Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Введение в теорию пластин

Введение в теорию пластин  [c.209]

ВВЕДЕНИЕ В ТЕОРИЮ ПЛАСТИН  [c.211]

Построенная ими теория основывается на допущениях, введенных впервые Г. Кирхгофом в теории пластин и имеющих непосредственную связь с гипотезами Бернулли—Эйлера в теории балок.  [c.47]

Снижение несущей способности слоистого композита от введения кругового отверстия не соответствует величине теоретического коэффициента концентрации напряжений, подсчитанного по теории анизотропных пластин в предположении об однородности композита. Снижение предельных напряжений тем больше, чем больше радиус отверстия. Другими словами, коэффициент концентрации напряжений увеличивается с размером отверстия в бесконечной пластине. Это также не соответствует результатам, полученным для однородных анизотропных материалов.  [c.52]


Рассмотрим задачу изгиба тонких гибких пластин при совместном действии поперечных и продольных нагрузок. Решение этой задачи будем строить на основании введенных в 20.1 гипотез теории изгиба тонких пластин. Это означает, что искривление пластины при изгибе по-прежнему будет считаться весьма незначительным, а продольные перемещения — малыми по сравнению с прогибом.  [c.465]

Модель, введенная в [1], основана на классической теории изгиба пластин. Здесь нет необходимости входить в детальное обсуждение вопроса об использовании теории пластин (или оболочек) высокого порядка для исследования трещин (см., например, [2—4]). Достаточно отметить, что поле напряжений, асимптотически стремящееся к вершине трещины и определенное с помощью классической теории пластин, не соответствует решениям, полученным в теории упругости. В то же время момент-ная теория (например, теория Рейсснера [5,6]) в состоянии учесть результирующие всех напряжений и моментов, действующих на поверхность трещины в отдельности (т. е. три граничных  [c.244]

Третье издание книги разбито на две части, часть А и часть В. Содержание части А, озаглавленной Формулировка вариационных принципов в теории упругости и пластичности , практически не отличается от первого издания, за исключением некоторых новых тем в гл. 5 и 7. Содержание части В, озаглавленной Вариационные принципы как основа методов конечных элементов , мыслится как улучшенное изложение приложения I второго издания. В этой части систематически излагаются классические вариационные принципы и модифицированные вариационные принципы со смягченными (ослабленными) требованиями непрерывности применительно к задачам статической теории упругости (теория малых перемещений и теория конечных перемещений) и динамической теории упругости, а также к теориям геометрической и физической нелинейности и теории изгиба упругих пластин. Последняя глава посвящается методам дискретизации и содержит вновь добавленное введение в метод граничных элементов.  [c.8]

Метод Кирхгофа имеет преимущество перед методом Коши— Пуассона благодаря большей наглядности и физической ясности в основу теории положены упрощения, имеющие вполне определенный физический смысл и очевидную преемственность от хорошо проверенной опытами теории балок. Введение понятий о внутренних усилиях и моментах еще более сблизило теорию пластин с теорией балок и привело к окончательному выяснению вопроса о граничных условиях для пластин, который, как было уже сказано, долгое время оставался предметом дискуссии. В то же время нельзя не отметить существенный недостаток этого метода, а именно — его ограниченность теория Кирхгофа является приближенной и не может быть развита в точную теорию. В этом отношении теория Коши—Пуассона была бы предпочтительней, если бы удалось, наконец, выяснить условия сходимости ее рядов, поскольку она позволяет, в принципе, неограниченно уточнять решение.  [c.7]


Введение. В данном параграфе рассматриваются контактные задачи теории упругости и вязкоупругости со штампами, равномерно перемещающимися вдоль деформируемых тел с постоянной скоростью IV. Предполагается, что в подвижных системах координат, связанных со штампами, существуют установившиеся режимы, и следовательно, рассматриваются стационарные задачи без начальных условий. В качестве деформируемых структур будут фигурировать классические двумерные и трехмерные области типа полуплоскости, полупространства, полосы, слоя и волноводов. С другими типами задач с подвижными штампами и источниками возмущений, как например, для одномерных объектов, для пластин и оболочек, с задачами с неравномерным движением и пр., можно ознакомиться по монографиям [20, 23, 35], обзору [31] и др.  [c.331]

