Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнения уточненных теорий

ПОПЕРЕЧНЫЕ КОЛЕБАНИЯ СТЕРЖНЕЙ. ОСНОВНЫЕ УРАВНЕНИЯ УТОЧНЕННЫХ ТЕОРИЙ И ИХ ПРИЛОЖЕНИЕ  [c.12]

Основные уравнения уточненных теорий  [c.104]

НЕСИММЕТРИЧНЫЕ ПО ТОЛЩИНЕ (ПОПЕРЕЧНЫЕ) КОЛЕБАНИЯ ПЛАСТИН. ОСНОВНЫЕ УРАВНЕНИЯ УТОЧНЕННЫХ ТЕОРИЙ И ИХ ПРИЛОЖЕНИЕ  [c.116]

Основные соотношения уточненной теории осесимметричных многослойных анизотропных оболочек вращения построены. Учет анизотропии значительно усложняет решение задачи, поскольку в зтом случае приходится интегрировать полную систему нелинейных дифференциальных уравнений двенадцатого порядка, в то время как расчет осесимметричных ортотропных оболочек приводит к решению укороченной системы дифференциальных уравнений восьмого порядка.  [c.45]


Наиболее эффективным из приближенных методов в теории пластичности следует считать метод последовательных приближений А. А. Ильюшина, именуемый методом упругих решений [3] в нем для первого приближения принимается решение аналогичной задачи теории упругости (со сходственными граничными и другими условиями), благодаря чему в первом приближении выясняются границы между упругими и пластическими зонами как по длине стержня (пластинки и др.), так и по высоте сечения. Это позволяет в первом приближении вычислить для каждой точки такого сечения значение числа ш, входящего в основной физический закон пластичности (4.13). Зная величину ш, можно в порядке первого уточнения исправить ранее вычисленные компоненты напряжения, внести поправки в первоначальные основные уравнения теории упругости, что определит новые границы между упругой и пластическими зонами,  [c.193]

С аппроксимацией напряжений поперечного сдвига дело обстоит несколько сложней. Как указывается в [6] анализ достаточно точных решений задач изгиба толстых плит и оболочек, а также специальные исследования, посвященные вопросу выбора аппроксимирующих функций, показывают, что некоторые неизбежные неточности, которые допускаются при выборе этих функций, незначительно влияют на основные расчетные величины оболочки вдали от линий искажения. Некоторый произвол при разумном выборе функций не может внести в уточненную теорию недопустимых погрешностей . Вариационный принцип Рейсснера позволяет достаточно гибко подойти к этому вопросу. Вид аппроксимирующих функций можно найти, исходя из структуры уравнений равновесия (4.189). Интегрируя первое уравнение по г, получим [6]  [c.172]

Основной особенностью полученного выше решения задачи является концентрация реакции на концах зоны контакта, где, вообще говоря, в составе реакции появляются сосредоточенные силы, а распределенная реакция, определяемая в общем случае соотношением (5.2), не обязательно обращается в нуль на концах зоны контакта. Все это является следствием использования теории пластин, построенной на гипотезах Кирхгофа, и иногда трактуется как серьезный порок теории в данном классе задач. С другой стороны, теория Кирхгофа является простейшей и ее применение весьма заманчиво.- Достоинство и недостатки этой теории могут быть оцене- ны лишь в сравнении с уточненными теориями или с решениями идентичных контактных задач на основе уравнений теории упругости. Это будет сделано в следующих разделах на примере рассмотренной выше простейшей задачи. Сейчас же только отметим, что считать пороком теории Кирхгофа тот лишь факт, что она приводит к странным поведениям в реакциях, еще недостаточно. Действительно, в ряде случа ев реакцию следует рассматривать как промежуточный математический объект, используемый при определении напряжений и перемещений.  [c.215]


В случае больших толщин пластины и высоких частот классическая теория не применима. Поэтому в настоящее время получено много прикладных теорий изгиба пластины, для которых классическая теория является частным случаем. Уточненные теории строятся в основном исходя из гипотез с поведении пластин при деформировании или из уравнений движения трехмерной теории упругости. Довольно полный обзор прикладных теорий изгиба пластин проведен в работе [30]. В настоящей работе наго  [c.20]

