Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод аппроксимации граничных условий

Аналогичным образом метод баланса применяется и в более сложных ситуациях. Например, для элементарных объемов, подобных изображенному на рис. 3.12, а вокруг точки (п, т). Следует лишь аккуратно записать выражения для всех составляющих тепловых потоков с учетом фактических площадей граней и объема элементарной ячейки. При этом в выражениях для кондуктивных тепловых потоков участвуют значения температур в соседних узлах, а в остальных выражениях используется только температура и п, т в данном узле. Заметим, что без применения метода баланса вопрос аппроксимации граничных условий в угловых точках вообще неясен, так как непонятно, в каком из двух граничных условий аппроксимировать производную.  [c.114]


При численном решении краевых задач для тел сложной формы в прямоугольных сетках возникают большие трудности, связанные с аппроксимацией граничных условий, поэтому в настоящей работе используется криволинейная ортогональная система координат, соответствующая конформному отображению кругового кольца на двухсвязную область, занятую торцовым сечением зубчатого колеса. Методы получения таких отображений разработаны достаточно хорошо [5],  [c.129]

В некоторых методах конструкция алгоритма построения сетки позволяет задавать угол наклона координатных линий к границе области. В [6] отмечается, что применение сеток, сильно отличающихся от ортогональных, вблизи границ может привести к дополнительным трудностям при аппроксимации граничных условий в решаемых на таких сетках задачах. Поэтому часто эти сетки рассматриваются как ортогональные или почти ортогональные к границам.  [c.520]

Трехдиагональную систему линейных алгебраических уравнений ( 1.48), к которой добавлены конечно-разностные аппроксимации граничных условий, решаем методом прогонки [181]. Результат вычисления позволяет найти уточненные значения температуры по сравнению с предыдущей итерацией. За значения (Г ) " на первой итерации берем величины температуры с прошлого временного слоя  [c.174]

Аппроксимация граничных условий. Применяется метод законтурных ячеек. Для этого считаем, что первая и последняя ячейки имеют нулевую длину и все параметры не меняются на протяжении этих ячеек. Такое предположение позволяет записывать граничные условия, предполагая выполнимость всех дифференциальных уравнений механики сплошной среды вплоть до границы. При этом частные производные переходят в правую и левую односторонние производные на нагружаемой и свободной границе соответственно.  [c.174]

Рассмотренные выше задачи о ламинарных установившихся течениях решались точными или приближенными аналитическими методами. Путем надлежащего использования граничных условий Б этих задачах удавалось упростить уравнения движения и привести их к интегрируемому виду. Существует немало других задач, решения которых получены тем же путем и находят важные технические приложения. Однако современное развитие инженерной практики требует решения и более сложных задач, в которых приходится учитывать все члены уравнений Навье—Стокса, что не позволяет их решить в квадратурах. Широкие возможности открывает использование ЭВМ и применение численных методов решения. Последние основаны на замене (аппроксимации) дифференциальных уравнений уравнениями в конечных разностях, которые решаются на ЭВМ как система алгебраических уравнений. Разработаны и успешно применены к различным гидродинамическим задачам несколько численных методов, причем в некоторых из них используются не только эйлеровы, но и лагранжевы переменные.  [c.318]


В приближенном методе распределение скорости поперек пограничного слоя представляется произвольно выбираемой аппроксимацией, являющейся интерполяционной функцией, так как она определена на концах интервала граничными условиями.  [c.119]

Мы рассмотрели построение разностной схемы методом баланса для стационарного уравнения. Его целесообразно применять и для нестационарного уравнения. В принципе вопрос о том, на каком временном слое брать аппроксимацию пространственного оператора, мы уже обсудили в 3.2. Поэтому для перехода к нестационарной задаче достаточно в приведенных выше аппроксимациях пространственного оператора поставить у сеточных функций индекс настоящего / или предыдущего (/ — 1) момента времени. Однако для уравнений, содержащих коэффициенты, зависящие от времени, целесообразно использовать метод баланса в нестационарном варианте. Кроме того, на основе такого подхода проще получать аппроксимации для граничных условий и пояснять их физический смысл.  [c.91]

