Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип эквивалентности

Соотношение (3.9) является математическим выражением принципа эквивалентности тепловой и механической энергии.  [c.22]

Отметим, что если исключить из схемы теплового двигателя холодный источник, то формально принцип эквивалентности не будет нарушен. Однако, как показывает опыт и как следует из проведенного выше анализа работы двигателя, такой двигатель работать не будет.  [c.22]

Многочисленными опытами установлено, что весомая масса и инертная масса тела совпадают. Это весьма важное и, на первый взгляд, очевидное положение носит название принципа эквивалентности и является одним из основных положений общей теории относительности А. Эйнштейна, из которой вытекает созданная им теория тяготения.  [c.170]


Эти примеры приводят нас к принципу эквивалентности инертной и тяжелой масс.  [c.441]

В работе изложены принципы эквивалентности, широко используемые в технических задачах в поле понятий адекватно, подобно. Обсуждены общие исходные позиции этих понятий и единство методологий решения технических задач с использованием теории подобия и эквивалентности. Все аспекты проблемы рассматриваются на примере сложного технического объекта, каковым является авиационный двигатель. Книга рассчитана на широкий круг читателей.  [c.244]

Способы определения, произведение, единица, размерность. .. массы. Тело, точка. .. с массой. Принцип эквивалентности, геометрия, центр, распределение, произведение, сумма. .. масс.  [c.4]

Эйнштейн высказал предположение, что вообще никакими физическими опытами невозможно отличить однородное поле тяготения от однородного поля сил инерции. Это предположение, возведенное в постулат, и составляет содержание так называемого принципа эквивалентности сил тяготения и сил инерции все физические явления в однородном поле тяготения происходят совершенно так же, как и в соответствующем однородном поле сил инерции.  [c.53]

В XIX в. ряд первоклассных открытий был сделан русскими учеными. Среди них в первую очередь следует отметить труды академика Михаила Васильевича Остроградского (1801—1861), которому принадлежат глубокие исследования в области аналитической механики особенно важное значение имеет установление М. В. Остроградским вариационного принципа, эквивалентного в частных случаях принципу, известному под названием принципа Гамильтона . Поэтому русские ученые прошлого века называли его принципом Остроградского — Гамильтона. Это название мы и сохраним в дальнейшем.  [c.22]

И установившей фундаментальный постулат об эквивалентности СИЛ инерции и сил тяготения — так называемый принцип эквивалентности Эйнштейна.  [c.448]

Итак, приходим к локальному принципу эквивалентности, утверждающему, что поле тяготения в малой области пространственно-временного континуума эквивалентно полю сил инерции, возникающему при движении с ускорением. Эти два ноля нельзя различить никаким физическим опытом, проводимым в указанной малой области.  [c.475]

Мы записываем выражение для квадрата бесконечно малого интервала, имея в виду, что локальный принцип эквивалентности справедлив в бесконечно малом.  [c.475]

Двоякая возможность объяснения движений свободных тел в системе К позволяет сформулировать общее положение, которое получило название принципа эквивалентности коперникова система отсчета, в которой действует однородное поле тяготения, сообщающее всем свободным телам одинаковое ускорение а, эквивалентна системе отсчета, свободной от поля тяготения, но движущейся относительно коперниковой поступательно с ускорением —а. Из принципа эквивалентности сразу следует сделать важный вывод. Можно расширить границы теории относительности и ввести в рассмотрение системы отсчета, движущиеся равноускоренно относительно коперниковой но при этом окажется необходимым рассматривать поля тяготения, эквивалентные полям инерции равноускоренных систем отсчета.  [c.384]


