Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформирование и деформация

Для установления основных закономерностей процесса наиболее целесообразным является, по-видимому, исследование сопротивления деформированию при симметричном цикле нагружения с выдержками. При этом достаточно просто разделяются активная деформация (при большой скорости деформирования) и деформация ползучести.  [c.98]

Скорости деформирования и деформации при динамических испытаниях на несколько порядков больше, чем при статических. Так, в стандартных испытаниях на динамический изгиб скорость деформирования составляет 4—7 м/с, а скорость деформации — порядка 10 с , в то время как при статических испытаниях эти величины—м/с и Ю-" -10- с-1 соответственно.  [c.203]


Скорости деформирования и деформации 1 — 35  [c.439]

На характер технологического процесса холодной объемной штамповки (ХОШ) существенное влияние оказывают физическое состояние и механические свойства обрабатываемой заготовки, вид производства (мелкосерийное, серийное, крупносерийное и массовое), режим обработки (усилие, скорости деформирования и деформации) и схема напряженно-деформированного состояния, а также форма организации процесса (непрерывный или прерывный процесс, последовательный, параллельный или последовательно-параллельный).  [c.26]

РАСЧЕТ СКОРОСТЕЙ ДЕФОРМИРОВАНИЯ И ДЕФОРМАЦИИ ПРИ ХОЛОДНОЙ ОБЪЕМНОЙ ШТАМПОВКЕ  [c.110]

Напряжения, вызывающие смещение атомов в новые положения равновесия, могут уравновешиваться только силами межатомных взаимодействий. Поэтому под нагрузкой при пластическом деформировании деформация состоит из упругой и пластической составляющих, причем упругая составляющая исчезает при разгрузке (при снятии деформирующих сил), а пластическая составляющая приводит к остаточному изменению формы и размеров тела. В новые положения равновесия атомы могут переходить в результате смещения в определенных параллельных плоскостях, без существенного изменения расстояний между этими плоскостями. При этом атомы не выходят из зоны силового взаимодействия и деформация происходит без нарушения сплошности металла, плотность которого практически  [c.53]

На величину пластической деформации, которую можно ДОСТИЧЬ без разрушения (предельная деформация), оказывают влияние многие факторы, основные из которых — механические свойства металла (сплава), температурно-скоростные условия деформирования и схема напряженного состояния. Последний фактор оказывает большое влияние на значение предельной деформации. Наибольшая предельная деформация достигается при отсутствии растягивающих напряжений и увеличении сжимающих. В этих условиях (схема неравномерного всестороннего сжатия) даже хрупкие материалы типа мрамора могут получать пластические деформации. Схемы напряженного состояния в различных процессах и операциях обработки давлением различны, вследствие чего для каждой операции, металла и температурно-скоростных условий существуют свои определенные предельные деформации.  [c.54]

При температурах ниже температуры начала рекристаллизации, наблюдается явление, называемое возвратом. При возврате (отдыхе) форма и размеры деформированных, вытянутых зерен не изменяются, но частично снимаются остаточные напряжения. Эти напряжения возникают из-за неоднородного нагрева или охлаждения (при литье и обработке давлением), неоднородности распределения деформаций при пластическом деформировании и т. д. Остаточные напряже-  [c.56]


Горячей деформацией называют деформацию, характеризующуюся таким соотношением скоростей деформирования и рекристаллизации, при котором рекристаллизация успевает произойти во всем объеме заготовки и микроструктура после обработки давлением оказывается равноосной, без следов упрочнения (рис. 3.2, б).  [c.57]

Высокие удельные усилия выдавливания определяют достижимые степени деформации и сдерживают широкое применение этого процесса в производстве. Удельные усилия выдавливания изменяются в ходе деформирования и зависят от высоты подвергающейся деформированию части заготовки. При выдавливании пластическая деформация обычно охватывает не весь объем заготовки, а лишь часть его (см. рис. 3.36). До тех пор, пока высота очага деформации меньше, чем высота деформируемой заготовки, удельные усилия по ходу пуансона изменяются незначительно. Однако, когда высота деформируемой части заготовки становится меньше высоты естественного очага деформации, удельные усилия начинают интенсивно возрастать. Это обстоятельство ограничивает допустимую (по условиям достаточной стойкости инструмента) толщину фланца или донышка штампуемой детали.  [c.100]