Полученная система основных уравнений теории упругости может быть безоговорочно использована только в тех случаях, когда перемещения весьма малы по сравнению с размерами тела. В противном случае эта система уравнений теряет конкретный смысл и при решении задач, связанных с рассмотрением относительно больших перемещений, приходится прибегать к различным уточнениям. Уточняя основную систему уравнений теории упругости, различные авторы пошли двумя различными путями.  [c.204]

Во-первых, при решении задач, для которых перемещения нельзя считать малыми по сравнению с некоторыми размерами исследуемого тела, ряд авторов предпочитает принимать за независимые переменные координаты материальной точки тела в его первоначальном недеформированном состоянии. Так, например, одни из них преобразуют уравнения равновесия элементарного объема путем замены переменных, переходя от координат тела в его напряженно-деформированном состоянии к координатам исходного состояния тела. Другие при этом уточняют и выводы геометрических зависимостей, т. е. уравнений сплошности, отбрасывая допущения в том, что перемещения малы по сравнению с размерами рассматриваемого тела, а их производные по координатам малы по сравнению с единицей. Таким образом получают уточненную систему основных уравнений теории упругости, относительно громоздкую по написанию, но зато свободную от обычно свойственной ей неувязки.  [c.204]

Было бы естественно думать, что за время длительного развития основные уравнения теории упругих оболочек получили законченную форму и в наши дни уже не являются предметом исследований и дискуссий. Фактически же последнее десятилетие свидетельствует о все возрастающем интересе именно к проблеме построения самих уравнений или, вернее, к установлению процедуры последовательного уточнения напряженного состояния. Было бы ошибкой полагать, что интерес этот связан исключительно с новыми задачами — расчетом однородных анизотропных оболочек из новых конструкционных материалов и многослойных анизотропных оболочек, определением полей ускорения около фронта распространения волн напряжения и т, д. Эта проблема продолжает стоять, и не без оснований, также и перед линейной теорией равновесия изотропных оболочек.  [c.230]

Напомним, что условная применимость безмоментной теории (по сравнению с безусловной) означает некоторое ухудшение напряженного состояния ( 22.28). Поэтому в подавляющем большинстве практически важных случаев мы будем иметь дело с разумно сконструированными оболочками, к которым безмоментная теория должна быть применима безусловно. Это значит, что уравнения состояния итерационной теории позволяют добиться уточнений для наиболее важных задач (допускающих безусловную применимость безмоментной теории) и для наиболее важных составляюш,их напряженно-деформированного состояния (основных напряженных состояний).  [c.417]

Отметим, что приближенные уравнения продольных и изгибных колебаний стержней были получены значительно раньше (Эйлер (1744), Бернулли (1751)), исходя из простейших гипотез. После этого задача заключалась в получении и уточнении этих уравнений с использованием трехмерных соотношений теории упругости, что составило предмет обш,ей проблемы приведения. Данная задача решалась в основном двумя путями.  [c.14]

Основная идея предлагаемого метода изучения контактных задач с учетом геометрической и физической нелинейностей соотношений теории тонких оболочек заключается в решении краевой задачи для системы (1.1) при явном задании связи контактного давления с нормальным перемещением (прогибом) ш срединной поверхности оболочки. Такой подход имеет следующие преимущества. Отпадает необходимость построения на каждом шаге итеративного процесса функций Грина, входящих в уравнение (1.3) классического метода решения контактных задач. Получение этих функций в аналитической форме невозможно, численное их определение представляет весьма трудоемкую процедуру. Контактное давление исключается из числа искомых и является непрерывной функцией, равной нулю на границах зон контакта. Итеративный процесс решения нелинейных уравнений совмещается с процессом уточнения областей контакта и становится единым процессом решения конструктивно, геометрически и физически нелинейной задачи.  [c.27]


