено, что при решении уравнения переноса с помощью разложения потока в ряд по полиномам Лежандра полезно исследовать каждую сторону разрыва отдельно. Аналогичное двойное Рд -приближение было использовано в методе дискретных ординат с отдельным разложением потока в интервалах —1 х ОиО х 1 18].  [c.173]

Формулы (IX. 107) совпадают с обычными формулами преломления в гауссовой области они показывают, что каждый луч, преломляющийся на поверхности, может быть заменен двумя проекциями на взаимно перпендикулярные плоскости и каждая из этих проекций ведет себя как обыкновенный луч, преломляющийся по обычным законам геометрической оптики. Под Гу и следует понимать величины, входящие в разложение координаты х в виде ряда д = — -, изображающего уравнение поверхности преломления, отнесенное к ее вершине в начале координат.  [c.577]

Разложение уравнения новерхности Д(И) в ряды. В случаях, когда аналитическая форма (7) задания уравнения поверхности Д и) приводит к громоздким преобразованиям и техническим трудностям при вычислениях, следует проанализировать целесообразность разложения функции (7) в ряды.  [c.64]


Для решения этого уравнения воспользуемся, как и раньше, разложением экспоненты в подынтегральном выражении в ряд Тейлора по степеням щ/шф в окрестности точки = 1. В результате получается следующее выражение для степени превращения Д,,,, учитывающей неравномерность распределения скоростей фильтрации по поверхности катализатора [361  [c.66]

Граничное условие на внешней поверхности канала с теплот носителем описывается уравнением (3.25). Будем искать решение нестационарного уравнения (3.24) в виде разложения в ряд по собственным функциям однородного уравнения (3.111)  [c.101]

Пользоваться подобными разложениями в ряд можно и удобно главным образом тогда, когда функция образуют полную систему и орто-нормированы (цт, w ) = 5 — символ Кронекера, (<р, i//) = / i/ dS — скалярное произведение, интегрирование осуществляется по поверхности, на которой функции заданы. В этом случае, подставив ряд для и в уравнение возмущенного резонатора и поочередно умножая полученное равенство скалярно справа на различные и (т.е. умножая на м и выполняя интегрирование), получаем систему уравнений  [c.147]

Для подтверждения этих положений составлены три варианта разрешающих уравнений теплопроводности, отличающиеся выбором базисных функций и неизвестных. На рис. 3.9 показано изменение во времени температуры в центральной точке поверхности г = Л/2 пластины при решении задачи о тепловом ударе, сформулированной относительно коэффициентов разложения температурной функции в ряд по нормированным полиномам Лежандра (рис. 3.9, а)  [c.123]

Процесс образования покрытия по данным некоторых исследователей [34—37] включает ряд последовательно протекающих реакций. В первой стадии процесса происходит разложение гипофосфита водой, которому способствует каталитическое действие поверхности никеля. Эту реакцию можно представить как присоединение иона ОН (от молекулы воды) в месте разрыва связи Р—Н молекулы гипофосфита и выразить уравнениями [38]  [c.290]

В работах В. М. Александрова и Д. А. Пожарского [7,49,50] исследуются пространственные контактные задачи для упругого конуса. При помощи разложения векторных функций по полной системе векторных гармоник на поверхности конуса [25] с использованием интегрального преобразования Меллина и ряда Фурье выводится интегральное уравнение контактной задачи для пространственного конуса. Используются сферические координаты р, Г], ф. Для осевой симметрии находятся [50] однородные решения для конуса, включая корни характеристического уравнения при разных углах конусности 2а, полезные при решении контактных задач для усеченного конуса. Рассматриваются задачи о взаимодействии конуса с жестким [49] или деформируемым [50] кольцевым бандажом. Используются асимптотические методы больших и малых Л , где параметр Л характеризует относительную удаленность бандажа от вершины конуса. Численный анализ свидетельствует о смыкании разных асимптотических решений в определенном диапазоне значений Л, зависящем от а.  [c.191]