Теории пластичности разделяются на группы. Теории одной группы, называемые деформационными, пренебрегают тем, что в общем случае нет однозначной связи между напряжениями и деформациями в пластической области, и используют конечные зависимости между компонентами напряжений и деформаций [94]. Они могут успешно применяться в пределах, ограниченных условиями простого нагружения, при котором внешние силы растут пропорционально одному параметру, например времени. Теории другой группы не пренебрегают неоднозначностью зависимости напряжений и деформаций, уравнения в них формируются в дифференциальном виде, позволяющем поэтапно прослеживать сложное (например, циклическое) деформирование материала. Эти теории называют теориями пластического течения [94, 124].  [c.13]

По всей видимости, снижение е/ в зависимости от hjs можно объяснить следующей причиной. Следствием импульсного нагружения являются последующие свободные колебания сварного соединения. Очевидно, что в зоне сопряжения шва с основным металлом эти колебания за счет концентрации напряжений и деформаций могут приводить к циклическому знакопеременному упругопластическому деформированию материала. Разрушение материала в данном случае может быть связано с накоплением усталостных повреждений. Ясно, что критическая деформация, по сути являющаяся остаточной деформацией после импульсного нагружения, будет меньше, чем критическая деформация при монотонном квазистатическом нагружении. Увеличение относительной высоты усиления hjs приводит к росту инерционных сил, за счет которых в зависимости от схемы нагружения растет амплитуда и(или) количество циклов свободных колебаний сварного соединения. Роль усталостного повреждения в этом случае увеличивается, что приводит к снижению критической деформации при динамическом нагружении.  [c.45]

В данной главе рассматриваются хрупкое, вязкое и усталостное разрушения поликристаллического материала при кратковременном статическом и малоцикловом нагружениях. Разрушение поликристаллического металла при кратковременном статическом нагружении (т. е. при скорости деформирования I с ) является в большинстве случаев внутризеренным и в зависимости от температуры и характера НДС хрупким или вязким. Феноменологически первый тип разрушения сопровождается низкими затратами энергии в отличие от второго, для которого характерны значительные пластические деформации и, как следствие, высокая энергоемкость. Разрушение конструкционных материалов при малоцикловом нагружении также в основном связано с накоплением внутризеренных повреждений и развитием разрушения по телу зерна. Общим для рассматриваемых типов разрушений является также слабая чувствительность параметров, контролирующих предельное состояние материала, к скорости деформирования и температуре. Указанные общие особенности хрупкого, вязкого и усталостного разрушений послужили основанием для их анализа в одной главе.  [c.50]


Подчеркнем, что в общем случае при циклическом нагружении в условиях объемного напряженного состояния (ОНС), реа-лизирующегося, например, у вершины трещины или острого концентратора в конструкции, соотношение компонент приращения напряжений при упругой разгрузке может не совпадать с идентичным соотношением напряжений в момент окончания упругопластического нагружения [66 68, 69, 72, 73]. Поэтому интенсивность приращения напряжений 5т, при которых возобновится пластическое течение при разгрузке (или, что то же самое, при реверсе нагрузки), может быть меньше, чем в одноосном случае, где циклический предел текучести 5т = 20т для идеально упругопластического тела [141, 155]. Это обстоятельство приводит к некоторым особенностям деформирования и соответственно повреждения материала в случае ОНС. Например, при одинаковом размахе полной деформации в цикле можно получить различные соотношения интенсивности размаха пластической АеР и упругой Де деформаций за счет изменения параметра 5т-  [c.130]

Таким образом, параметры механики- разрушения в общем представляют собой коэффициенты подобия, и преимущество ее использования как раз и состоит в том, что, определив коэффициенты подобия полей напряжений и деформаций, без рассмотрения и детального описания тонких процессов деформирования и разрушения материала у вершины трещины, можно прогнозировать развитие макроразрушения. Отказ от анализа процессов разрушения у вершины трещины привел к необходимости экспериментального получения большого количества эмпирических зависимостей, так как подобие НДС можно было обеспечить при весьма узком диапазоне изменения уровня и характера нагружения. Но это приемлемо только при оценке относительно просто нагружаемых конструкций, в случае же ответственных высоконагруженных конструкций прямое использование механики разрушения может не дать достаточно надежных результатов, что заставляет вернуться к подробному  [c.188]