Первый из этих выводов был получен Эйнштейном в результате распространения приведенного выше принципа эквивалентности полей инерции и тяготения на явление распространения света. Представим себе, что наблюдатель, движущийся в коперниковой системе отсчета ускоренно вверх, наблюдает распространение луча света в горизонтальном направлении. В результате ускоренного движения вверх наблюдатель обнаружит отклонение луча вниз от прямолинейного направления, в котором распространялся бы луч, если бы наблюдатель покоился в коперниковой системе отсчета. Но в силу эквивалентности полей тяготения и инерции наблюдатель может заменить поле сил инерции полем сил тяготения, направленным вниз. Следовательно, в поле сил тяготения луч света не распространяется прямолинейно, а искривляется в направлении поля тяготения i).  [c.385]

В 1916 г. А. Эйнштейн предложил теорию тяготения (общую теорию относительности), фундаментальное значение для которой имеет равенство инертной и гравитационной масс тела, причем считается, что явления инерции и тяготения имеют одну и ту же природу. Это утверждение получило название принципа эквивалентности инерции и гравитации. Тяготение в теории Эйнштейна объясняется проявлением геометрических свойств пространства, рассматриваемого в тесной взаимосвязи с временем, т. е. геометрическими свойствами четырехмерного пространства — времени.  [c.107]

По Эйнштейну, все физические процессы протекают в гравитационном поле совершенно так же, как и без гравитационного поля, но в соответствующим образом ускоренной (трехмерной) системе координат. Гипотеза Эйнштейна о том, что поле тяготения можно полностью заменить ускоренной системой отсчета, называется принципом эквивалентности.  [c.158]

При построении теории тяготения, названной Эйнштейном общей теорией относительности (ОТО), он всецело исходил из принципа эквивалентности гравитационного поля нужным образом ускоренных систем отсчета. А так как разным системам отсчета соответствует разная метрика пространства-времени, то Эйнштейн принял за гравитационное поле метрический тензор gpv риманова пространства-времени. Так принцип эквивалентности привел к отождествлению метрики и гравитации компоненты метрического тензора в ОТО являются в то же время потенциалами тяготения.  [c.158]

В 1748 г. М. В. Ломоносов в письме к Эйлеру, высказывая мысль о законе сохранения вещества и распространения его на движение материи, писал Тело, которое своим толчком возбуждает другое тело к движению, столько же теряет от своего движения, сколько сообщает другому . В 1755 г. Французская Академия наук раз и навсегда объявила, что не будет больше принимать каких-либо проектов вечного двигателя. В 1840 г. Г. Г. Гесс сформулировал закон о независимости теплового эффекта химических реакций от промежуточных реакций. В 1842—1850 гг. многие исследователи (Майер, Джоуль и др.) пришли к открытию принципа эквивалентности теплоты и работы.  [c.30]

Установление принципа эквивалентности было последним этапом в формировании количественной стороны закона сохранения и превращения энергии, вследствие чего дата установления этого принципа обычно отождествляется с датой открытия первого начала термодинамики.  [c.30]

Принцип эквивалентности можно сформулировать следующим образом. Если различные виды энергии взяты в таких количествах, что они вызовут одно и то же изменение состояния данной закрытой системы, то они эквивалентны.  [c.26]

Из принципа эквивалентности теплоты и работы следует, что теплота и работа являются двумя эквивалентными формами передачи энергии.  [c.30]

В 1842—1850 гг. исследователи Р. Майер, Д. Джоуль, Г. Гельмгольц и другие пришли к открытию принципа эквивалентности, т. е. к утверждению того, что превращение теплоты в работу и работы в теплоту осуществляется всегда в одном и том же строго постоянном количественном соотношении  [c.30]

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ 12. ПРИНЦИП ЭКВИВАЛЕНТНОСТИ  [c.24]


Приведенный постулат является следствием известного парадокса в математике, который гласит, что пи одна система в процессе своей эволюции не может быть описана с достаточной полнотой, поскольку никогда заранее не известно, сколько переменных должно быть использовано для описания поведения этой системы. Применительно к разрушающемуся элементу конструкции этот принцип означает, что всегда существует неопределенность в том, каким именно было эксплуатационное нагружение, вызвавшее разрушение конструкции. Отмеченная неопределенность становится понятной применительно к металлическим элементам конструкций, если учесть другой принцип эквивалентности условий нагружения, который гласит следующее  [c.100]