Задача об обтекании вихря под свободной поверхностью тяжелой жидкости была решена Л. Н. Сретенским в 1933 г. и опубликована им в 1936 г. Однако М. В. Келдыш и М. А. Лаврентьев воспользовались принадлежащими Келдышу (1935) более простыми решениями задач о движущихся под поверхностью воды особенностях. Ими было получено основное интегральное уравнение для тонкого крыла, решение которого отыскивалось путем разложения в ряд по малому параметру 2а/А, где 2а — длина хорды крыла, а Л. — его погружение. Были получены также общие формулы для сил, действующих на крыло, и решены частные задачи о плоской пластинке, дужке круга и вытянутом эллипсе.  [c.14]

Метод обобщенного подобия к задачам ламинарного пограничного слоя на проницаемой поверхности был впервые применен Чаном ), составившим универсальное уравнение и использовавшим для его решения метод разложения решения в ряд по степеням параметров, относительно которого были уже сделаны критические замечания в конце предыдущего параграфа. Численное решение универсального уравнения в простейших приближениях на ЭВЦМ для случая проницаемой поверхности было выполнено аспирантами  [c.480]


Чтобы решить краевую задачу электромагнитной дифракции, кроме использования уравнений Максвелла и граничных условий, необходимо удовлетворить также некоторым дополнительным условиям. Одно из них — это принцип излучения на бесконечности Зоммерфельда, согласно которому количество энергии от источников, проходящей через конечную площадку, находящуюся на бесконечном удалении от этих источников, стремится к нулю. (На самом деле этот принцип несколько более сильный он утверждает, что источники должны излучать, а не поглощать энергию.) Второе условие следует из закона сохранения энергии и теоремы Пойнтинга. Третье условие возникает в процессе разложения поля в ряд Фурье по плоским волнам и требует включения волн не только с действительными волновыми числами, но и с мнимыми. Для волн с мнимыми волновыми числами, т. е, затухающих волн, или же в общем случае неоднородных волн с комплексными волновыми числами, поверхность равной амплитуды не совпадает с поверхностью равной фазы. Например, в двумерном случае обычной цилиндрической линзы, вариации толщины которой создают изменения в поглощении света в линзе, поверхности равных фаз и равных амплитуд ортогональны друг другу. В рптцке чаще всего встрв чаются именно неоднородные во.дны.  [c.37]

Несколько особое место в этой области теории ламинарного пограничного слоя в газовом потоке занимают новые исследования, использующие разложения в степенные ряды по специально выбранным параметрам (В. Я. Шкадов, 1963) и параметрические решения универсальных уравнений пограничного слоя, о которых уже была речь в 3 (Л, Г. Лойцянский, 1965). Универсальные уравнения ламинарного пограничного слоя в однородном газе для общего случая теплопередающей поверхности тела с произвольным распределением скорости внешнего потока и при любом числе Прандтля были составлены С. М. Капустянским (1965). Тем же автором (1966) получены однопараметрическое и локально-двухпараметрическое приближения решений системы универсальных уравнений и на частном примере показано отличие этих решений от менее точного ( локально-однопараметрического ) решения К. Б. Коэна и Э. Решот-  [c.524]