Авторы справочника [124] отмечают, что к настоящему времени насчитывается свыше 50 приближенных методов решения уравнения (23.5), которые можно разделить на три группы аппроксимации, конечных разностей и интегральные. Методы аппроксимации основаны на замене непрерывной неоднородности участками с постоянными параметрами упругости или с законами г), для которых известны точные решения. Наиболее употребителен при таком подходе способ, основанный на идее метода начальных параметров. Метод конечных разностей может применяться, очевидно, в любой трактовке с использованием различных приемов уточнения решения. В ряде работ задача сводится к интегральному уравнению, которое решается методом последовательных приближений. При использовании ЭЦВМ эффективное решение можно получить методом Рунге—Кутта, сведя предварительно краевую задачу (23.3), (23.5) к задаче Коши, При граничных условиях (23.3) легко построить решение методом Бубнова—Галеркина, приняв функцию X в виде  [c.115]

Результаты расчета средних температур жидкости и газа, представленные на рис. 4-7, качественно и количественно близки данным, полученным, например, по методу, изложенному в работе [26]. Был выполнен также вариант расчета с квадратическим распределением параметров после смыкания слоев, который показал, что, во-первых, предложенный метод обеспечивает соответствие средних параметров и количества переданной теплоты независимо от профиля (линейного или квадратического) и, во-вторых, что локальные параметры газа по оси потока, которые зависят от профиля распределения температур и концентраций сред, имеют отклонения от реальных, т. е. квадратический профиль так же, как и линейный, является приближенным. Это приближение основано на аппроксимации профиля полиномом второй степени и соблюдении граничных условий только в двух точках (у = О, г/ = бм). Точный профиль может быть определен путем решения дифференциальных уравнений пограничного слоя, составленных без упрощений и допущений с учетом всех факторов, влияющих на взаимосвязанные процессы тепло- и массообмена [34].  [c.123]

П3.1. ГЛОБАЛЬНАЯ АППРОКСИМАЦИЯ С УЧЕТОМ ГРАНИЧНЫХ УСЛОВИЙ ПЗ.1.1. Метод М.М.Филоненко-Бородича  [c.285]

Для реальных задач построить аналитическое решение зачастую не удается. Даже когда определяющие дифференциальные уравнения в частных производных линейны, область R может оказаться неоднородной, геометрия—нерегулярной, а граничные условия — трудно описываемыми простыми математическими функциями. В таких случаях, используя численные методы, при помощи вычислительных машин можно найти приближенное решение. Численные методы решения краевых задач можно разделить на два отчетливых класса класс, который требует использования аппроксимаций во всей области R, и класс, который требует использования аппроксимаций только на границе С. В первый класс входят методы конечных разностей и конечных элементов, во второй — методы граничных элементов.  [c.10]

По своей сути граничное интегральное уравнение является формулировкой поставленной задачи, которая приводит к точному решению. Погрешность окончательного решения определяется погрешностью решения интегрального уравнения на границе, что в общем эквивалентно внесению погрешностей в граничные условия. Сравнивая МГЭ с другими методами, можно сказать, что потенциально он более точен, чем, например, МКЭ. Это объясняется тем, что в МГЭ используется аналитическое решение, которое справедливо всюду в области, а в МКЭ аппроксимации производятся в каждой отдельной подобласти. Однако неясно, как связаны погрешности внутри области с погрешностями на границе при реализации МГЭ.  [c.50]


Как и в методе моментов, вместо отыскания функции распределения, зависящей от семи переменных t, х и %, задача свелась к отысканию системы функций от четырех переменных t п х. Однако уравнения, получающиеся в методе дискретных координат, всегда обладают простым линейным дифференциальным оператором, в то время как в методе моментов, как правило, получаются квазилинейные уравнения. В методе дискретных координат не возникает трудностей с установлением граничных условий для получающихся уравнений (ср. 5 настоящей главы). Правые же части моментных уравнений часто (особенно для максвелловских молекул) проще, чем в методе дискретных скоростей. В обоих методах, в принципе, могут быть использованы одни и те же аппроксимирующие функции. Пусть функция распределения представлена через моменты аппроксимацией  [c.219]

Следует отметить, что моментные методы, основанные на непрерывных аппроксимациях функции /, плохо применимы в пределе свободномолекулярных течений, так как в этом случае граничные условия играют определяющую роль.  [c.394]

