Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения твердого тела с неподвижной точкой

Уравнения движения твердого тела с неподвижной точкой (п = 3) в известных случаях их интегрируемости Эйлера и Лагранжа [3] допускают общий двухчастотный интеграл, и поэтому степень вырождения в указанном выше смысле равна единице.  [c.149]

Дифференциальные уравнения движения твердого тела с неподвижной точкой. Динамические уравнения Эйлера  [c.205]


Из леммы 1 следует, в частности, что уравнения движения твердого тела с неподвижной точкой в переменных I, g, Н, Ь, С, Н имеют вид  [c.38]

Уравнения движения твердого тела с неподвижной точкой  [c.47]

Конечно, эти уравнения будут описывать также движение твердого тела с неподвижной точкой в случае отсутствия внешних моментов.  [c.181]

Знания, доставшиеся в наследство от предыдущего периода, оказались недостаточными для расчета сооружений, новых по конструкции и по применяемым материалам. Строители вынуждены были все чаще обращаться к теории упругости, уравнения которой были весьма сложными. Выход из создавшегося положения был найден в использовании метода физических аналогий. В 1887 г. Г. Р. Кирхгоф [9, с. 307] обнаружил, что общие уравнения равновесия упругого стержня тождественны с уравнениями движения твердого тела относительно неподвижной точки. Подобную же аналогию между балкой и плавающим в воде брусом установил в 1898 г. наш соотечественник В. Г. Шухов [10].  [c.204]

Ои вывел общие уравнения равновесия для пространственной изогнутой кривой стержня в предположении больших прогибов. Он доказал далее, что если силы приложены только по концам стержня, то эти уравнения оказываются тождественными с уравнениями движения твердого тела относительно неподвижной точки. Благодаря этому стало возможным уже известные решения динамики твердого тела применить непосредственно к определению деформации тонкого стержня. Этот прием получил известность под наименованием динамической аналогии Кирхгоффа. В качестве простого примера применения этой аналогии сопоставим поперечное выпучивание сжатого стержня АВ (рис. 131, а) с колебанием математического маятника (рис. 131,6). Оба эти явления описываются одним и тем же дифференциальным уравнением, существующая же между ними связь сводится к следующему если точка М движется но кривой АВ с постоянной скоростью, так что дугу АВ она проходит за время, равное полупериоду маятника, и если М начинает удаляться от в тот момент, когда маятник находится в крайнем положении п касательная к кривой в А образует с вертикалью угол, равный тому, которым определяется крайнее положение маятника, то и при всяком  [c.307]

Эти уравнения по виду тождественны с уравнениями движения твердого тела около неподвижной точки, так что можно применить хорошо известное решение этой задачи, данное Пуансо. Вращательное движение тела мы получим, если заставим эллипсоид (7), неподвижно связанный с телом, катиться по неподвижной в пространстве плоскости  [c.214]


Если тело представляет собой симметричный ротор с неподвижной относительно тела 5] осью, то уравнения относительного движения будут иметь вид уравнений движения твердого тела с неподвижной осью.  [c.441]

В 1888 г. первая русская женщина-математик Софья Васильевна Ковалевская (1850—1891), прославившая своими замечательными трудами русскую науку, написала научную работу, в которой рассмотрела новые случаи интегрируемости уравнений движения твердого тела около неподвижной точки. За эту работу Французская Академия паук присудила С. В. Ковалевской премию.  [c.8]

Кинематические условия прецессионных движений твердого тела с неподвижной точкой. Пусть в неподвижном пространстве существует некоторое фиксированное направление, характеризующееся единичным вектором 77 (например, направление оси симметрии силового поля). Кроме того, предположим, что 7 — единичный вектор, также неизменный в пространстве. Начала векторов и 7 совпадают с неподвижной точкой О твердого тела. Если через ш обозначим угловую скорость тела, то для 17 и 7 имеем уравнения  [c.239]

МОЖНО убрать черту над буквами, так как в рассматриваемом случае Е ж Е тождественны. Тем самым уравнения движения твердого тела с закрепленной точкой есть уравнения (13). Еще раз напомним, что в случае Б начало репера совпадает с неподвижной точкой О, а не с центром масс твердого тела, как в случае А.  [c.184]

С точки зрения механики они представляют собой наиболее общую и компактную гамильтонову форму уравнений движения твердого тела вокруг неподвижной точки, содержащую компоненты кинетического момента как в подвижной, так и в неподвижной системах координат.  [c.283]