При изучении вопроса о концентрации напряжений около щелей и трещин значительный интерес представляет решение смешанных задач теории упругости для неклассических областей типа полосы (слоя). В математическом отношении эти задачи очень трудны. Однако начатое около десяти лет назад систематическое исследование этого вопроса привело к созданию эффективных методов решения задач такого класса (В. М. Александров, И. И. Ворович, Н. Н. Лебедев, Я. С. Уфлянд и др.). Методами операционного исчисления эти задачи довольно легко сводятся к решению интегральных уравнений первого рода с нерегулярным ядром. Наибольший эффект в нахождении удобных для практического использования решений этих уравнений был достигнут при использовании специфичных асимптотических методов. Начало исследований вопроса равновесия трещин в полосе было положено И. А. Маркузоном (1963). В. М. Александров (1965) исследовал равновесные трещины вдоль полосы или слоя, где интегральное уравнение строится для функции, определяющей форму трещины. Им получено приближенное решение путем разложения ядра уравнения в ряд при больших отношениях толщины к размеру трещины и получены зависимости нагрузки от размеров трещины. Используя этот метод и решения уравнений Винера — Хопфа, В. М. Александров и Б. И. Сметанин (1965, 1966) получили выражение для коэффициента интенсивности напряжений на краях равновесной трещины в слое малой толщины. Для случая постоянной нагрузки определяется связь размера равновесной трещины с действующей нагрузкой. Аналогичное решение получено для дискообразной трещины в слое конечной толщины. В. М. Ентов и Р. Л. Салганик (1965) рассмотрели в балочном приближении задачу Ь полубесконечной трещине, проходящей по средней линии полосы, причем для нагрузок, приложенных к берегам трещины, задача сводится к рассмотрению расслаивания под действием нормальной или тангенциальной силы. В этой работе с помощью метода Винера — Хопфа получено выражение для коэффициента интенсивности напряжений для достаточно больших и достаточно малых значений отношения расстояния от конца трещины до точки приложения силы к полуширине полосы. Используя аналитический метод, развитый В. М. Александровым и И. И. Воровичем (1960) при исследовании контактных задач для слоя большой относительной толщины, Б. И. Сметанин (1968) рассмотрел задачу о продольной щели в клине, а также плоскую и осесимметричную задачи о продольной щели в слое при различных условиях на гранях клина и слоя. Для щели, расположенной симметрично относительно граней клина (слоя), и нормальной нагрузки, приложенной к поверхности щели, получены формулы для определения поверхности щели. Коэффициент интенсивности напряжений выражается в виде асимптотического ряда по степеням безразмерного параметра.  [c.383]

Оставляя в стороне приближенный метод решения, примененный Кард аном в цитированной выше его статье — в настоящем параграфе идет речь только о точных решениях, — укажем, что точное решение этих, уравнений путем разложений функций в ряды по степеням при малых (вблизи поверхности диска) и по степеням е" для больших где л = 2/(оо), было выполнено Кокрэном ). Сшивая эти решения, Ко-крэн получил значение коэффициента с = 0,886, что приводит к формуле скорости осевого подтекания жидкости к вращающемуся диску  [c.541]


Следуя [116], предположим, что регулярная шероховатость на поверхности канала вызывает стоячие волны на поверхности пленки жидкости процесс массопередачи сосредоточен в тонком слое около поверхности раздела различие течений по гладкой и шероховатой поверхностям наблюдается только в области, примыкающей к стенке уравнение поверхности задается в виде первой гармоники разложения в ряд Фурье волновой поверхности пленки, т.е. Уо=Ьо - осзгппх), где Л о средняя толщина пленки а — амплитуда волновой поверхности п = 2п(Х (X — длина волны). При этих предположениях уравнения (6.3.5), (6.3.6) в новых переменных г] = У Уо =пх с учетом (6.3.4) примут вид  [c.114]

При анализе отклонений формы и расположения используют разложение в ряд Фурье уравнения, определяющего смещение инструмента, причем члены ряда Фурье характеризуют отклонение размера (К = 0), расположения (К = 1), формы (К = 2, 3,... ). Разложение можно выполнить в том случае, если смещение Дг и значения ряда параметров Qi изменяются по некоторму произвольному, но периодическому закону, т. е. являются функциями угловой координаты точек профиля поперечного сечения обрабатываемой поверхности. Считаем, что это условие выполняется тогда  [c.578]

Принципиально более высокая ступень использования УВМ возможна только ирн наличии в вычислительном устройстве нелинейной математической модели динамики блока, которая отличается от линейной тем, что коэффициенты уравнений сохранения (3-18) — (3-22) становятся функциями времени. Аналитически решить нелинейную задачу для парогенератора в целом удается лишь при очень существенных упрошениях (см. 8-2). В принципе нелинейную модель блока можно получить из линейной при непрерывной перестройке коэффициентов линеаризованных уравнений в соответствии с ироходи-мыми стационарными состояниями. Справедливость этого предположения более вероятна при медленном изменении нагрузки описание динамики резкопеременных режимов (аварийные ситуации) требует привлечения более совершенного математического аппарата. Так, Т. Краус описал [Л. 43] метод решения нелинейных уравнений динамики для поверхности нагрева парогенератора с помощью двумерных передаточных функций и рядов Воль-терра. Подходы к созданию нелинейной модели динамики паротурбинного блока обсуждаются в (Л. 82]. Нелинейности в обоих исследованиях представлены в виде квадратичных членов разложения нелинейной функции в ряд Тейлора. Нелинейной заменой зависимой [Л. 35] и независимой [Л. 29] переменных исходную систему уравнений для отдельных конкретных случаев иногда удается привести к виду, разрешимому аналитически или численно.  [c.358]