Рис. 4.8. Схема деформирования и распределение параметра D в зоне пластической деформации у вершины трещины (Де — интенсивность размаха. Рис. 4.8. Схема деформирования и <a href="/info/28809">распределение параметра</a> D в <a href="/info/242743">зоне пластической деформации</a> у вершины трещины (Де — интенсивность размаха.
Вопрос О пространственной идеализации обусловлен тем, что в настоящее время практически могут быть решены только двумерные задачи, в которых предполагается, что поля температур, напряжений и деформаций меняются только по рассматриваемому сечению тела и однородны в направлении, перпендикулярном этому сечению. В общем случае, строго говоря, процесс деформирования при сварке может быть описан только посредством решения трехмерных краевых задач, так как температура при многопроходной сварке неравномерно распределена как по поперечному относительно шва сечению сварного элемента, так и в направлении вдоль шва.  [c.280]

Пластические деформации зависят главным образом от тепловых характеристик процесса сварки, свойств металла и в значительно меньшей степени — от жесткости свариваемых элементов. Это обстоятельство позволяет разделить задачу определения сварочных напряжений и деформаций на две части. В первой части с помощью решения термодеформационной задачи МКЭ определяются пластические деформации, обусловливающие перераспределение объема металла в зоне упругопластического-деформирования при сварке (термодеформационная задача). Во второй части на основе решения задачи в рамках теории упругости определяются напряжения в сварном узле в целом (деформационная задача). Исходной информацией для решения деформационной задачи являются начальные деформации  [c.298]

На рис. 6.8 и 6.9 представлены данные по влиянию скорости деформирования и температуры при различном составе водной среды на критическую деформацию, отвечающую разрушению образца. Видно, что степень влияния какого-либо компонента среды на е/ (например, кислорода) зависит от конкретного состава остальных компонентов (например, pH). Поэтому при расчете долговечности коллектора представляется целесообразным использовать нижние огибающие экспериментальных данных зависимостей критической деформации е/ от g, полученных при различном составе среды для температур эксплуатации холодного и горячего коллекторов (рис. 6.8 и 6.9). Из рис. 6.8 видно, что с понижением скорости деформирования критическая деформация уменьшается. Как уже упоминалось, такой  [c.345]

В связи с тгм, что до сих пор нет такого ун шерсальиого по- <азателя пластичности материала, который учитывал бы химический состав, структуру, механические свойства материала, тип напряженного состояния, скорость деформации, температуру, при которой проводится деформация, вероятность изменения ее в процессе, во времени деЛормации и т.п. надо пользоваться имеющимися показателями пластичности, учитывая определенные условия деформирования и конкретные данные, характерные для дефорыирувиюго ште-риала.  [c.28]

При ynpyroiM деформировании под действием внейшей силы изменяется расстояние между атомами в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места и деформация исчезает.  [c.61]

Деформация и рекристаллизации. Полуфабрикаты из тугоплавких металлов обычно имеют деформированную волокнистую структуру (рис. 386). Это связано с тем, что деформирование тугоплавких металлов и сплавов на последних этапах изготовления листа, прутков, ленты и т. и. обычно проводят или при комнатной температуре, или с подогревом, но при температурах ниже температуры рекристаллизации. В рекристаллизо-ванном состоянии все тугоплавкие металлы имеют обычную полиэдрическую структуру (рис. 387). Волокна располагаются вдоль прокатки. Если сравнивать пластичный ниобий (или тантал) в деформированном и рекристаллизованном состояниях, то подтверждается известная зависимость для деформированного (наклепанного) металла выше прочность и ниже пластичность (табл. 97).  [c.527]