Ниже рассмотрим расчет тонких жестких пластин на изгиб. Благодаря введению некоторых гипотез теория этих пластин довольно проста и сводится к линейным дифференциальным уравнениям. Деформации гибких пластин (а также мембран и оболочек) описываются системой нелинейных уравнений, что существенно усложняет задачу. Эти вопросы будут рассмотрены в гл. 9.  [c.147]

Область применимости различных аппроксимаций. Так же как это делалось в приведенных в конце глав 3 и 5 обсуждений задач для балок и пластин, здесь можно рассмотреть области применений различных классических-теорий оболочек, а также направления возможного усовершенствования их путем введения соотношений между определенными величинами )  [c.560]

Глава 1 служит введением к тому. В ней рассматриваются основные понятия микромеханики, дается определение эффективных модулей и изучается влияние количества волокон в толще одного слоя на эффективные свойства слоистого композита. В главе 2 Н. Дж. Пагано выводит точные выражения для эффективных модулей слоистых материалов. Далее он обсуждает переход от точных результатов к теории слоистых пластин и явление пограничного слоя у свободных поверхностей. Глава 3 представляет собой обзор различных подходов к вычислению эффективных упругих модулей композиционных материалов. Вязкоупругое поведение композитов обсуждается в главе 4. Кроме того, эта глава служит введением в теорию вязкоупругости.  [c.11]

Классическая теория тонких оболочек, построенная в конце прошлого столетия Г. Ароном, Бассе и А. Лявом основывается на допущениях, введенных впервые Г. Кирхгофом в теории пластин и непосредственно связанных гипотезами Бернулли—Эйлера в теории балок. Эти допущения могут быть сформулированы следующим образом  [c.52]

В механике сплошных сред используются два типа координат пространственные — эйлеровы и материальные ( вмороженные в тело ) — лагранжевы (К. 3. Галимов, 1946—1955 И. И. Гольденблат, 1950, 1955 В. В. Крылов, 1956 Д. И. Кутилин, 1947 В. В. Новожилов, 1948). Более удобными в нелинейной теории являются материальные координаты (В. В. Новожилов, 1958), в которых значительно проще формулируются граничные условия и деформационные гипотезы (например, гипотеза прямой нормали в теории пластин и оболочек, гипотеза плоских сечений в теории изгиба балок). Если же рассматривать не сам процесс деформации, а (как это и делается в теории упругости) только начальное и конечное положения тела, то введение пространственных координат становится излишним (Л. И. Седов, 1962). При этом величины, характеризующие деформацию и равновесие тела, можно относить либо к недеформированно-му, либо к деформированному материальному координатному базису. Подробно о выборе координатных векторных базисов и связи между ними сказано в монографии Л. И. Седова (1962).  [c.72]

Вариационный принцип возможных скоростей при конечных перемещениях и малых по сравнению с единицей удлинениях введен в теорию установившейся ползучести пластин и оболочек И. Г. Терегуловым [110].  [c.267]

Математическое исследование двумерных моделей пластин, включающее, в частности, обзор теорем существования в нелинейном случае и введение в теорию буфуркации (том II).  [c.9]


Уравнения равновесия. Уравнения равновесия дифференциального элемента оболочки ABdadpdy были приведены во введении. Однако в дальнейшем, как и в теории пластин или изотропных оболочек, нас будут интересовать уравнения равновесия дифференциального элемента оболочки АВ da Ь с конечной, толщиной й.  [c.32]

В теории тонких пластин наряду с введенными ранее кинематическими гипотезами вводят статическую гипотезу Кирхгофа, которая аналогична гипотезе о ненадавливаемости слоев, принятой  [c.370]