Анализ отклонения текущего размера. №менение текущего размера р(ф) дает правильное представление об изменениях отклонений радиуса диаметра поверхности детали по окружности в стыковом соединении. В качестве основного математического приема принимается аппроксимация точности разложением функционального допуска профиля в поперечном сечении в тригонометрический ряд Фурье для получения начальных (элементарных) со-ставляюпщх. Принимается номинальный профиль поперечного сечения цилиндрического корпуса, имеющего окружность с периметром Ь, истинным диаметром (1=2г с центром в точке О. В действительном профиле появляются отклонения (эксцентриситет, от круглости, волнистость), формирующие рельеф поверхности. Рассмотрим полярную систему координат с центром О", близким к О. Допустим, что отклонение профиля определяется при и значениях полярного угла (р = 2пт1п т=1, 2,. .., и значением радиуса р =р((р ). Полярное уравнение действительного профиля р = р(ср) представим тригонометрическим полиномом ряда Фурье  [c.156]

В работах Т. И. Карпенко [36, 37] взаимодействие тонкой оболочки и жесткого бандажа изучается на основе теории оболочек, построенной путем разложения решения в степенные ряды по нормальной к поверхности оболочки координате. Учитывается трение в зоне контакта. В работе Л. Хилла и др. [80] эта задача решена с помощью уравнений теории упругости также с учетом трения в зоне  [c.210]

Взаимодействие тонкой оболочки и жесткого бандажа рассматривается в [107, 135, 136] с учетом трения в зоне контакта. Решение строится разложением искомых функщш в степенные ряды по нормальной к поверхности оболочки координате. Подобная задача решается с помощью уравнений теории упругости в работе [252], силы трения учтены в [106, 108].  [c.13]

Уравнение (6.10) действительно служит достаточно хорошим приближенным выражением для положения поверхности раздела при с, например в случае замерзания воды. Второе приближение найдено Пекерисом и Слих-тером [29], которые воспользовались методом разложения в ряд. Они показали, что ряд  [c.290]

Подробнее остановимся на подходе, предложенном А.Н. ВсСлковым [84]. В этой работе функции смещений и напряжений разлагаются в пределах каждого слоя в ряды по степеням поперечной координаты. Их подстановка в уравнения пространственной задачи теории упругости, отделение поперечной координаты и использование условий межслоевого контакта приводят к выражениям для коэффициентов разложений через начальные функции, определенные на начальной поверхности. Искомые функции выражаются через начальные при помощи матрицы начального преобразования, операторные элементы которой содержат в качестве параметров тепловые члены, механические и геометрические параметры слоев. Система дифференциальных уравнений для определения начальных функций получается путем удовлетворения условиям нагружения на верхней и нижней граничных поверхностях оболочки. Порядок этой системы определяется как числом слоев оболочки, так и числом членов ряда, удерживаемых в разложениях искомых функций, и оказывается достаточно высоким, что ограничивает возможности практического использования метода. Так, если для четырехслойной оболочки в разложениях искомых функций удерживаются члены до третьей степени включительно, то получающаяся при этом система дифференциальных уравнений имеет сороковой порядок.  [c.7]

Работы Эйлера по продольному изгибу продолжил Лагранж. В первом мемуаре посвященном этому вопросу, Лагранж не ограничился исследованием наименьшей критической силы, а рассмотрел так называемые критические силы высших порядков, когда изгиб оси стержня происходит по двум, трем и большему числу полуволн синусоиды. Лагранж изучил зависимость стрелы прогиба от величины нагрузки в случае, когда последняя превышает критическое значение. Он нашел интеграл точного дифференциального уравнения изогнутой оси при помощи разложения искомого решения в ряд. Лагранж решил также задачу о продольном изгибе стержня, ограниченного какой угодно поверхностью вращения второго порядка. Тогда же он поставил задачу о наивыгоднейшем очертании колонн — об очертании стержня, выдерживающего без изгиба данную сжимающую нагрузку и имеющего наименьший вес. Однако ему не удалось найти удовлетворительного решения этой задачи. Впоследствии ею занимались Т. Клаусен, Е.Л. Николаи и др.  [c.168]