Основная идея метода Бубнова — Галеркина состоит в том, что приближенное решение однородной краевой задачи ищется в виде линейной суперпозиции конечного числа некоторых базисных функций, удовлетворяющих граничным условиям. Коэффициенты разложения определяются из интегральных условий, выражающих ортогональность невязки к каждой базисной функции. Таким образом, задача сводится к решению системы алгебраических уравнений для коэффициентов разложения. В качестве базиса обычно выбираются первые функции какой-либо полной системы. Успех в применении метода определяется выбором базисных функций и числом этих функций, входящих в разложение. При удачном выборе базиса достаточно точные результаты получаются уже при аппроксимации решения сравнительно небольшим числом функций.  [c.28]

Перейдем теперь ко второму варианту метода. В этом варианте, как и в предыдущем, скорость представляется в виде линейной комбинации (4.14). Эта аппроксимация подставляется в уравнение теплопроводности (4.2), которое затем решается точно с надлежащими граничными условиями. Таким образом находится распределение температуры, соответствующее принятой аппроксимации скорости.  [c.30]

Приближенное решение задачи будем искать при помощи метода Бубнова—Галеркина. Имея в виду получить критическое значение числа Рэлея для основного уровня неустойчивости, примем для функции v(z) простейшую полиномиальную аппроксимацию, четную относительно середины слоя и удовлетворяющую граничным условиям (7.4)  [c.52]

Для приближенного решения амплитудной краевой задачи можно применить интегральный метод, аналогичный методу Кармана — Польгаузена в теории пограничного слоя (см. [ ]). Согласно этому методу, решение аппроксимируется с учетом граничных условий и с последующим определением параметров аппроксимаций из интегральных соотношений. В нашем случае v и i 2 удовлетворяют одинаковым граничным условиям, поэтому в первом приближении, содержащем минимальное число параметров, можно положить  [c.257]

Построение полей напряжений и скоростей, удовлетворяющих дифференциальным уравнениям (1.17.3), (1.17.4) и граничным условиям (1.17.7)-(1.17.9), получено последовательным решением краевых задач вначале для напряжений, а затем для скоростей численным методом. В уравнениях (1.17.1), (1.17.3), (1.17.4) дифференциалы заменены конечными разностями, а функции — средними значениями между соседними узловыми точками. После аппроксимации дифференциальным уравнениям (1.17.1), (1.17.3) ставится в соответствие система из четырех уравнений относительно неизвестных г, z,g, 0. Два из этих уравнений нелинейны. Система решена для каждой узловой точки сетки итерационным методом с условием на окончание вычислений в виде  [c.224]

Исходная система уравнений содержала нестационарные уравнения неразрывности, количества движения и энергии дозвукового течения невязкого газа (уравнения Эйлера). Подсеточная турбулентность не учитывалась. Для численного решения применялся конечноразностный метод и соответствующая аппроксимация граничных условий. Расчеты выполнены для дозвуковых чисел Маха (Мо = 0,43 и 0,57). Влияние пограничного слоя на срезе сопла, естественно, не учитывалось. Однако, задавалось начальное значение толщины потери импульса на первом шаге интегрирования поперек слоя смешения рассмотрены два значения во = d/70 и во — d/liO. Вследствие принятого предположения об осевой симметрии течения надежные результаты были получены на участке струи протяженностью не больше четырех калибров а = (О - 4)d.  [c.155]

Методы аппроксимации граничн х условий. Если нам удалось найти решение, удовлетворяющее дифференциальному уравнению (103) и вместе с тем одному из граничных условий, то второе принятое условие может быть удовлетворено путем определения совокупности надлежаще выбранных параметров. При решении задачи 44 в качестве таких параметров были введены коэффициенты двух тригонометрических рядов, представляющих изменения краевых моментов пластинки. Разложение выражения для наклона dwfdN в ряд 2) Фурье было проведено с той целью, чтобы обратить этот наклон в нуль на контуре, как это требуется условиями задачи. Последнее условие дает возможность вычислить параметры. Для приближенного  [c.389]