Во введении к части А дается общее представление о вариационных принципах и методах механики. Первые 10 глав посвящены формулировкам и применениям вариационных принципов и методов в теории упругодеформируемых сложных тел, скручиваемых стержней, балок, пластин, оболочек и конструкции. Первая, третья и четвертая главы носят подготовительный характер, и в них обсуждаются основные соотношения теории упругости для случаев малых и больших деформаций. Здесь же содержится изложение классических принципов виртуальной работы и дополнительной виртуальной работы, которые существенным образом используются в других главах при выводе минимальных вариационных принципов статики упругого тела. Важные обобще-  [c.5]

Содержание этой книги охватывает три основные темы теорию изгиба балок (в частности, теорию балок прямоугольного поперечного сечения, служащую как бы введением и одновременно частным случаем двух остальных тем), теорию пластин и теорию оболочек. Каждой из этих тем посвящена обширная литература, причем, как правило, монографии, посвященные этим темам, являются весьма интересными. Предлагаемая трактовка представляется в лучшем случае как введение к этим темам с несколько необычным акцентом на такие интересные с практической точки зрения аспекты, как ошибки, возникающие при различных широко используемых аппроксимациях, и методы получения, когда это диктуется необходимостью, уточненных результатов.  [c.7]

Частота поперечных колебаний пластины. Подобно соответствующему случаю колебания балки этот случай усложняется тем обстоятельством, что, когда становится существенным влияние поперечных деформаций, становится также существенным влияние ускорения внешних волокон пластины в ее плоскости (таи называемая инерция поворота или инерция вращения в балках). Поскольку прогиб w обусловленный деформациямГи поперечного сдвига, не вызывает поворотов поперечных сечений при введении допущения о равномерном распределении поперечных касательных напряжений (здесь имеются некоторые незначительные перемещения в плоскости нласАны, соответствующие искажению поперечных сечений при действительном (по параболическому закону) распределении этих напряжений), то при подсчете влияния инерции вращения необходимо рассматривать только перемещения Wf от изгиба в рамках классической теории пластин.  [c.385]

Из анализа обзора [85] следует, что дискретное продолжение решения геометрически нелинейных задач теории пластин и пологих оболочек впервые применил М. С. Корнишин [148]. Для изучения гибких упругопластических оболочек этот подход реализован в [ПЗ], где в качестве параметра введен прогиб оболочки в центре, что позволило исключить трудности получения решения в окрестности предельных точек. Для-нх прямого определения (без построения траектории состояний равновесия) проведено продолжение решения по геометрическому параметру подъемистости оболочки, система уравнений равновесия дополнена уравнением det /) = О, где J — матрица линеаризованной системы алгебраических уравнений, полученной методом Ритца.  [c.25]

Отметим, что дискретный способ содержит более гибкие и широкие возможности для описания таких течений, в которых вихревые поверхности теряют устойчивость. Примером может служить изучение вихревых дорожек Кармана за пластиной. Здесь расчетньш путем устанавливаются устойчивые вихревые образования, обладающие конечными размерами. Вместе с тем классические дорожки Кармана [1.11, 1.12], строго говоря, неустойчивы [3.35]. Это связано с тем, что во введенной Карманом дорожке вихри имеют бесконечно малые размеры. Болес того, оказалось, что постулировать то или иное предельное течение для т —> оо в трывных задачах не всегда допустимо и при более широких допущениях, так как их может быть несколько (симметричная и несимметричная дорожки за пластиной). В теории решение может зависеть от начальных условий зада ш, а практическая реализуемость того или другого режима может определяться и другими обстоятельствами. В указанном случае наличие симметри шо поставленной разделительной пластины делает устойчивым симметричный режим, а отсутствие ее — несимметричный.  [c.59]

Степан Прокофьевич Тлмошенко широко известен многим поколениям студентов, инженеров, научных работников своими многочисленными книгами по сопротивлению материалов, теории устойчивости деформируемых систем, теории колебаний, теории сооружений, теории пластин и оболочек и, наконец, по теории упругости. Ему принадлежит исключительно большая роль в развитии современной теории упругости и ее приложений к разнообразным инженерным задачам. Введенные С. П. Тимошенко расчетные модели инженерных сооружений и методы их исследования широко применяются и в настояш ее время в суд о-, авиа-, мостостроении и других областях промышленного и гражданского строительства.  [c.5]