Как отмечалось выше, проведенное доказательство содержит логическую брешь . Действительно, мы не доказали, что выражение (5.14) применимо для молекул, начинающих взаимодействовать. Было сказано лишь, что оно имеет смысл , ибо две сталкивающиеся молекулы являются как раз двумя случайно-выбранными молекулами из бесконечного (при N- 00) множества. Как это ни странно, упЪмянутая брешь не следует иа неполноты наших представлений, а обусловлена скорее сущностью-явления. В самом деле, насколько нам известно, никто не-предложил удовлетворительного доказательства гипотезы хаоса (было разработано много формальных доказательств, базирующихся на разложении 7 -частжчной функции распределения в степенной ряд по времени столкновения, однако они едва ли могут рассматриваться как удовлетворительные). И все же мы верим, что удовлетворительное доказательство можно построить на основе двух предположений — об очень большом числе молекул (М -> оо) и о пренебрежимо малом радиусе взаимодействия (а ->-0),— если их последовательно применять с самого начала, как было сделано в случае теплового равновесия. Заметим, что> стремления к пределам N- 00 и а 0) не независимы, так как N0 должно оставаться конечным (ТУ а — порядок величины правой части уравнения (6.11)). Чтобы дать представление об осуществимости этого положения, отметим, что при N 10 и (Г - 10 " см будет N(У 10 10" см = 1 м , Т. е. величина порядка площади макроскопической поверхности, в то время как, например, N0 порядка 10 10" см = 10" см = 10" м , т, е. пренебрежимо мало по сравнению с обычными макроскопическими объемами N0 — параметр, который служит мерой порядка величины отброшенных членов они становятся все более и более важными по мере увеличения плотности газа).  [c.41]


Уравнения (1.38) и (1.39) представляют собой известную систему уравнений пограничного слоя, впервые полученную Л. Прандтлем в 1904 г. В дальнейшем и самим Прандтлем, и другими авторами было предложено несколько различных выводов этой системы уравнений. При этом, в частности, было установлено, что уравнения Прандтля справедливы и в случае двумерного обтекания искривленной поверхности (с не слишком большой кривизной), а также что они могут быть формально получены из общих уравнений гидромеханики в качестве первого приближения при разложении всех членов в ряды по степеням 1/Re (см., например, Кочин, Кибель, Розе (1963), ч. 2, гл. И, 29 Гольдштейн (1938), т. I, гл. IV а также Шлихтинг (1969), Бэтчелор (1973) и Лойцянский (1987). В общем слу аё под z надо понимать координату, отачцтываемую по нормали к обтекаемой поверхности, а под X — продольную координату в касательной плоскости.  [c.42]

Наибольшую историю среди методов приведения имеет метод степенных рядов, при котором коэффициенты разложения искомых величин (по нормальной к срединной поверхности координате г) определяются рекуррент-но через шесть основных функций (от внутренних координат а, Р срединной поверхности) последние же определяются условиями на боковых поверхностях (Н. А. Кильчевский, 1939, 1963), которым удовлетворяют с точностью до членов определенного порядка 2 , так как практически возможно лишь рассмотрение усеченных систем (т. е. систем дифференциальных уравнений конечного порядка). Следует отметить, что удовлетворение краевых условий (на контурных поверхностях) и начальных условий с заданной точностью требует вывода системы дифференциальных  [c.261]