В статике принцип эквивалентности сил был выведен из постулата, утверждающего возможность присоединения или отбрасывания двух равных и прямо противоположных сил, приложенных-в двух точках тела (п° 187). Этот постулат является лишь весьма простым частным случаем общего принципа. Он доказан здесь, но при условиях, очевидно, более сложных и более тонких, чем те, которые были введены в статике. Здесь мы предполагаем, что твердое тело разложено на отдельные материальные точки, к которым приложима теория движения материальной точки, что точки эти находятся на неизменных расстояниях друг от друга и что система внутренних сил эквивалентна нулю.  [c.200]

Ковариантная форма уравнений. Преобразование Лоренца получено нами для замены преобразования Галилея, так как последнее нельзя считать правильным. Теперь мы можем перейти ко второй части нашего исследования и рассмотреть вопрос о принципе эквивалентности, требующем, чтобы законы механики (и вообще законы физики) имели одинаковую форму во всех равномерно движущихся системах. Таким образом, мы должны исследовать законы физики в отношении инвариантности их формы при преобразованиях Лоренца. Эта задача сильно облегчается, если, формулируя эти законы, пользоваться понятием четырехмерного пространства Минковского, введенного в предыдущем параграфе. Мы увидим, что инвариантность данных уравнений относительно преобразований Лоренца тогда можно будет установить непосредственным путем.  [c.218]

Инертная игравитационная массы. Для экспериментального определения массы данного тела можно исходить из закона (1), куда масса входит как мера инертности и называется поэтому инертной массой. Но можно исходить и из закона (5), куда масса входит как мера гравитационных свойств тела и называется соответственно гравитационной (или тяжелой) массой. В принципе ИИ откуда не следует, что инертная и гравитационная массы представляют собой одну и ту же величину. Однако целым рядом экспериментов установлено, что значения обеих масс совпадают с очень высокой степенью точности (по опытам, проделанным советскими физиками (1971 г.),— с точностью до 10 ). Этот экспериментально установленный факт называют принципом эквивалентности. Эйнштейн положил его в основу своей общей теории относительности (теории тяготения).  [c.186]

Принцип эквивалентности. Тот факт, что силы инерции, как и СИЛЫ тяготения, пропорциональны массам тел, приводит к следущему важному заключению. Представим себе, что мы находимся в некоторой закрытой лаборатории и не имеем B03M0HiH0 TH наблюдать внешний мир. Допустим, кроме того, что мы не знаем, где находится лаборатория в космическом пространстве или, скажем, на Земле. Замечая, что все тела независимо от их массы падают в лаборатории с одинаковым ускорением, мы не можем на основании только этого  [c.53]

Глава 14 (Принцип эквивалентности). Особых трудностей здесь нет. Обсудите на семинаре детали опыта Паунда и Ребки.  [c.16]

Выполнив вычисления, находим ф = 0,87". Более точное вычисление ), основанное на специальной теории относительности и принципе эквивалентности, предсказывает вдвое большее зна- 1ение 1,75". Последнее было проверено экспериментально с точностью, по-видимому, около 20 /о. (Скептические замечания по этому поводу появляются и до сего времени.)  [c.420]

Принцип эквивалентности гласит, что для наблюдателя в свободно падающем лифте законы физики такие же, как и в инер-циальных системах отсчета специальной теории относительности (по крайней мере в непосредственном соседстве с центром лифта). Действия ускоренного движения и силы тяжести полностью взаимно уничтожаются. Наблюдатель, сидящий в закрытом лифте и регистрирующий силы, представляющиеся ему гравитационными, не может сказать, какая доля этих сил обусловлена ускорением и какая — действительными гравитационными силами. Он войбще не обнаружит никаких сил, если только на лифт не подействуют какие-либо другие (т. е. отличные от гравитационных) силы. Постулированный принцип эквивалентности требует, в частности, чтобы отношение инертных масс к гравитационным удовлетворяло тождеству Мин/Л гр==1. Невесомость человека в спутнике на орбите является следствием принципа эквивалентности.  [c.420]