Как правило, при листовой штамповке пластические деформации получает лишь часть заготовки. Операцией листовой штамповки называется процесс пластической деформации, обеспечиваюн ий характерное изменение формы определенного участка заготовки. Различают формоизменяющие операции, в которых заготовка не должна разрушаться в процессе деформирования, и разделительные операции, в которых этап пластического деформирования обязательно завершается разрушением.  [c.103]

Деформирование и срезание с заготовки слоя металла происходит под действием внешней сплы Р, приложенной со стороны инструмента к обрабатываемой заготовке. Напрянление векюра силы совпадает с вектором скорости резания v. Работа, затрачиваемая на деформацию н разрушение материала заготовки (Pv), расходуется на упругое м пластическое деформирование металла, его разруиюппе, преодоление сил трения задних поверхностей инструмента о заготовку и стружки о переднюю поверхность инструмента.  [c.263]

В непагружеиной передаче начальные формы и размер деформирования изменяются. Эти изменения невелики, но существенны для зацепления. Они связаны с зазорами в размерной цепи кулачок — гибкое колесо (радиальные зазоры в гибком подшиппике и зазоры посадки гибкого подшипника в гибкое колесо, которые под нагрузкой выбираются) с контактными деформациями в гибком подшиппике и деформациями жесткого колеса с растяжением гибкого колеса. Исследованиями [281 установлено, что с учетом этих факторов начальное значение wjin следует принимать болыие единицы — см. ниже.  [c.201]

Традиционным подходом к решению задач упруговязкоплас-тичности (наличие мгновенной пластической деформации и деформации ползучести) при переменном во времени термосиловом нагружении является комбинация двух отдельных задач — упругопластической и вязкоупругой. Найденные из первой задачи пластические деформации являются начальными деформациями для задачи вязкоупругости, решение которой осуществляется численным интегрированием во времени уравнений ползучести с применением шагово-итерационной процедуры метода начальных деформаций [10]. Как видно, такой метод исключает возможность анализа НДС элемента конструкции, когда пластическое (неупругое) деформирование материала обеспечивается мгновенной пластической деформацией и деформацией ползучести одновременно. Для решения подобного рода задач можно использовать подход, разработанный в работах [43, 44]. Он основан на введении мгновенных поверхностей текучести, зависящих не только от неупругой деформации (неупругая деформация равна сумме мгновенной пластической деформации и деформации ползучести далее неупругую деформацию будем называть пластической), но и от скорости деформирования. В этом случае решение вязкопластической задачи сводится  [c.13]

Как следует из рис. 3.5, при одной и той же скорости деформирования критическая деформация ef, соответствующая разрушению в агрессивной среде, меньше, чем Zf в инертной среде. Такой эффект может быть обусловлен либо увеличением интенсивности развития повреждений в агрессивной среде, либо снижением критической повреждаемости материала, а также совместным действием этих факторов. В работе [424] предложена модель, базирующаяся на предположении, что реагент среды, диффундируя к границам зерен, снижает их когезивную прочность и тем самым уменьшает критическую повреждаемость материала, отвечающую моменту образования макроразрушения. При этом темп развития межзеренных повреждений принимается инвариантным к среде. Наблюдаемое в опыте увеличение скорости ползучести в агрессивной среде по сравнению с на воздухе в работе [424] не нашло объяснения.  [c.167]

Задаются краевые условия максимальная етах и минимальная emin деформации в цикле (рассматривается жесткий симметричный цикл нагружения) скорости деформации растяжения i и сжатия 2 (в полуцикле растяжения и сжатия 1 = onst) растягивающее напряжение (Ti, при котором начинается пластическое деформирование, и соответствующая деформация 81 (см. рис. 3.10 и 3.11).  [c.179]