Введение. В гл. II мы получали различные обтекания пластин и клиньев, интуитивно определяя форму годографа и области изменения комплексного потенциала W и находя затем элементарное конформное отображение одной области на другую. Заменим теперь этот интуитивный способ более строгими рассуждениями, основанными на принципе отражения Шварца и связанными с ним результатами теории функций комплекс ного переменного.  [c.57]


Были предложены различные искусственные приемы отыскания корректирующего коэффициента k в уточненных теориях, основанных на сдвиговой модели Тимошенко. Все эти приемы являются приближенными. При построении уточненных уравнений, как математических аппроксимаций краевой задачи динамической теории упругости, не требуется введения каких-либо искусственных величин. Поэтому из сравнения математических аппроксимаций с соответствующими уточненными теориями, содержащими искусственные величины, можно найти формулы для корректирующих коэффициентов, иногда в явном виде. Такой подход был применен в случае пластины И. Т. Селезовым [2.50] (I960).  [c.49]

В динамике пластин метод степенных рядов применял И. Т. Селезов [2.50] (1960). Он исходил из краевой задачи динамической теории упругости в перемешениях и рассматривал систему рекуррентных соотношений типа (20.9) и (20.10) и уравнения типа (20.11), вытекающие из граничных условий, как общую бесконечную систему дифференциальных уравнений, эквивалентную исходной краевой задаче (это справедливо при условии равномерной сходимости рядов). В дальнейшем требуется введение каких-либо ограничений, что можно сделать различным путем. Поэтому методом степенных рядов можно получить бесконечное множество аппроксимаций. Цель состояла в построении гиперболических аппроксимаций. Было показано, что при усечении системы до какого-либо порядка получается замкнутая система уравнений, которая может быть приведена к нескольким или одному дифференциальным уравнениям более высокого порядка. Если при этом сохранить все пространственно-временные дифференциальные операторы до определенного порядка включительно [2.52] (1961), то полученная система уравнений будет гиперболической. Это условие является достаточным для построения гиперболических аппроксимаций. Приведем краткое изложение этих результатов. Рассмотрим упругое поле, характеризуемое пространственными ортогональными координатами Хи Х2, Хз и временной координатой t. Причем ось Охз является прямой, а криволинейные ортогональные координаты Х и Х2 отсчитываются в плоскости Хз = 0. Выделим слой —оо<х1<°о, —оэ<х2<оэ, —к<Хз<к и положим, что изменение поля в зависимости от координат и Х2 характеризуется некоторым параметром I, который значительно больше толщины слоя 2к  [c.137]

В качестве введения в классическую теорию упругости, особенно для системы линейной теории упругости, задачи о закрепленной пластине, задачи о мембране, см., например, книгу Ландау и Лифшица [1] Изложение вариационных формулировок задач теории пругости, аналогичное данному здесь, можно найти у Дюво, Лионса [I], Одена, Ре,зди [4], Фикеры [1].  [c.45]

Следует отметить, что уравнение движения плоского пограничного слоя (4-10) можно легко получить из уравнения Навье —Стокса. Естественно, многие авторы предпочитают этот путь выводу уравнений пограничного слоя непосредственно после введения основных допущений теории пограничного слоя. В первом случае сразу предполагается, что пограничный слой тонкий , и проводится анализ порядка величины отдельных членов уравнений Навье —Стокса. Такой анализ приводит к заключению, что критерием тонкости пограничного слоя на пластине, обтекаемой потоком с постоянной скоростью внешнего течения, является величина числа Рейнольдса Re, характерным размером в котором служит расстояние от передней кромки пластины х. Для того чтобы пограничный слой был тонким , число Rej = (u xp/[i) должно быть значительно больше единицы. Подробный анализ порядка величин отдельных членов уравнений Навье — Стокса можно найти, например, у Шлихтинга [Л. 1] или Стритера [Л. 2].  [c.42]

Измеренная в четырех точках толщина ламинарного пограничного слоя показывает, что развитие ламинарного пограничного слоя пропорционально где t — время с момента возникновения потока. Это наглядно видно из рис. 8,6, где экспериментальные точки достаточно хорошо ложатся на кривые bjYt = onst. Как уже указывалось во введении, теория несжимаемого внезапно возникающего потока на бесконечной плоской пластине дает ту же временную зависимость.  [c.234]