НПДН для любой граничной точки является единственным и определяется путем решения простейших задач линейного или квадратичного программирования известными методами при условии, что ограничения даны только в форме неравенств. В результате решения находится S , имеющий максимальную проекцию в направлении gradWo(Z ) и удовлетворяющий условиям ДН. При локальной линейной аппроксимации граничной поверхности в окрестности Zn вектор ДН либо касателен к поверхности многообразия, полученного путем пересечения аппроксимирующих гиперплоскостей, либо направлен внутрь допустимой области (рис. П.6, в). Если S становится ортогональным gradWo(Z).), то дальнейшее улучшение Но невозможно.  [c.250]

Пример 23.7. Брус бесконечной длины с квадратным поперечным сечением 21X21 (рис. 23.9, а) и куб 2/хУ/х2/ (рис. 23.9,6), изготовленные из материала с температуропроводностью 0 = 6,25-10 м /с, имеют начальную температуру 100 °С. В момент времени т = 0 температура на поверхностях бруса и куба принимает значение О X (граничные условия первого родя) и поддерживается постоянной при т > 0. На рис. 23.9, в приведены результаты численного решения для центра сечения бруса и центра куба, полученные методом суммарной аппроксимации на ЭВМ при / = 0,02 м и шагах разностной сетки Д = 0,002 м и Ат=1 с. Задачи симметричны относительно центра осей координат, поэтому при решении рассматривались 1/4 поперечного сечения бруса и 1/8 куба. Сплошные линии на рис. 23.9, в—аналитические решения, полученные по формулам (22.22) и (22.32) при условии Bi —> оо (см. 22.2). Для двумерной задачи в правой части формулы (22.32) использовались два сомножителя относительно осей X и у.  [c.246]

Среди разработанных методов решения уравнения переноса излучения с граничными условиями широкое распространение получили квадратурные методы [Л. 31, 32, 329, 330], основанные на аппроксимации интепро-дифференциального уравнения переноса системой дифференциальных уравнений. Анализ сходимости этих методов приводится в [Л. 31, 32] и ряд других исследований.  [c.111]

Одно из важных и перспективных направлений дальнейших исследований в области МКЭ — его реализация на ЭВМ. Для этого есть много предпосылок хорошая приспособляемость процедуры МКЭ для алгоритмизации быстрое развитие вычислительной техники большое количество инженеров и ученых, ра ботающих в области МКЭ острая необходимость в удобных промышленных вычислительных комплексах. Имеется опыт использования МКЭ в практической инженерной деятельности, и можно го-. ворить о намечающихся тенденциях в этом направлении. До появления программ, реализующих МКЭ, были доступны средства, автоматизирующие расчеты стержневых систем. Поэтому, исследуя сложный объект теории упругости, либо прибегали к стержневым аппроксимациям, либо, применяя численные методы теории упругости, основные усилия тратили на сокращение количества вычислений. Для этого использовались различные упрощенные вспомогательные расчеты, экспериментальные данные об аналогичных сооружениях, определенная интуиция и т. п. Как вспомогательный материал к таким расчетам использовались соответствующие таблицы, номограммы и т. п., полученные методом конечных разностей или в рядах для плит, балок-стенок, оболочек, имеющих простую конфигурацию, граничные условия и нагруз--ку. Такая ситуация, с одной стороны, делала подобные исследования уделом небольших групп высококвалифицированных специалистов, с другой стороны, приводила к тому, что различные конструктивные особенности, оказывающие значительное влияние на напряженио-деформированное состояние конструкции, ускользали от его внимания.  [c.113]

Метод построения неявных операторов для определяюгцей системы уравнений описан в [23]. Регнение неявных дифференциальных операторов основано на применении симметричной релаксационной схемы Гаусса-Зейделя. Использовались комбинированные граничные условия. В зависимости от направления потока через границу задавался либо снос параметров из области течения, либо фиксированные значения параметров. В случае течения в канале и в пристеночной трехмерной струе при Ке <3-10 на стенке ставились условия прилипания. При Ке >3-10 вводились законы стенки. Типичные расчетные сетки для трехмерных течений содержали от 30 до 40 узлов по каждому направлению (обгцее количество узлов — до 200 тысяч), при этом по-грегнность расчета за счет высокого порядка схемной аппроксимации не превыгпала 5 %.  [c.588]