Важным для исследования движения ракет было нахождение скорости выброса газа из ракетного сопла. Расчеты истечения газа из сопла рассматривались до того в теории газовых турбин и были перенесены на ракеты, в основном без особых изменений. Из первых работ, посвященных адиабатическому истечению газов из сопел применительно к ракетам, отметим работу Д.П. Рябушинского Теория ракет (1920 г.). В 20-х гг. прошлого века в исходное уравнение движения ракет было внесено уточнение, а именно указано на необходимость учета избытка давления на внешнем срезе сопла ракеты в сравнении с атмосферным давлением.  [c.79]

История теории пластичности показывает, как шаг за шагом конструировались все более сложные варианты определяющих уравнений, описывающих макроскопическую деформацию. Причем по мере развития этих вариантов в них все более проникала статистика микроструктуры не только самого поликристалла как конгломерата многих зерен, но и микроструктура самих зерен. Эта статистика внедрялась в определяющие уравнения теории не в явном, а в скрытом виде. Но если внимательно присмотреться, то статистическая природа многих основных формул теории пластичности становится очевидной. При этом некоторые идеи теории пластичности возникали сначала вне связи с учетом микроструктуры. Но при дальнейшем развитии и уточнении их статистическая природа становилась все более ясной.  [c.74]

Теория старения не обладает достаточной общностью для описания процессов деформирования упруго-наследственного материала (в частности, бетона), свойства которого меняются во времени. Более того, она в известном отношении противоречит опытам, поставленным для проверки и уточнения некоторых основных положений и результатов этой теории. С другой стороны, теория старения, имея в своей основе определенную физическую предпосылку, исходит иа реологического уравнения (2.13) которое позволяет получить с достаточной точностью простые решения для определенного круга прикладных задач. К числу таких задач относятся, например, перераспределение напряжения между бетоном и арматурой в центрально сжатых железобетонных элементах, потеря пред-  [c.179]

Третья линия решения проблемы приведения — метод непосредственного асимптотического интегрирования. Здесь заменой координат— различной при отыскании качественно различных напряженных состояний — в уравнения теории упругости искусственно вводится параметр (скажем, в), характеризующий тонкостенность оболочки. Далее каждой неизвестной функции должен быть присвоен определенный непротиворечивый показатель интенсивности, допускающий рекуррентную процедуру определения членов разложения неизвестных по степеням малого параметра 8. Отсюда ясно, что для успешного применения метода весьма желательна предварительная информация об основных свойствах определяемого напряженного состояния, иначе можно запутаться в подыскании непротиворечивых показателей интенсивности. Но если этот пусковой момент преодолен, то дальнейшее быстро приводит к изящным процедурам определения и последовательного уточнения напряженного состояния для широкого круга задач.  [c.263]

В изложенной выше теории касательного зондирования основное внимание уделялось определению оптических характеристик атмосферы. Что же касается возможности определения оптических свойств подстилающей поверхности, то к ней мы пришли в процессе уточнения исходных функциональных уравнений, когда вводили в них дополнительные факторы, влияющие на формирование оптических сигналов в геометрической схеме метода. Можно  [c.217]

Первые результаты были получены, когда в уравнения ввели поправки, которые позволили более полно учесть основные факторы, определяющие распространение упругой волны (Релей [97], Тимошенко [99]). На этом пути существенный вклад сделал С. П. Тимошенко, предложивший (вне связи с исследованиями по распространению волн) уточненное уравнение динамического изгиба (и сдвига) стержня. Как потом было установлено Я. С. Уфляндом [104] и другими, уравнение Тимошенко в отличие от уравнения Бернулли— Эйлера определяет конечные скорости распространения волн и дает результаты, во многих отношениях удивительно близкие к точным результатам, вытекающим из теории упругости. Уравнения Тимошенко и их решения исследовались в ряде работ, в частности, в [73 78 104 120—122 129 142 143].  [c.11]

В рассмотренных выше главах при теоретическом определении напряжений в стержнях использовались определенные гипотезы, упрощающие решение задачи. Если проверка найденных напряжений или их уточненное исследование выполняются экспериментально, то получаемые результаты в общем случае не полностью укладываются в рамки этих гипотез. Для того чтобы результаты правильно объяснить и использовать, как правило, требуется более широкий взгляд на деформирование элемента конструкции. Такую возможность создает применение основных понятий и уравнений теории упругости. Поэтому ниже, предваряя экспериментальные методы, кратко излагаются уравнения, используемые в теории упругости для наиболее простого, но важного случая, называемого плоской задачей.  [c.521]