Детальному исследованию прерывистых связей посвящен его труд Проектирование прерывистых связей судового корпуса , изданный отдельной книгой в 1949 г. Отметив во введении, что в строительной механике корабля почти полностью отсутствуют теоретические и экспериментальные исследования вопросов, связанных с проектированием прерывистых связей, он далее замечает Репгение соответствующих задач методами теории упругости встречает столь большие трудности, что л настоящее время мы имеем строгое решение лишь для случая прерывистой связи, образованной наличием круглого или эллиптического отверстия в пластинах судового корпуса.  [c.53]

Программа допускает расширение перечня рассматриваемых элементов конструкций, введение уточненных формул теории оболочек (например, содержащих бесселевы функции), использование экснериментальных данных, сочетание с другими численными методами, в частности в контактных зонах фланцевых соединений. Использование программы для различных корпусов реакторов и других конструкций из оболочек и пластин показало устойчивость и высокую точность вычислительной процедуры, а также нримеиимость метода для учета геометрической нелинейности отдельных контактных сопряжений при частичном раскрытии стыков флан-певых соединений.  [c.101]

Остановимся кратко на содержании главы. В разд. 2,2 на основе принципа виртуальных перемещений Лагранжа выведены основные соотношения подкрепленной ребрами криволинейной панели. В разд. 22.3 выделено элементарное решение Сопротивления материалов. Преобразование исходных уравнений для плоской панели к системе разрешающих уравнений содержится в разд. 2.4. Далее в разд. 2.5 изучено напряженно-деформированное состояние симметрично подкрепленной панели. Рассмотрена панель как конечной, так и бесконечной длины. Решение представлено в виде быстросходящихся рядов, даны результаты численных расчетов и программы расчета. В разд. 2.6 изучается эффект подкрепления панели на торце дополнительным ребром, работающим только иа изгиб. В разд. 2.7, как и в разд. 2.5, рассмотрена симметрично подкрепленная панель, но при кососимметрнчиом загруженин ребер парой сил. Решение отличается от полученного в разд. 2.5, так как требуется учитывать изгиб панели в ее плоскости. Решение доведено до числа. В разд. 2.8 рассмотрены панели с двумя ребрами разной жесткости для случа.я, когда поперечное перемещение панелн равно нулю или отлично от нуля. В разд. 2.9 на примере бесконечной пластины с полубесконечным ребром дается оценка погрешности решения путем введения гипотезы отсутствия поперечной деформации пластины. Эта оценка выполнена, путем срав неиня решения на основе упомянутой гипотезы с точным решением, полученным иа основе уравнений плоской теории упругости. Результаты этого раздела опубликованы Э. И. Грнголюком и В. М. Толкачевым [5]. В этой работе дана также общая постановка задач включения на основе гипотезы отсутствия поперечной деформации, рассмотрены задачи для пластины и ребра конечных размеров, для полубесконечной пластины с полубесконечным ребром, а также задача для защемленной по боковым сторонам полубесконечной полосы, нагруженной на торце постоянной распределенной нормальной нагрузкой.  [c.68]


В третьей главе содержится решение некоторых плоских ко нтактных задач взаимодействия ребер с пластинами. В отличие от первых двух глав решение строится иа основе уравнений теории плоского обобщенного напряженного состояния пластины без введения упрощающих гипотез. Ребра считаются присоединенными к пластинам по линии, ширина участка контакта не учитывается. В связи с математическими трудностями, возникающими при построении функций Грина для пластин конечных размеров (в случае плоской задачи) в литературе, за небольшим исключением, рассмотрены плоскость, полуплоскость и полоса с ребрами конечной и бесконечной длины. В силу высокой концентрации напряжений вблизи концов ребер такие решения приближенно могут описывать напряженное состояние и характер реакций взаимодействия в окрестности концов ребер и для пластин конечных размеров, если, ргйумеется, ребро не доходит до границы пластины. В данной главе делается акцент на решение контактной задачи, состоящей в определении касательных реакций взаимодействия между пластинами и ребрами. Напряжения в пластинах не исследуются, но необходимые для этого формулы естественно получаются при формулировке задачи.  [c.121]