Много споров вызывает интерпретация связи между дифференциальными уравнениями Озеена и уравнениями Навье — Стокса. Хотя озееновский член U-Vv, по-видимому, удовлетворительна аппроксимирует истинный инерционный член v Vv на больших расстояниях от сферы, такая аппроксимация должна ухудшаться вблизи тела, где граничное условие v = О требует, чтобы истинный инерционный член был мал. В частности, из озееновского анализа совершенно не ясно, является ли инерционная поправка ЗЛ ке/8 к сопротивлению для сферы действительно правильной кроме того, метод Озеена не дает возможности построить систематическую процедуру возмущений для получения приближений более высокого порядка к решению уравнений Навье — Стокса.  [c.62]

Для построения расчетных схем, основанных на МКЭ, могут быть пспользованы различные функционалы для разрывных полей перемещений, напряжений и т. д. (см. гл. 3 б и гл. 4 6), а в более сложных случаях — комплекс полных и частных функционалов для многоконтактных задач [4.1]. Особый интерес представляют функционалы граничных условий, которые могут быть использованы как в варианте МКЭ, основанном на методе Ритца, так и в варианте, основанном на аппроксимации функционала. Первый представляет интерес для энергетических оценок погрешности он может быть реализован при достаточно простых законах распределения упругих констант и нагрузок в области, таких, что все уравнения (геометрические, физические, статические) внутри конечного элемента могут быть выполнены за счет выбора аппроксимирующих функций это возможно, например, для однородного анизотропного тела при отсутствии объемных сил. Задача о стационарном значении функционала граничных условий служит для приближенного выполнения граничных условий и условий контакта между элементами.  [c.172]

Решения эТих уравнений аналогичны решениям уравнений (7.3а), которые обсуждались ранее в 7.1. Как уже отмечалось, эти ре пения соответствуют соотношение , имеющим более высокий, чем это требуется в соответствии с физическим смыслом задачи, порядок, но, несмотря на это, нельзя рассчитывать, что с помощью этих решений можно удовлетворить граничным условиям более точным, чем интегральные. Для удовлетворения более полных или точных граничных условий требуется произвести наложение дополнительных полей локальных. напряжений, которые получаются из рассмотрения уравнений трехмерной задачи теории упругости. Методы, рассматривавшиеся в 5.5 для толстых пластин, можно, как уже сцмёчалось ранее, применять, получая прекрасную аппроксимацию для толстостенных цилиндрических и. инйх оболочек, если пренебречь кривизной (как об этом говорилось в 7.1, такой подход особенно удобен при гра-36 .  [c.555]

При решении задачи методом перемещений воспользуемся аппроксимацией W, удовлетворяющей главным граничным условиим w(0) =w (0) =0, и примем по (1.174)  [c.50]

В общем случае точное решение задачи эластодинамики с граничными условиями (7.61) неизвестно, однако можно построить ее приближенное решение, если воспользоваться методом возмущения. В случае произвольной функции /(t), такой, что dljdtXi, аппроксимация первого порядка поля вблизи отклонившейся трещины может быть получена при рассмотрении трещины, распространяющейся в своей плоскости при следующих граничных условиях о =0, д <0, у =  [c.186]


Для определения общей потенциальной энергии деформируемой системы, обусло1зленной действием изгибающих и крутящих моментов, введена конечно-разностная схема с пересекающейся сеткой. Использование этой схемы дозволяет уменьшить погрешность аппроксимации выражений для потенциальной энергий деформации, вызванной крутящим моментом, с помощью конечно-разностных соотношений, и, кроме того, исчезает необходимость введения фиктивных узлов в граничной области. Узловые подобласти, используемые в этом методе, дают возможность получить приближенные конечные суммы, базирующиеся на значениях функций в узлах сетки, покрывающей определенным образом рассматриваемую пластинку. Выражение потенциальной энергии деформации для граничных узловых подобластей соответственно изменяется таким образом, чтобы удовлетворялись граничные условия для изгибающего момента и чтобы обеспечивалась возможность применения центральных конечных "разностей в районе границ. Дополнительные граничные условия для напряжений удовлетворяются автоматически в процессе минимизации, приводящей к конечно-разностным соотношениям, подобным тем, которые получаются при прямом использовании метода конечных разностей, но без применения фиктивных узлов, лежащих за границей пластинки.  [c.115]