Уравнения движения твердого тела, имеющего одну неподвижную точку. Если твердое тело движется таким образом, что какая-нибудь одна его точка остается неподвижной, то такое движение называется движением твердого тела вокруг неподвижной точки или сферическим движением. При этом неподвижная точка может или принадлежать телу, или находиться вне тела, но тогда следует представлять себе, ЧТО она каким-нибудь образом неизменно связана с телом, например при помощи стержня. Примером твердого тела, имеющего одну неподвижную точку, может служить волчок, заостренный конец ножки которого упирается в гнездо, сделанное в подставке, так что этот конец ножки при вращении волчка остается неподвижным.  [c.375]

Уравнения Эйлера. — Уравнения, о которых идет речь, получаются применением теоремы моментов к движению твердого тела, имеющего неподвижную точку О. Если построить, относительно неподвижной точки, результирующий момент количеств движения, или кинетический момент (ОК), и, с другой стороны, результирующий момент внешних сил (00), то скорость точки К будет геометрически равна вектору (00). Заметим, что момент внешних сил приводится к моменту прямо приложенных сил, так как момент реакции в неподвижной точке относительно той же точки, очевидно, равен нулю.  [c.86]

Так, например, если у свободно падающего тела закрепляются неожиданно одна или две точки, то вводятся связи (закрепление в точке, или вдоль оси), под действием которых, по крайней мере в общем случае, должны возникнуть резкие изменения скоростей, потому что движение тела до удара в общем случае не было таким, которое характерно для твердого тела с неподвижной точкой или осью. В этом случае надо принять, что резкое изменение связей произошло до момента, начиная с которого рассматривается импульсивное движение, и уравнение (48) должно применяться только к тем виртуальным перемещениям, которые совместимы со связями, вводимыми внезапно, причем нужно иметь в виду, что в этом специальном случае не войдут активные импульсы (/ = 0).  [c.501]

Так же получим два других аналогичных уравнения. Таким образом полученные уравнения тождественны по форме с уравнениями Эйлера для свободного движения твердого тела около неподвижной точки.  [c.258]


Аналитически движение твердого тела вокруг неподвижной точки определяется уравнениями (76) предыдущего параграфа. Рассмотрим теперь это движение с геометрической точки зрения. Как увидим ниже, геометрическая картина движения тела вокруг неподвижной точки аналогична той, которую для плоскопараллельного движения тела дает теорема о центроидах ( 81).  [c.332]

Большая часть сделанных добавлений связана с включением в курс параграфов, содержащих дополнительные сведения о движении твердого тела вокруг неподвижной точки (кинематические и динамические уравнения Эйлера), и главы, где излагаются основы метода обобщенных координат (уравнения Лагранжа) разнообразие требований, предъявляемых к курсу теоретической механики при подготовке специалистов разных профилей, заставляет уделить какое-то место этому материалу и в кратком курсе. Изложение в минимальном объеме элементарной теории гироскопа и таких актуальных в наши дни вопросов, как движение в поле тяготения (эллиптические траектории и космические полеты) и движение тела переменной массы (движение ракеты), в книге сохранено дополнительно написан параграф, посвященный понятию о невесомости. Представление о содержании книги в целом и порядке изложения материала дает оглавление.  [c.9]

Аналогичных случаев может быть много и при движении летательных аппаратов, в особенности космических, когда движение должно подчиняться требованиям, выражаемым неголономными уравнениями спуск на поверхность планеты, подавление излишних периферических вращений создание, наоборот, вращений, необходимых для выполнения того или иного маневра, или выполнения тех или иных научных исследований и т. д. Уравнения связей могут быть и нелинейными и высших порядков. Совсем недавно был установлен замечательный факт в кинематике движений твердого тела вокруг неподвижной точки (в сферическом движении). Оказалось, что характер сферического движения тела тесно связан с поведением вектора угловой скорости тела. В частности, могут быть такие сферические движения, при которых вектор мгновенной угловой скорости остается в одной и той же плоскости тела, проходящей через неподвижную точку.  [c.12]

При отсутствии динамической симметрии решение задачи о движении твердого тела вокруг неподвижной точки по инерции описывается эллиптическими функциями. Мы проведем лишь качественный анализ, данный Пуансо. В соответствии с формулой (12.20) уравнение эллипсоида инерции, построенного для точки О в подвижных Осях Охуг (точка О — неподвижная точка тела), жестко связанных с телом, имеет вид  [c.326]

Следствие 1. В фазовом пространстве переменных L, I, G, g нет аналитического интеграла приведенной системы канонических уравнений движения несимметричного тяжелого твердого тела с неподвижной точкой, независимого от интеграла энергии Ж, 2тг-периодического по угловым переменным I, g и аналитического по параметру л в окрестности значения fj, = 0.  [c.63]

Согласно теореме 3 вековое множество совпадает с множеством 9 резонансных торов задачи Эйлера-Пуансо, которые удовлетворяют условиям теоремы Пуанкаре о рождении изолированных периодических решений. Ниже будет показано, что как раз рождение большого числа невырожденных периодических решений уравнений движения несимметричного тяжелого твердого тела с неподвижной точкой несовместимо с интегрируемостью этой задачи.  [c.97]