Первый из способов определения поля, создаваемого точечным источником, т. е. функции 0(г, г ), основывается на методах геометрической оптики. Если источник расположен в точке г, то можно определить траектории лучей, выходящих из г, и соответствующие волновые фронты. В общем случае из-за неоднородности среды траектории лучей являются криволинейными. Если внутри объема можно выделить поверхность, на которой показатель преломления меняется скачком, то электромагнитная волна испытывает частичное отражение и преломление. В некоторых случаях конгруэнции отраженных и падающих лучей перекрываются, что приводит к сложной дифракционной картине (рис. 4.3). Кроме того, преломленные лучи могут покинуть диэлектрик лишь в том случае, когда они попадают на ограничивающую его поверхность под углом, который меньше критического. Чтобы учесть это, нужно использовать формулы Френеля (гл. 3) для коэффициентов пропускания и отражения волн, падающих на поверхности разрыва показателя преломления л(г). Как только определены траектории лучей, можно в принципе вычислить амплитуды поля Л (г), используя транспортные уравнения [см. (2.6.4)]. Структура этих уравнений такова, что пренебречь высшими членами разложения Л т > 1) в рядах Лунеберга — Клейна нельзя, если быстро изменяется в пространстве. Например, изображенные на рис. 4.3 лучи резко изменяют направление своего распространения, пересекая диэлект-  [c.256]

В работе Морлэнда [76] в рамках плоского напряженного состояния рассмотрена задача о качении жесткого цилиндра с постоянной скоростью по однородному изотропному вязкоупругому полупространству. Скорость качения полагалась достаточно малой, так что инерционные эффекты не учитывались кроме того, касательные силы на поверхности контакта считались отсутствующими и, таким образом, контактная деформация была обусловлена лишь распределением нормального давления. Длина линии контакта полагалась малой по сравнению с диаметром движущегося цилиндра. Выведены интегральные выражения для перемещений и напряжений в вязкоупругом полупространстве. Математически задача свелась к совместному решению двух пар двойных интегральных уравнений относительно некоторых вспомогательных функций с ядрами, содержащими косинус и синус. Решение этих уравнений осуществлялось путем разложения искомых вспомогательных функций в бесконечные ряды по функциям Бесселя, в то время как для определения коэффициентов ряда требовалось решить бесконечную систему алгебраических уравнений. Если использована связь искомой функции контактного давления с найденными вспомогательными функциями и учтено, что распределение давления не имеет особенностей на краях контактной зоны, то окончательный вид распределения контактного давления представим тригонометрическими рядами. Полученные теоретические результаты проиллюстрированы числовым примером, когда реологические свойства полупространства характеризуются одним временем ретордации. Расчеты дают картину несимметричного распределения нормального давления, являющегося следствием влияния фактора времени.  [c.402]

Основным камнем преткновения для расчета статистических функций в молекулярной физике как трехмерных, так и двумерных систем является вычисление конфигурационного интефала Z (7.30). В реальных газах и, тем более, в конденсированных системах ряд (7.7), отражающий потенциальную энергию межмолекулярных мультиполь -мультипольных юаимодействий частиц как с поверхностью н г,), так и между собой /) — см. (7.27) — на малых расстояниях является расходящимся. При подстановке в выражение для Z (7.30) соответствующих потенциалов взаимодействия (п.7.1.2) интефал Z не может быть вычислен с нужной точностью. Строгие расчеты статистических сумм (Е и Q r) возможны только при отсутствии межмолекулярных взаимодействий (Ц/- ,/) = 0), т.е. для идеальных 3Z) и 2/)-систем. В первом случае все расчеты приведут к уравнению Клаузиуса-Клапейрона, в 2/ системах — к уравнению Гиббса (7.17). Поэтому прибегают к приближенным методам. По существу, все три основных в статистической физике приближенных метода — методы вириальных разложений (Урселла-Майера), корреляционных интефалов (Грин, Боголюбов) и решеточных сумм, были использованы для описания поверхностных фаз. Хотя есть определенные успехи в применении этих методов для сильно идеализированных поверхностных фаз, проблема малых расстояний в адсорбционной фазе остается открытой.  [c.222]


Смотреть страницы где упоминается термин Разложение уравнения поверхности Д(И) в ряды : [c.214]    [c.210]    [c.86]    [c.171]    [c.146]    [c.671]    [c.351]    [c.7]    [c.116]    [c.292]    [c.155]    [c.557]    [c.291]    [c.142]    [c.247]   
Смотреть главы в:

Формообразование поверхностей деталей  -> Разложение уравнения поверхности Д(И) в ряды



ПОИСК



548 — Ряды

Поверхности Уравнения

Разложение в ряды

Разложение сил



© 2025 Mash-xxl.info Реклама на сайте