Наряду с понятием о массе как мере инертности — инертной массе — в механике приходится иметь дело также с тяготеющей массой , входящей в формулировку закона всемирного тяготения. Как показали многочисленные опыты и в первую очередь оиыты самого Ньютона, численные величины инертной и тяготеющей массы для одного и того же тела равны между собой. Этот принцип эквивалентности инертной и тяготеюш ей масс был в дальнейшем обобщен и па область движений, требующих для своего рассмотрения применения специальной теории относительности (см. гл. XXXI).  [c.16]

Со времен Галилея известно, однако, что именно этим свойством отличается поле тяготения, в котором все массы приобретают одинаковые ускорения. Масса в поле тяготения является количественной характеристикой силы, с которой тело притягивается к другим телам ( тяжелая масса). С другой стороны, при движении тела под действием других сил, отличных от сил тяготения, масса является количественной характеристикой инертности тел, т. е. их способности замедлять процесс изменения собственной скорости ( инертная масса). Понятия инертной и тяжелой масс, казалось бы, не имеют между собой ничего общего, поскольку первое из них относится к движению в любых нолях, а второе — только в гравитационных полях. Тем более примечательными оказались эксперименты Р. Этвеша (1848—1919), показавшего (с достаточно большой точностью), что обе массы пропорциональны друг другу, и, следовательно, выбором единиц их можно сделать просто равными. Этот результат, первоначально казавшийся случайным, Эйнштейн воспринял как фундаментальный физический принцип, давший возможность сделать вывод о локальной эквивалентности полей сил инерции и тяготения и тем самым установить принцип эквивалентности инертной и тяжелой масс ). Следующее простое рассуждение, принадлежащее Эйнштейну, иллюстрирует эту мысль. Предположим, что в кабине лифта свободно падает твердое тело. Если кабина лифта покоится относительно Земли, то тело будет двигаться в локально однородном поле тяжести с постоянным ускорением g. Пусть теперь одновременно с телом свободно падает и кабина лифта. При одинаковых начальных условиях для кабины и тела последнее будет находиться в покое относительно кабины. В ускоренной (неинерциальной) системе отсчета, связанной с кабиной, на тело наряду с силой тяжести бу,дет действовать равная и противополоокная ей по направлению сила инерции, и под действием этих двух сил тело будет находиться в равновесии ( невесомость ).  [c.474]


Измерение гравитационной постоянной. Принцип эквивалентности, оставляя невыясненной прнчхшу совпадения инертной н гра-  [c.50]

Объединяя принцип эквивалентности (8) и результаты опытов Галилея, получаем, что напряже1шость гравитационного поля на Земле равна ускореншс свободного падения  [c.57]

Однако первое из двух указанных особых сгойств сил инерции таково, что связанное с ним отличие сил инерции от обычных сил yuie T-вует только в классической механике. В теории относительности, наоборот, существует принцип эквивалентности, из которого следует, что между силой инерции и одной из наиболее распространенных в природе обычных сил — силой тяготения — не должно существовать различий. И действительно, если мы вернемся к тем соображениям, на основании которых Эйнштейн пришел к формулировке принципа эквивалентности, то мы сразу увидим, что в механике общей теории относительности эти силы появляются на совершенно равных правах.  [c.387]

Первое начало термодинамики — математическое выражение закона сохранения и превращения энергии применительно к тепловым процессам в его наиболее общей форме. Открытию закона сохранения и превращения энергии предшествовали многочисленные экспериментальные и теоретические исследования в области физики и химии, развитие тепловых двигателей в XVIII и XIX столетиях, установление принципа, исключающего построение вечного двигателя первого рода (1775 г.), открытие закона Г. И. Гесса (1840) и, наконец, принципа эквивалентности (1842—1850 гг.) как завершающего этапа в открытии закона сохранения и превращения энергии.  [c.29]