Прошло уже 110 лет с тех пор, как С. В. Ковалевская открыла новый случай интегрируемости уравнений движения тяжелого твердого тела с неподвижной точкой (1888 г.). Однако до сих пор о качественных свойствах движения тела в этом случае известно очень мало. Все параметры движения выражены через время при помощи квадратур, однако они настолько громоздки, что не позволяют непосредственно изучить вращение твердого тела. Были даже поставлены эксперименты с волчком Ковалевской (проф. Мерцалов, см. [30]), но при этом результаты получились очень запутанными и не привели к выявлению существенных закономерностей движения. Запутанность движения оси динамической симметрии в этих экспериментах объясняет, по-видимому, тот факт, что в общем случае множество D ( 4) на неподвижной единичной сфере является двумерной областью, и траектория точки р ( 4) заполняет эту область всюду плотно.  [c.224]

Это утверждение полезно сравнить с результатом работы [177], где рассмотрен случай, когда Д состоит из тг + 1 векторов Аь. .., а +1, причем любые тг из них линейно независимы. В [177] показано, что критерием алгебраической интегрируемости системы (4.2) является именно выполнение условия (4.7). Следствие 1 утверждает, что в этом случае критерием интегрируемости по Биркгофу также является (4.7). Зга ситуация аналогична имеющей место в классической задаче о вращении тяжелого твердого тела с неподвижной точкой уравнения движения алгебраически интегрируемы в том и только том случае, когда они имеют полный набор независимых полиномиальных интегралов.  [c.388]

Развитие результатов Эйлера в области динамики твердого тела было проведено в дальнейшем главным образом русскими учеными . Знаменитая русская женщина-математик С. В. Ковалевская (1850—1891) обнаружила новый случай интегрируемости уравнений Эйлера в динамической задаче о движении твердого тела около неподвижной точки. В своей работе Ковалевская задается целью отыскать такие классы движений тяжелого твердого тела, для которых проекции мгновений угловой скорости на подвижные оси выражаются в виде некоторых функций времени, имеющих особые точки только в форме полюсов первого порядка. Этим путем она нашла решение новой, труднейшей задачи о движении несимметричного гироскопа, и ее работа вызвала появление обширной литературы как в нашей стране, так и за границей.  [c.33]


В частном случае, когда точка крепления к струне О2 и центр масс тела С совпадают, а = О и уравнения (1) разделяются. При этом центр масс движется как сферический маятник, а движение вокруг центра масс происходит точно так же, как в случае Эйлера движения твердого тела вокруг неподвижной точки. Если длина струны равна нулю, то имеет место случай движения тела с неподвижной точкой.  [c.283]

Если D — el е = onst), то уравнения (9) аналогичны уравнениям движения твердого тела с неподвижной точкой в центральном ньютоновском поле сил с неподвижной точкой в центре масс [11]  [c.91]

Обращаем внимание читателя на следующее замечание принципиального характера в предыдущих главах мы встречались с некоторыми задачами, решения которых в законченном виде мы не могли получить например, уравнение движения маятника уравнения движения твердого тела вокруг неподвижной точки даже в эйлеровом случае не интегрируются в элементарных функциях в случае задачи трех тел мы не можем свести интегрирование дифференциальных уравнений  [c.308]

Рассматривается движение твердого тела с неподвижной точкой. Используя для радиуса-вектора г произвольной точки соотношение г = Л о Го о Л (где Го — начальное положение произвольной точки тела, Л — нормированный кватернион, задаюш ий положение тела) и выражение для скорости произвольной точки тела в виде г = со X г, получить кинематические уравнения Пуассона в кватернионах.  [c.44]

Из результатов, полученных Кирхгофом в механике твердых деформируемых тел, отметим слёдующие обоснование теории пластин двумя гипотезами (ныне носящими имя автора), вывод формулы для потенциальной энергии деформации пластины, энергетический вывод уравнения изгиба пластины, приведение в соответствие числа граничных условий и порядка дифференциального уравнения в теории пластин, исследование колебаний пластин и стержней переменного сечения, построение геоме рически нелинейной теории изгиба пластин, вывод нелинейных уравненнй равновесия для пространственного гибкого стержня, формулирование динамической аналогии (сопоставление уравнения равновесия стержня и уравнения движения твердого тела относительно неподвижной точки), экспериментальное определение величины коэффициента Пуассона с целью выявления правильной точки зрения в дискуссии о числе независимых упругих постоянных в изотропном теле.  [c.47]