В. И. Коваленко [1.33] (1968) исследовал свободные колебания основной частоты короткого стержня применительно к лопаткам турбин. Уравнения балки Тимошенко решаются при довольно сложных граничных условиях. На одном конце заданы граничные условия, соответствующие защемлению, но с учетом упругой податливости поворота. На свободном конце учитываются поперечная сила инерции сосредоточенной массы (бандажа) и изгибающий момент, обусловленный упругим креплением бандажа. Построены графики изменения относительной частоты il)=io/(i)o (здесь о и ыо — частоты, соответствующие уточненной и классической теориям) в зависимости о т относительной длины I. Одна из таких кривых  [c.85]


Ставски 1152] сформулировал другую уточненную теорию, в которой наряду с деформацией сдвига по толш ине учитываются соответствующие нормальные напряжения. Основные уравнения, аналогичные по форме уравнениям классической теории трехслойных пластин, получены на основании принципа минимума дополнительной энергии. К сожалению, в этой работе рассмотрены только задачи статики с симметрично расположенными изотропными слоями.  [c.193]

Современные исследования вносят уточнения в релятивистские взгляды на инерцию. Дело в том, что при построении общей теорпи относительности Эйнштейн исходил из принципа эквивалентности (гравитационного ноля и инерции). С помощью этого принципа он и получил основные уравнения теории. Однако необходимо помнить, что принцип эквивалентности не является общим принципом и имеет ограниченную область применимости инерции эквивалентно лишь однородное (т. е. постоянное но величине и направлению) гравитационное ноле. Но ноле можно считать однородным только для очень небольших участков пространства. Например, силовые линии гравитационного ноля Земли расходятся радиально от ее центра. Только внутри объемов пространства, линейные размеры которых во много раз меньше размеров Земли, гравитационное поле Земли можно считать однородным. Поэтому говорят, что принцип эквивалентности локален, т. е. что с помощью перехода в ускоренную систему координат можно исключить гравитационное ноле на отдельных участках пространства, но отнюдь не везде, что очень важно.  [c.45]

В разд. 4.5 дана модификация уточненной теории типа С. П. Тимошенко— Е. Рейссиера с целью приспособления ее для корректной постановки и решения контактных задач. Смысл модификации состоит в учете (в рамках этой теории) эффекта поперечного обжатия и более аккуратного учета эффекта поперечного сдвига, на который накладывает отпечаток поперечное обжатие. Это делается интегрированием соотношений закона Гука по толщине пластины, в результате чего находится закон изменения смещений по толщине пластины. Установлены также естественные граничные условия для контактных напряжений на границе зоны контакта. Полученные уравнения могут быть использованы и при расчете слоистых пластин с учетом эффекта сдвига и поперечного обжатия материала слоев. Следует отметить, что основные (интегральные по толщине) уравнения теории не зависят от того, учитывается или не учитывается эффект поперечного обжатия. Поэтому соотношения обобщенного закона Гука, приведенные в разд.  [c.184]

В уравнениях (5.7) стержень участвует лишь жесткостями и действующими на него нагрузками. Поэтому (5.7) естественно называть граничными условиями подкрепленного края уточненной по Тимошенко нелинейной теории жесткогибких оболочек. Четьфе первых равенства (5.7) после линеаризации при = ujt =0 совпвг-дают с граничными условиями подкрепленного края линейной теории оболочек [50]. Уравнение (5.7)s, связываюш,ее перерезьтаюшую силу с деформацией поперечного сдвига, во внимание не принимается (в чем и заключается основное противоречие кирхгофовской теории стержней).  [c.292]