Н. Карасевым и Ю. П. Артюхиным [16]. В ряде публикаций эффект поперечного обжатия интерпретируется как сминание некоторого поверхностного слоя (пусть даже фиктивного). Это сминаине может быть следствием шероховатости поверхности, реального обжатия материала пластины под штампам, если пластину рассматривать с позиции теории упругости,и т. д. Введение упругого слоя при рассмотрении контактных задач теории упругости предложено еще И. Я. Штаер-маном [20]. Такая модель обсуждалась И. А. Биргером при рассмотрении контакта стержней [6], пластин и оболочек [7], М, В, Блохом [8, 9, 10, 11 — для пластин и при осесимметричном контакте оболочек, Г. Я. Поповым [18] — при анализе интегральных уравнений контактных задач для тонкостенных тел.  [c.184]

Второй путь построения приближенных теорий заключался в введении гипотез физической природы относительно характера распределения смещений и напряжений. Использование вариационных принципов приводило к искомым уравнениям движения и граничным условиям. Таким образом были построены уточненные уравнения продольных и поперечных колебаний, учитывающие влияние инерции поперечного движения (Рэлей (1878)), теория изгибных колебаний круглой пластины (Кирхгоф (1852)), различные варианты теории цилиндрических и сферических оболочек [123]. С. П. Тимошенко (1921) показал, что учет деформации сдвига в поперечном сечении также важен при поиске адекватных моделей поперечных колебаний стержней. Отметим, что поправки на скорость распространения волн в бесконечном цилиндре, получаемые из уточненных теорий колебаний стержней, совпадали с несколькими первыми членами разложения точных решений Похгаммера — Кри.  [c.14]

Большая часть этой книги основана на лекЬ иях, которые были прочитаны автором по курсу теории оболочек в Хьюстонском университете в 1966 г. Уравнения теорий плоских пластин и балок рассматриваются не только как введение, но и как частный случай теории оболочек. Предметом обсуждения являются главным образом упругие, однородные, изотропные конструкции с постоянными толщинами и размерами поперечных сечений — сказанное соблюдается везде, кроме специально оговоренных случаев.  [c.11]

Общее введение. Как уже говорилось в 3.5 в связи с рассмотрением балок, использование гипотезы Бернулли, пренебрегающей влиянием поперечных деформаций и напряжений, что, как известно, делается во всех классических теориях балок, пластин и оболочек, прйводиг к ошибкам при определении не только напряжений, но также и деформаций, а отсюда — и таких перемещений, как прогибы. Ошибки при определении напряжений редко имеют существенное значение, когда на конструкцию, сделанную из пластических материалов, действует постоянная нагрузка, но их следует рассматривать, когда речь идет об усталости или хрупких материалах эти ошибки можно устранить, используя методы теории упругости, рассмотренные применительно к балкам в 3.3, 3.4 и к пластинам в 5.2—5.5.  [c.377]

Покажем ), что при использовании формулы Кармана и в предположении постоянства напряжения трения поперек пограничного слоя существует более простой путь построения решения, не требующий предварительного введения понятий о числе Рейнольдса пограничного слоя и законе сопротивления . Этот путь в значительной мере упрощает исследование задач о турбулентном пограничном слое в газовом потоке. Использование простого асимптотического разлонхбния, уже примененного ранее в 103 для несжимаемой жидкости, позволяет обобщить теорию Кармана сопротивления пластины в несжимаемой жидкости на случай газового потока е большими числами М.  [c.719]


Смотреть страницы где упоминается термин Введение в теорию пластин : [c.5]    [c.196]    [c.5]    [c.220]    [c.4]    [c.209]    [c.386]    [c.7]    [c.10]    [c.8]    [c.241]   
Смотреть главы в:

Балки, пластины и оболочки  -> Введение в теорию пластин



ПОИСК



Введение

Теория пластин



© 2025 Mash-xxl.info Реклама на сайте