Уравнения движения тяжелого твердого тела вокруг неподвижной точки и их первые интегралы. Рассмотрим движение твердого тела вокруг неподвижной точки О в однородном поле тяжести. Ось 0Z пеиодвткной системы координат направим BepTH-< калыю вверх. С движущимся телом жестко свяжем систему координат Oxyz, осп которой направим вдоль главных осей инерции тела для неподвижной точки О.  [c.169]

Уравнения движения тяжелого твердого тела вокруг неподвижной точки и их первые интегралы. Рассмотрим движение твердого тела вокруг неподвижной точки О в однородном поле тяжести. Ось 0Z неподвижной системы координат направим вертикально вверх. С движущимся телом жестко свяжем систему координат Oxyz оси которой направим вдоль главных осей инерции тела для неподвижной точки О. Координаты центра тяжести G в системе координат Oxyz обозначим а, Ь, с. Ориентацию тела относительно неподвижной системы координат будем определять при помощи углов Эйлера ф ср, которые вводятся обычным образом (рис. 104).  [c.203]

Анализ бесконечно малых величин в приложении к задачам механики впервые применил знаменитый математик и механик XVIII в., член Россййской Академии наук Леонард Эйлер (1707—1783). Он написал 43 тома сочинений н более 780 статей. Большое число его выдающихся трудов относится к задачам механики. Эйлером был создан фундаментальный труд по аналитической динамике точки и твердого тела. С большой ясностью и полнотой Эйлер разработал задачи о движении твердого тела около неподвижной точки. Полученные Эйлером в этих задачах формулы, известные под названием эйлеровых, вошли во все современные курсы теоретической механики. Эйлера следует считать и основателем гидродинамики, так как он впервые вывел основные уравнения движения идеальной жидкости.  [c.7]

Уравнения Больцмана — Гамеля в неголономных координатах, ни составленные для систем только с голономными связями, не являются продуктом только, хотя и изяш[ного, но формального и, может быть, бесполезного преобразования такие уравнения могут быть более удобны для решения конкретных задач, сравнительно с уравнениями Лагранжа в голономных координатах. Ярким примером этому могут служить динамические уравнения Эйлера в задаче о движении твердого тела вокруг неподвижной точки. Проекции угловой скорости сох, щ, можно считать  [c.6]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]


Ю. А. Гартунг разработал теорию движений тела с обобщенными прецессиями угловой скорости а) с точечным относительны М годографом угловой скорости (случай Лагранжа — Эйлера) б) с орямоли нейным годографом угловой скорости в подвижной плоскости, иосителе вектора угловой скорости (случай Гриоли) в) с круговым годографом г) с эллиптическим годографом. Применялись уравнения Ценова для систем с неголономными связями второго порядка, причем в одних случаях находились управляющие моменты в виде реакций связей, а в других эти дополнительные управляющие воздействия отсутствовали, т. е. находились новые частные случаи, вернее, может быть подслучаи в классической задаче о движении твердого тела вокруг неподвижной точки.  [c.14]

Эти общие соображения С. А. Довбыш применил к известной задаче о вращении несимметричного твердого тела с неподвижной точкой в слабом однородном поле силы тяжести. Малым параметром здесь служит произведение массы тела на расстояние от центра масс до точки подвеса. Факторизацией по группе вращений вокруг вертикали задача сводится к гамильтоновой системе с двумя степенями свободы. Фиксируя еще положительное значение постоянной интеграла энергии и применяя метод Уиттекера изоэнергетической редукции, уравнения движения можно привести к гамильтоновым уравнениям с 3/2 степенями свободы и периодическим по новой переменной времени гамильтонианом рассмотренного выше типа (все детали можно найти в книге [83]). В этой задаче диаграмма сепаратрис невозмущенной задачи Эйлера (в несимметричном случае) имеет вид, изображенный на рис. 29 (точки и 2з совпадают, так как фазовым пространством системы является цилиндр, а не плоскость). Особенностью этой задачи является совпадение характеристических чисел для гиперболических положений равновесия и 2. Выделим сепатрисы Г1, Гг и Гз, как показано на рис. 29.  [c.290]


Смотреть страницы где упоминается термин Уравнения движения твердого тела с неподвижной точкой : [c.49]    [c.72]    [c.208]    [c.103]    [c.5]    [c.133]    [c.17]    [c.66]    [c.116]    [c.228]    [c.145]   
Смотреть главы в:

Динамика твёрдого тела  -> Уравнения движения твердого тела с неподвижной точкой



ПОИСК



Движение твердого тела

Движение твердого тела с неподвижной точкой

Движение твердых тел

Неподвижная точка

Твердое тело с неподвижной точко

Твердое тело с неподвижной точкой

Тело с неподвижной точкой

Точка — Движение

УРАВНЕНИЯ движения твердых тел

Уравнение точки

Уравнения движения твердого тела

Уравнения движения точки



© 2025 Mash-xxl.info Реклама на сайте