Рис. 3.11. Построение кривой деформирования а—е на основе известной петли деформирования в координатах ст—е (ai и 81 — соответственно напряжение и деформация, отвечающие началу пластического деформирования материала Втах и emin — соответственно максимальная и минимальная деформации при жестком нагружении образца) Рис. 3.11. <a href="/info/83830">Построение кривой</a> деформирования а—е на основе известной петли деформирования в координатах ст—е (ai и 81 — соответственно напряжение и деформация, отвечающие началу <a href="/info/121445">пластического деформирования материала</a> Втах и emin — соответственно максимальная и минимальная деформации при <a href="/info/28778">жестком нагружении</a> образца)
В качестве второго примера рассматривался образец из стали 12ХНЗМД размером 5x5x100 мм, подвергнутый одностороннему пластическому поверхностному деформированию (ППД) методом ультразвуковой обработки. Образец разрезали диском с алмазным напылением (толщина 0,8 мм, радиус 80 мм) с измерением длины надреза I и деформации eii = e . Разрезку осуществляли как со стороны, подвергнутой ППД (рис. 5.3, образец /), так и с противоположной стороны (образец II). Результаты измерений представлены ниже.  [c.276]

Поскольку у стали 08Х18Н10Т при Т 450 °С не выявлено склонности к ползучести, то при расчете используется поверхность текучести Ф, не зависяЩ ая от скорости деформирования и являющаяся только функцией мгновенной пластической деформации. В данном случае принимались следующие значения коэффициентов, описывающих диаграмму деформирования стали 08Х18Н10Т при Г = 300 °С = 260 МПа, Ло = 635 МПа, п = 0,43 при Т = 450 °С Стт = 240 МПа, Ло = 620 МПа, п = = 0,43.  [c.344]

На макроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных—уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т. п. К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давления, температуры, концентрадии частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов F и У в уравнениях (4.2) фигурируют дифференциальные и интегральные операторы. Уравнения (4.2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.  [c.146]


Смотреть страницы где упоминается термин Деформирование и деформация : [c.91]    [c.93]    [c.95]    [c.50]    [c.248]    [c.552]    [c.101]    [c.262]    [c.6]    [c.108]    [c.148]    [c.233]    [c.245]    [c.278]    [c.342]    [c.65]   
Смотреть главы в:

Основы гидромеханики неньютоновских жидкостей  -> Деформирование и деформация



ПОИСК



101, геометрическая при кручении сдвиговая секхориальная 35 - Изгиб 17 Деформация оси 74 - Деформирование

Вектор деформаций. Векторное представление процесса деформирования

Влияние механической схемы деформации на усилие деформирования и пластичность

Влияние остаточных напряжений на деформирование поликристалСледствия, вытекающие из наблюдений за границами зерен после деформации

Влияние скорости деформации на пластичность и сопротивление I деформированию

Влияние температурно-скоростных условий деформирования на сопротивление деформации и пластичность металлов

Влияние температуры и скорости деформации на процесс деформирования

Гаденин, А. Н. Романов. Взаимосвязь продольной и поцеречной деформаций при одноосном циклическом упругопластическом деформировании

Деформация Влияние скорости деформирования

Деформация инструментальных сталей 501 — Влияние скорости деформации на сопротивление деформированию 502 на степень

Кинематика деформирования многослойной оболочки. Соотношения между деформациями и перемещениями

О признаке закритической деформации и постулате устойчивости неупругого деформирования в связи со свойствами нагружающей системы

Петля деформирования — Зависимость исходной деформации

Расчет скоростей деформирования и деформации при холодной объемной штамповке

Связь между напряжениями и деформациями при пластическом деформировании

Скорость деформации (деформирования

Сопротивление деформациям длительному статическому деформированию

Сопротивление деформациям длительному циклическому деформированию

Сталь Скорости деформирования и деформации

Схемы деформирования и определение степени деформации . — Технологические параметры стыковой сварки

Теория малых упруго-пластических деформаций — Диаграмма деформирования материалов

Технологическое наследование остаточных напряжений при упрочнении и деформаций при упрочнении поверхностным пластическим деформированием (ППД)

Траектории деформирования в плоскости двумерного вектора деформаций

Траектории деформирования в трехмерном пространстве деформаций

Уменьшение сварочных деформаций, напряжений и перемещений 59 - Конструирование 59 - Нагревы и охлаждения неравномерные 60 - Пластическое деформирование 60 - Термическая обработка 61 Технология и сварка

Функция энергии деформаци динамического деформирования

Численные методы определения полей упругопластических деформаций элементов конструкций при термомеханическом нагружении Модели физически нелинейной среды при циклическом упругопластическом деформировании



© 2025 Mash-xxl.info Реклама на сайте