Итак, переход от классической модели деформирования слоистых тонкостенных пластин к той или иной корректной уточненной модели сопровождается увеличением не только порядка системы дифференциальных уравнений, но и спектрального радиуса матрицы ее коэффициентов и, как следствие, появлением быстропеременных решений, имеющих ярко выраженный характер погранслоев и описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвигов и обжатия нормали. Такая ситуация характерна не только для балок или для длинных прямоугольных пластинок, изгибающихся по цилиндрической поверхности, но, как будет показано ниже, и для элементов конструкций других геометрических форм — цилиндрических панелей, оболочек вращения и др. Отметим, что стандратные методы их решения, которые согласно известной (см, [283 ]) классификации делятся на три основные группы (методы пристрелки, конечно-разностные методы, вариационные методы, метод колло-каций и др.), на этом классе задач малоэффективны. Так, группа методов пристрелки, включающая в себя, в частности, широко используемый и весьма эффективный в задачах классической теории оболочек метод дискретной ортого-нализации С.К. Годунова [97 ], на классе задач уточненной теории оболочек оказывается практически непригодной. Методами этой группы интегрирование краевой задачи сводится к интегрированию ряда задач Коши, формулируемых для той же системы уравнений. Для эллиптических дифференциальных уравнений теории оболочек такие задачи некорректны (см., например, [1]), что при их пошаговом интегрировании проявляется в форме неустойчивости вычислительного  [c.109]

J. R. Lloyd и J. Miklowitz [2.133] (1962) исследуют распространение неустановившихся волн в пластине на упругом основании, возбуждаемых источником q = qoH t)6 x). Здесь H(t)—функция Хевисайда, б(х)—б-функция. Рассматриваются случаи симметричного и антисимметричного возбуждения колебаний в пластине относительно срединной поверхности. Указанные задачи решены методо м двойных интегральных преобразо)ва ий на основе уточненных уравнений типа Тимошенко и уравнений плоской теории упругости. Основное внимание уделяется приближенному асимптотическому обращению изображений.  [c.159]

В конце XVIII в. главное внимание и усилия учёных-теоретиков были направлены на псследование и преодоление указанных математических трудностей (задачи небесной механики, развитие общей теории дифференциальных уравнений, вариационные принципы и т. д.). Исходные уравнения движения рассматривались в общем виде в связи с этим была распространена точка зрения о сводимости физических явлений к механическим движениям и о законченности механики как науки. Основная трудность усматривалась в интегрировании дифференциальных уравнений механики. Известное положение Лапласа гласило дайте начальные условия, и этого достаточно, чтобы предсказать всё будущее и восстановить всё прошедшее. Однако нужно заметить, что даже в рамках классической механики теоретическую проблему о составлении дифференциальных уравнений движения нельзя считать простой и уже принципиально разрешённой. Как раз задача о составлении уравнений движения, задача о действующих силах, т. е. о правых частях дифференциальных уравнений движения, является основной задачей физических исследований, причём даже в условиях возможных применений классической механики эта задача не разрешена в очень многих случаях. В тех же случаях, когда для простейших приложений существует необходимое приближённое решение, оно нуждается в постоянных уточнениях.  [c.27]

Итак, если для искомого напряженно-деформированного состояния в целом 1/2, то уточнения, даваемые уравнениями состояния итерационной теории, т. е. формулами (25.5.5), становятся бесполезными, более того, в этом случае предельно достижимую точность можно получить, исходя из еще более простых уравнений, т. е. из уравнений теории напряженных состояний с большой изменяемостью ( 10.24). Вместе с тем, если вдали от краев выполняется неравенство t < М2 и если условия закрепления краев оболочки таковы, что безмоментная теория безусловно применима к данной задаче, то итерационная теория позволяет существенно точнее строить основные напряженные состояния. Точность построения простого краевого эффекта, а следовательно, вообш говоря, и точность построения напряженно-деформированного состояния вблизи краев оболочки останется при этом такой же, как в теории Лява. Точность определения напряженно-деформированного состояния не повысится и вдали от краев, если имеет место условная применимость безмоментной теории.  [c.417]