Преобразование Лоренца можно рассматривать как ортогональное преобразование в пространстве Минковского. В этом четырехмерном пространстве можно говорить о скалярах, векторах и тензорах любого ранга, обобщая на них (очевидным образом) те преобразования, которые мы имели для аналогичных величин в трехмерном пространстве. Так, например, мы будем говорить о четырехмерных векторах или короче о 4-векторах и т. п. Инвариантность физического закона относительно преобразований Лоренца можно сделать тогда очевидной, если выразить этот закон в ковариантной четырехмерной форме-, все члены уравнения, выражающего этот закон, должны быть при этом тензорами одного ранга. Если же закон не удовлетворяет требованиям принципа эквивалентности, то ему нельзя будет придать ковариантную форму. Следовательно, характер преобразования (в четырехмерпом пространстве) членов равенства, выражающего физический закон, дает нам критерий для решения вопроса о релятивистской правильности этого закона.  [c.219]


Смотреть страницы где упоминается термин Принцип эквивалентности : [c.414]    [c.420]    [c.420]    [c.50]    [c.141]    [c.211]    [c.751]    [c.244]   
Смотреть главы в:

Механика  -> Принцип эквивалентности

Механика  -> Принцип эквивалентности

Основы теплотехники  -> Принцип эквивалентности

Основы термодинамики и теплотехники  -> Принцип эквивалентности

Теория упругости Изд.2  -> Принцип эквивалентности


Основные законы механики (1985) -- [ c.5 , c.247 ]

Физические основы механики и акустики (1981) -- [ c.107 ]

Цифровые системы управления (1984) -- [ c.277 ]

Теория ядерных реакторов (0) -- [ c.356 ]



ПОИСК



В эквивалентное

Гетерогенные системы принцип эквивалентности

Макроскопической эквивалентности принцип

Первый закон термодинамики 2- 1. Принцип эквивалентного тепла и работы

Первый закон термодинамики. Принцип эквивалентности

Принцип Сен-Венана п статически эквивалентные системы Внутренние силы

Принцип виртуальных мощностей для медленных движений Геометрическая интерпретация проблемы минимума функционала. Уравнение Эйлера для недифференцируемого функционала. Эквивалентность принципа виртуальных мощностей задаче о минимуме функционала Теоремы существования

Принцип виртуальных мощностей. Вязкие сплошные среды Монотонные многозначные операторы. Преобразование Юнга Вязко- и жесткопластические среды. Условие текучести и ассоциированный закон. Теоремы единственности и постулат Друкера Эквивалентность принципа виртуальных мощностей задаче о минимуме функционала

Принцип статически эквивалентных нагрузок

Принцип стохастической эквивалентност

Принцип упругой эквивалентности

Принцип эквивалентности Майера — Джоул

Принцип эквивалентности Состояние невесомости

Принцип эквивалентности инертной н тяготеющей масс

Принцип эквивалентности тепла и работы

Принцип эквивалентности теплоты и работы

Принцип эквивалентных непрерывных представлений. . — Метод разделения замещающей системы

Сущность первого закона термодинамики. Принцип эквивалентности тепла и работы

Теплота. Принцип эквивалентности теплоты и работы

Усилители заряда — Принцип действия 238, 239 Эквивалентные схемы

Формулировки первого закона термодинамики. Принцип эквивалентности

Четырехмерная формулировка общего принципа относительности и принципа эквивалентности

Эйнштейн принцип эквивалентности

Эквивалентность вариационного принципа Гамильтона и принципа Даламбера-Лагранжа

Эквивалентность пар

Эквивалентность сил инерции и тяготения (принцип)

Эквивалентные тока — Принцип действия 239 — Эквивалентная схема



© 2025 Mash-xxl.info Реклама на сайте