В статье разработан приближенный метод определения основных частот собственных колебаний пластинок со свободными круговыми вырезами. Внешняя граница пластинок предполагается неаначительно отличающейся oV круговой. Приближенные выражения для радиусов каждой ограничивающей кривой выражены через ряды Фурье. Граничные условия, записанные модифицированными рядами для формы кругового кольца, удовлетворяются приближенным образом на внутреннем и внешнем краях пластинки. Приближенное характеристическое уравнение (либо первого, либо второго порядка апйроксимации) получается в результате удовле творения граничным условиям, а основная частота колебаний определяет ся как первый корень соответствующего характеристического уравнения Для демонстрации решения, основанного на аппроксимации второго по рядка, определены приближенные частоты основной формы колебаний за щемленной эллиптической пластинки, квадратной пластинки с круговым вырезом и круговой пластинки с эксцентрическим круговым вырезом. Для последней также получено решение, основанное на аппроксимации первого порядка для основной формы колебаний.  [c.165]

Излагаемый в настоящей статье приближенный метод исследования динамических характеристик круговых или некруговых цилиндрических оболочек, не подкрепленных или подкрепленных шпангоутами и стрингерами и имеющих вырезы прямоугольной формы, основывается на энергетическом принципе. Исследование базируется на использовании принципа Гамильтона и классического метода Рэлея —Ритца с применением балочных функций для аппроксимации осевых перемещений и тригонометрических для окружных. Балочные функции соответствуют тем функциям, которые описывают колебания однородной балки с такими же граничными условиями, что и на краях оболочки. В исследовании рассмотрены четыре вида граничных условий, а именно шарнирное опи-рание, защемленйе —свободный край, защемление —защемление и, наконец, оба края свободные. Хорошо известно, что в методе Рэлея — Ритца аппроксимирующие ряды для перемещений должны удовлетворять кинематическим граничным условиям и не требуется удовлетворение силовых граничных условий. Поэтому как уравнения равновесия, так и граничные условия в напряжениях удовлетворяются приближенно, на основе принципа экстремума. Таким образом, это позволяет без затруднений представить граничные условия на свободном крае выреза оболочки.  [c.239]

Важной проблемой для моментных методов является выбор граничных условий, которым должны удовлетворять решения моментных уравнений. Особых трудностей не возникает для методов, основанных на кусочно непрерывных функциях от , если разрывы расположены так, что они имеют место на границах при —0. В случае аппроксимации функции распределения непрерывными функциями типа (2.2) мы сталкиваемся с той трудностью, что граничные условия выражают функцию распределения вылетающих с поверхности частиц через функцию распределения падающих поэтому из граничных условий можно получить соотношения только для полупространственных моментов.  [c.393]

Возникает вопрос, к чему эволюционируют нестационарные решепия в условиях неустойчивости или несуществования стационарных Чтобы выяснить это, Н. М. Ерш численно решала систему (3) — (4) по явной схеме методом Рунге — Кутта с использованием пространственной разностной аппроксимации второго порядка при граничных условиях (1.12). Эти четыре условия для системы тре тьего порядка по г позволяют определить и параметр А,(().  [c.203]

Отметим, что обгцая задача построения оригиналов по изображениям встречает определенные трудности. Для некоторых простейших функций имеются формулы для отыскания оригиналов, они приводятся обычно в справочниках по операционному исчислению. В более сложных случаях нужно применять разработанные специальные приближенные методы. Далее мы познакомимся с эффективным методом аппроксимаций и примером его применения для круглой трехслойной пластины. Однако необходимо сделать следуюгцее замечание. При построении изображений граничных условий в (9.11) мы неявно предполагали, что сама граница тела не меняется в процессе нагружения. Поэтому метод неприменим, например, к контактным задачам о действии штампа и к задачам с выгоранием границы.  [c.220]


Смотреть страницы где упоминается термин Метод аппроксимации граничных условий : [c.148]    [c.131]    [c.320]    [c.37]    [c.341]    [c.186]    [c.177]    [c.130]    [c.376]    [c.29]    [c.351]   
Пластинки и оболочки (1966) -- [ c.389 ]



ПОИСК



Аппроксимация

Аппроксимация граничных условий

Граничные условия

Метод аппроксимации



© 2025 Mash-xxl.info Реклама на сайте