В определенной мере новый этап в построении приближенной теории пластин связан с появлением работ Миндлина [235, 238]. Основная идея Миндлина заключалась в том, чтобы при выводе уточненных уравнений движения пластин, предназначенных для применения в высокочастотной области, добиваться наилучшей аппроксимации низших дисперсионных ветвей точной трехмерной теории соотношениями приближенных теорий. Такой подход дал возможность получить широко используюш,иеся прикладные теории планарных и изгибных колебаний пластин, а также продольных колебаний длинных цилиндров [237]. На их основе проведен анализ некоторых особенностей динамического поведения пластин и стержней в высокочастотной области. Подробный обзор полученных при этом результатов содержится в работах [224, 236, 248].  [c.196]

Ввиду большой сложности разрешающих уравнений программа их формирования составлена из отдельных подпрограмм, повторяющих основные звенья вывода уточненных уравнений теории нетонких оболочек переменной толщины. Все этапы решения, включая машинную обработку входной и выходной информации, формирование и решение уравнений, автоматизированы.  [c.6]

В работах XVIII в. использовалось понятие устойчивости равновесия или движения без уточнения его содержания и без введения для него количественной меры. Это в значительной мере верно и для работ дальнейшего периода, охватывающего почти весь XIX в. — от Лагранжа до Пуанкаре и Ляпунова. Теория малых колебаний около положения равновесия или движения оставалась основным аппаратом теории устойчивости. Она была усовершенствована за это время математически Дж. Сильвестр, К. Вейерштрасс, К. Жордан дали полный анализ всех случаев, которые могут представиться при решении однородной системы линейных дифференциальных уравнений с постоянными коэффициентами. К. Вейерштрасс и, независимо от него.  [c.119]

ОС НОРшая задача механики деформируемого твердого тела — описание процессов деформирования с учетом экспериментальных данных, определяющие соотношения которых могли бы быть использованы при решении конкретных технических задач. Поэтому развитие теории механики деформируемого твердого тела идет по пути постепенного усложнения и уточнения определяющих соотношений по мере накопления экспериментальных данных. В качестве основной исходной характеристики обычно принимают деформацию. При упругом деформировании (простейший вид) определяющие уравнения связи между напряжениями и деформациями можно записать, в виде конечных соотношений, при пластическом деформиро Банин — в приращениях или дифференциалах. В последнем случае процесс нагружения-деформирования зависит только от последовательности наложения элементарных процессов (нагрузки, разгрузки, повторной нагрузки и т. п,) и не зависит от промежутков времени, в течение которых эти процессы происходят, т. е. окончательный результат не зависит от масштаба времени. В более общем случае деформирования деформации могут зависеть от масштаба времени, например, изменение деформаций во времени при постоянном напряжении. Поэтому принято полные деформации разделять на мгновенные, или упругопластические, и длительные деформации ползучести.  [c.3]

При рассмотрении тг (i-рассеяния основная цель состояла в изучении сходимости данной итерационной схемы для вычисления длины рассеяния к ее точному значению, рассчитанному в [5] на основе уравнений Фаддеева. При расчете первой итерации (диаграмма рис. 1 а) была установлена применимость статического предела теории ио = = /i/(/i + m) —) 0. Оказалось, что в первом приближении длина тг (i-рассеяния в отличие от рассмотренного ранее [12, 13] случая ггб/-рассеяния существенно меньше точных значений [5]. Причина этого, как было показано в конце п. 4, лежит в специфике изоспиновой структуры данной задачи. На случайность малости первого приближения указывает также то, что сумма первых двух итераций (см. табл. 2) практически совпадает с точным значением a d- Из табл. 2 следует, что рассматриваемый ряд сходится к точным результатам [5] точнее, чем соответствующий ряд в ТМР. Это можно рассматривать как следствие выполнения условия унитарности на каждой итерации. Для уточнения полученных здесь значений для длины тг (i-рассеяния нужно учесть р-волновое тгЛ -взаимодействие, рассчитать диаграмму рис. 1 в, а также оценить вклад от высших итераций. Полученные результаты (см. рис. 3) для фаз тг (i-рассеяния свидетельствуют о их сильной чувствительности к параметрам тгЛ -взаимодействия. Отметим, что все основные соотношения п. 4 с поправками на спин-изоспиновую зависимость применимы для описания рассеяния пиона на более тяжелых ядрах, таких как Li [22], которые допускают двухкластерное представление.  [c.297]

Эта глава содержит применения теории пространственных групп к классической теории колебаний кристаллической решетки [4—6, 59—64]. Основной эффект от использования полной пространственной группы симметрии состоит в упрощении решения секулярного уравнения для определения частот нормальных колебаний и соответствующих собственных векторов в гармоническом приближении. Секулярное уравнение оказывается факторизованным согласно неприводимым представлениям рассматриваемой пространственной группы . Факторизация по пространственной симметрии приводит к появлению пространственных координат, зависящих от волнового вектора k неприводимого представления. Учет полной симметрии обеспечивает дальнейшее уточнение свойств отдельных собственных векторов, преобразующих согласно допустимым представлениям группы k), т. е. по определенной строке неприводимого представления группы .  [c.173]

Заметим, что в процессе определения асимптотики основной части волны продольных напряжений уравнения теории упругости свелись к простейшему уравнению продольных колебаний пластины (37.16) с дополнительным членом, определяющим влияние жидкости. Это связано с тем, что влияние поперечных колебаний, учитываемых теорией упругости или уточненными уравнениями (38.2), оказывается асимптотически несущественным по сравнению с влиянием жидкости. Однако для того чтобы ввести влияние жидкости, уравнения (37.16)  [c.293]

Лунная теория Брауна. Важная характерная особенность метода Хилла, предопределяющая возможность дальнейшего совершенствования и уточнения решеппя основной задачи, заключается в том, что, как только получены главные части движения перигея и узла, можно определить из системы линейных уравнений коэффициенты членов любого порядка относительно е, е, у и а/а в любой комбинации, если найдены члены более низкого порядка. На каждом этапе все степени параметра m включаются в численные значения этих коэффициентов, тогда как е, е, y /et остаются в алгебраическом виде. Для этой цели можно использовать уравненпя (49) или эквивалентные им уравнения (48). Для получения членов более нпзких порядков выгодны уравнения (50). Это требует разложения хм/г и xs/r по степеням Su и fis, если и = Uq + ou, s = So + fis-  [c.322]

Н. Reismann [2.183] (1968) применил метод разложения по собственным функциям для решения задачи о колебаниях пластины, описываемых уравнениями, учитывающими деформацию сдвига и инерцию вращения, при произвольной поверхностной на грузке и произвольных гранич1ных и начальных условиях. В качестве примера рассмотрены колебания кольцевой пластины, защемленной по наружному и внутреннему контурам. Последний мгновенно смещается так, что возникает поперечная сдвигающая сила, изменяющаяся во времени ка функция Хевисайда. Построены поперечные перемещения и изгибающие моменты в зависимости от времени по уточненной и классической теориям. Различие в основном сводится к сдвигу (ВО времени локальных максимумов и минимумов. Для частотного спектра, как видно из фиг. 2.7, раз-  [c.157]

Л. Я. Айнола построил геометрически нелинейную теорию упругих оболочек типа Тимошенко на основе обобщенного вариационного принципа Гамильтона—Остроградского 13.2] (1965). Получены также уравнения в возмущениях применительно к исследованию динамической устойчивости начального состояния движения. Исходя из вариационного принципа для геометрически нелинейной теории упругости и вводя основные гипотезы модели Тимощенко, он вывел уточненные уравнения динамики гибких оболочек в криволинейных координатах [3.6] (1968).  [c.212]


Смотреть страницы где упоминается термин Основные уравнения уточненных теорий : [c.82]    [c.258]    [c.110]    [c.337]    [c.184]    [c.297]   
Смотреть главы в:

Неклассические теории колебаний стержнеи, пластин и оболочек  -> Основные уравнения уточненных теорий

Неклассические теории колебаний стержнеи, пластин и оболочек  -> Основные уравнения уточненных теорий



ПОИСК



Пластины Несимметричные по толщине (поперечные) колебания пластин. Основные уравнения уточненных теорий и их приложение

Стержни Поперечные колебания стержней. Основные уравнения уточненных теорий и их приложение

Теории Уравнения

Теория уточненная

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте