Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоские задачи. Конечные элементы для плоских задач

Глава 3 Плоские задачи. Конечные элементы для плоских задач  [c.60]

В главе 6 на конкретных примерах показаны возможные пути обобщения результатов для нелинейных уравнений и систем. Два первых параграфа посвящены изложению общих результатов по сходимости метода конечных элементов для нелинейных задач с операторами монотонного типа и решению двух типичных нелинейных задач, распространенных в приложениях, с помощью многосеточных итерационных алгоритмов. Решение плоской задачи упругости демонстрирует возможность обобщения построенных алгоритмов и их обоснования для эллиптических систем зфавнений. Среди многих известных методов дискретизации бигармонического уравнения рассмотрена смешанная формулировка метода конечных элементов, приводящая к системе двух уравнений Пуассона с зацепленными краевыми условиями. В итоге обобщенная формулировка содержит только первые производные и отпадает необходимость использования сложных базисных функций из класса С (И ). Смешанная формулировка использована также для дискретизации стационарных задач Стокса и Навье — Стокса. Здесь применялись комбинации простых конечных элементов — линейные для скоростей и постоянные для давления.  [c.12]


Условия неустойчивого распространения небольших расслоений (L < 0,5 , где i — толщина стенки конструкции, а высота раскрытия расслоения 5 = 0,5-2,0 мм) в [25] анализировали на основе решения плоской задачи теории упругости (плоская деформация) для пластин с внешними границами, свободными от нагрузок. Расчеты проводили методом конечных элементов для пластин, имеющих изолированное расслоение в виде прямоугольной щели, а также несколько водородных расслоений, расположенных на разных уровнях по высоте п.та-стины. Изолированными считали не взаимодействующие друг с другом водородные расслоения, расстояние между которыми в плане составляло более 2-12 мм в зависимости от длины расслоения L (табл. 12) при высоте сечения более (0,8-1,0)1..  [c.127]

Основные этапы применения метода конечных элементов для приближенного решения сформулированной вариационной задачи следующие. Вначале область решения разбивается на конечное число подобластей, называемых конечными элементами. Разбиение на элементы может быть выполнено множеством разных способов, так как выбор размеров и форм элементов в общем случае произволен. Элементы для плоского тела обычно -имеют треугольную или четырехугольную форму. Разбиение области решения на конечные элементы и условия непрерывности, накладываемые на пробные функции, позволяют записать функционал (23.25) в виде суммы  [c.247]

Изучение явлений, происходящих в таких процессах, связано с разработкой методов решения задач нестационарного пластического течения листового металла. Некоторые из таких методов изложены в [1 ]. Для них характерны предположение о радиальном течении плоского фланца в виде кольцевой пластинки и использование лагранжевой переменной. Для определения напряженного и деформированного состояний используют шаговый метод. Метод конечных элементов для решения такого типа задач предложен в [2].  [c.89]

Этот метод имеет те же принципиальные основы, что и вариационно-разностный метод, но более прост при реализации на ЭВМ. Для расчета область разбивается на конечное число элементов, обычно треугольников для плоской задачи, торов для осесимметричной задачи и многогранников для пространственной задачи.  [c.124]

Расчет пологих оболочек имеет много общего с расчетом пластин и решением плоской задачи. Для определения сил и перемещений применяют методы двойных и ординарных тригонометрических рядов, численные методы конечных разностей и конечных элементов. Для сферической оболочки Ry=R2=  [c.157]


Расчеты, основанные на методах конечных элементов для зоны краевого эффекта, описывают конечный рост межслойных напряжений, который обнаружен в первоначальной формулировке с использованием плоской задачи теории упругости [24, 251, а также моделируют распределение пространственных компонент тензора напряжений в окрестности отверстия небольшого диаметра в толстой пластине при растяжении ). Однако эти элементы не являются полностью согласованными с моделью однородных слоев, лежащей в их основе, поскольку разрыв в величинах упругих постоянных в такой модели привел бы к неограниченному росту в точках пересечения свободной боковой границы с меж-слойной поверхностью. Такая сингулярность в принципе должна быть учтена в гипотезах о поведении напряжений, но это пока не сделано.  [c.421]

Выбор способа кодирования в каждом конкретном случае зависит от особенностей задачи. Так, при решении двумерных задач (например, плоской задачи теории упругости) часто применяют автоматическую генерацию сетки конечных элементов. Для этого исследуемую область развивают на подобласти (как правило, изопараметрические прямоугольники), по каждой стороне которых задают требуемое число разбиений на конечные элементы. В пределах каждой подобласти автоматически генерируется сетка конечных элементов, после чего осуществляется их сшивание в единую систему. В отдельных программах предусмотрена перенумерация узлов сетки с целью минимизации ширины ленты матрицы разрешающей системы уравнений. Возможен ввод исходных данных по планшетному принципу. При этом планшет-массив независимо от заданной расчетной схемы должен быть упорядочен по чередованию конечных элементов и способу их идентификации в алгоритме. В результате сшивание локальных матриц в глобальные осуществляется полностью программно, включая формирование матрицы индексов.  [c.117]

ПАРАМЕТРЫ НАПРЯЖЕННОГО СОСТОЯНИЯ ДЛЯ ТРЕУГОЛЬНОГО / / КОНЕЧНОГО ЭЛЕМЕНТА В ПЛОСКОЙ ЗАДАЧЕ ТЕОРИИ /  [c.471]

Для иллюстрации различий между этими двумя типами вычислительных приемов сопоставим методы граничных элементов с методами конечных элементов. Для простоты представим R двумерной плоской областью, ограниченной контуром С (рис. 1.1). Метод конечных элементов требует, чтобы вся область R была разбита, как показано на рис. 1.1 (а), на сетку элементов. При этом цель состоит в отыскании решения задачи в узлах сетки, решение же между узлами выражается в простой приближенной форме через значения в узлах. Связывая эти приближенные выражения с исходными дифференциальными уравнениями в частных производных, в конечном счете приходим к системе линейных алгебраических уравнений, в которых неизвестные параметры— узловые значения в R — выражаются через известные величины в узлах сетки, находящихся на границе области. Эта система уравнений большая, но разряженная, т. е. хотя она и содержит  [c.10]

В гл. IV рассматриваются приложения метода конечных элементов к нелинейным задачам теории упругости. Глава начинается с обзорного изложения теории конечных упругих деформаций. Затем выводятся нелинейные жесткостные соотношения для упругих тел и приводятся решения ряда задач, в том числе задач о конечных деформациях несжимаемых тел вращения, растяжении и раздувании упругих мембран, конечной плоской деформации несжимаемых упругих тел. В эту главу включен также обзор различных методов решения больших систем нелинейных уравнений.  [c.7]

Ниже будут рассмотрены основные задачи теории упругости, встречающиеся при расчете резиновых упругих элементов муфт. Выражения для матриц жесткости конечных элементов при плоской деформации, осесимметричном и объемном напряженных состояниях будут получены для. сжимаемого и несжимаемого материала.  [c.16]

В заключение этого параграфа несколько слов о реализации варианта метода конечных элементов, в котором с самого начала в явном виде используются базисные функции (см. предыдущий параграф). Для определенности рассмотрим плоскую задачу теории упругости в виде  [c.170]


Метод конечных разностей, широко используемый для решения плоских задач теории упругости, становится достаточно громоздким в случае областей со сложным контуром. Бурно развивающийся в настоящее время метод конечного элемента, хотя и может быть распространен на пространственные объекты, не лишен недочетов, так как связан с решением систем алгебраических уравнений высокого порядка. В значительной мере отмеченных недостатков лишен метод расширения заданной системы, однако он не пользуется еще должным вниманием.  [c.149]

Увеличение размерности пространства исходной задачи приводит к необходимости введения соответствующих конечных элементов— треугольников в плоском случае и тетраэдров в пространственном. Разумеется, можно воспользоваться любыми многоугольниками или многогранниками, но при расчетах целесообразнее использовать простейшие элементы. В плоском случае, например, треугольники предпочтительнее для криволинейной границы, а прямоугольники удобны при построении матриц жесткости и массы эти две формы конечных элементов наиболее употребительны.  [c.168]

В книге дано систематическое изложение теории упругости, начиная с вывода основных соотношений и кончая некоторыми решениями, полученными в недавние годы. Подробно рассмотрены плоская задача, задачи кручения и концентрации напряжений, некоторые пространственные задачи, вариационные принципы и методы решения задач. Излагаются также задачи распространения волн в упругой среде. В авторском приложении к книге, которого не было в прежних изданиях, описан метод конечных разностей для решения плоской задачи, а в приложении, написанном переводчиком к русскому изданию, изложен метод ко. нечных элементов.  [c.2]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]

Для решения задачи был использован метод конечных элементов область, показанная на рис. 4,6, разбивалась на треугольные конечные элементы, внутри каждого из которых напряжения были постоянны. Наиболее ограничительным в идеализации граничных условий было предположение о плоском характере деформаций, т. е. предположение о бесконечной протяженности области вдоль оси л и об однородности материала по X. Таким образом, модель соответствует слоистому композиту, состоящему из одной разрезанной и двух сплошных плоских.  [c.213]

Наибольшие возможности и точность обеспечиваются электрическими (и электронными) моделями, позволяющими решать линейные, плоские и трехмерные статические и динамические задачи. Если написана система уравнений для этих задач, то может быть построена соответствующая модель [13], [15]. Электрическая модель выполняется со сплошным полем, воспроизводящем дифференциальные зависимости, или в виде сетки с расположенными между узлами сосредоточенными элементами (сопротивления, емкости, индуктивности), на которой воспроизводятся зависимости, записанные уравнениями в конечных разностях. Основной частью работы на модели является удовлетворение заданных граничных и начальных условий.  [c.600]

В библиотеку включены следующие конечные элементы плоские и пространственные стержни с различными вариантами прикрепления к узлам (жесткое, шарнирное, упругое) прямоугольные и треугольные плоские элементы для решения плоской задачи и задачи изгиба пластинок, эти же элементы используются и для расчета оболочек объемный элемент в виде параллелепипеда.  [c.197]

Таким образом, в расчете используется заданная в исходных данных разбивка на конечные элементы, а характеристики элементов определяются автоматически. Использование подсистемы Контур решает поставленную задачу — облегчить задание исходных данных для конструкций с плоским планом и со сложным внешним и внутренним контуром.  [c.248]

В инженерной практике чаще всего нет необходимости определять степень вулканизации материала в большом числе точек по сечению изделия и достаточно выбрать наиболее ответственные участки, различающиеся глубиной протекания процесса вулканизации. Это приводит к возможности формулировки нестационарных задач теплопроводности с одномерным потоком теплоты, решаемых в ортогональных системах координат, связанных с характерными линиями теплового потока и изотермами для данного изделия. При значительной же изменчивости геометрии этих линий за период нагрева или охлаждения изделия целесообразно обратиться к средствам решения плоских и пространственных задач и выбору соответствующих сеточных схем или метода конечных элементов.  [c.190]

Таким образом, процедура решения задачи по МКЭ полностью соответствует методам строительной механики стержневых систем. Некоторое отличие можно проследить только в процедуре составления матрицы жесткости для МКЭ всегда используется формула (1.8), для стержневых систем матрица жесткости часто строится из других соображений. Правда, стержневые системы имеют одну особенность гипотеза плоских сечений, лежащая в основе их расчета, с одной стороны, обусловливает совместность конечных элементов, с другой стороны, порождает дифференциальный оператор задачи. Поэтому здесь появляется возможность подобрать такие координатные функции, которые, с одной стороны, являются решением однородного дифференциального уравнения, с другой стороны, дают возможность построить совместные конечные элементы. МКЭ в этом случае для стержневых систем будет точным методом.  [c.26]


Для решения задач плоского напряженного состояния наиболее употребительны треугольный и прямоугольный конечные элементы, имеющие по две степени свободы в узле и независимую аппроксимацию перемещений Ux и Uy.  [c.32]

При расчете массивных тел методом конечных элементов используются зависимости для трехмерного напряженного состоя- ния. Эти зависимости являются наиболее общими, так как свободны от различных гипотез и предпосылок, характерных для некоторых частных задач (гипотезы плоских сечений для стержня, прямых нормалей для изгибаемых пластин, о нулевых напряжениях, ортогональных плоскости системы, для плоского напряженного состояния и т. п.).  [c.57]

Конечный элемент в форме тетраэдра. Тетраэдрический КЭ для пространственной задачи (рис. 2.10) является аналогом треугольного КЭ для плоской задачи теории упругости. Введем  [c.57]

Идея представления сплошной среды в виде системы элементов конечных размеров восходит еще к Пуассону ). Однако лишь появление ЭВМ позволило построить на ее основе эффективные методы расчета конструкций ). К настояшему времени с помощью метода конечных элементов оказалось возможным решать многие трехмерные задачи для линейно-уиругих конструкций и упругопластические задачи для двумерных конструкций. Ниже мы дадим подробное описание метода конечных элементов для плоской задачи теории упругости, а также изложим основы более сложных методов.  [c.552]

Существование подобной сингулярности первым обнаружил Боджи [34] в случае изотропной неоднородной (но кусочнооднородной) пластины. Вопрос о возникновении таких сингулярностей в ортотропных слоях долго обсуждался при построении моделей конечных элементов для зоны краевого эффекта, но однозначного ответа не было получено было только установлено, что численное решение задач об обобщенном плоском состоянии сходится медленно. Впоследствии Ван и Чой [351, а также Тин и Чоу [361 завершили доказательство существования сингулярности в анизотропном случае. Однако сингулярность для типичных композитов имеет порядок  [c.422]

Несколько иной результат был получен (совместно с А. А. Карасевым и К. В. Ваисовичем) в случае несквозных усталостных трещин в плоских крестообразных образцах из сплава АК6. Поля напряжений в образце определяли путем его расчета методом конечного элемента. Полученные результаты сопоставляли с данными тензометрирования образцов. Анализ этих данных показал, что в центре образца в пределах зоны 20X20 мм неравномерность напряженного состояния не превышала 10%. Помимо этого напряженное состояние материала в вершине трещины определяли расчетным путем методом конечных элементов. Решали трехмерную задачу, для которой был выбран трехмерный изопараметрический элемент в виде треугольной призмы с 15 узлами. Из проведенной оценки распределения напряжений в окрестности трещины следует, что приложение второй составляющей растяжения или сжатия в плоскости трещины не влияет на напряжение раскрытия трещины 0 . Вместе с тем напряжение Ог в плоскости трещины вдоль направления последующего приложения второй составляющей нагружения существенно изменяется. Так, при номинальном напряжении а=100 МПа максимальное значение Ог в окрестности вершины усталостной трещины при одноосном растяжении составило 24 МПа. Добавление второй составляющей растяжения при соотношении напряжений А,= 0,9 привело к увеличению Стг до 114 МПа. Применительно к указанной величине одноосного напряжения в табл. 29 приведены результаты расчета характеристик напряженного состояния материала в вершине усталостной трещины в  [c.155]

Для рассматриваемой в этом примере замкнутой оболочки граничные условия в полюсе, т. е. в точке О на рис. 4, требуют особого рассмотрения. В некоторых решениях по методу конечных элементов для этой области оболочки применяется специальный плоский элемент. Другие авторы, например Сен и Гоулд [8], используют специальные элементы — шапочки . В излагаемом здесь подходе используется обычный элемент. Однако некоторые члены, входящие в выбранные для решения задачи выражения перемещений и обобщенных усилий, и члены соответствующих уравнений содержат величину 1/г, и их нельзя вычислить в полюсе. Тем не менее граничные условия в полюсе могут непосредственно дать достаточную информацию о константах, входящих в функции формы.  [c.118]

При использовании метода конечных элементов ключевыми являются вопросы выбора типа конечного элемента для аппроксимации области, а также получения матрицы жесткости конечного элемента, отвечающей физическому содержанию решаемой задачи. Как показывают расчеты, наилучшие результаты в плоской задаче дает использование четырехточечных элементов (рис. 1.9). При применении треугольных элементов и их комбинаций (например, два смежных треугольных элемента с общей функцией гидростатического давления) точность решения получается ниже, возникает зависимость результатов расчета от характера разбиения области. Использование четырехугольных восьмиточечных элементов второго порядка существенно ухудшает экономические показатели решения из-за резкого увеличения требуемой оперативной памяти. По этой же причине нерациональной является линейная аппроксимация функции гидростатического давления внутри элемента. Аппроксимация же константой для функции гидростатического давления дает более чем удовлетворительные результаты изме-  [c.15]

Конечные элементы могут быть построены различной формы, для различных видов деформации (плоская задача, изгиб пластин, деформации элемента оболочки, стержня и т. д.). Каждый из элементов характеризуется его матрицей жесткости R. Если они построены, то метод конечных элементов позиоляет по изложенной схеме создавать любые композиции (ансамбли) из различных конечных элементов. Причем определение деформированного состояния такой композиции или ансамбля (приближенно заменяющего реальную конструкцию) сводится к составлению и решению системы линейных алгебраических уравнений типа (8.71). В настоящее время существуют автоматизированные комплексы программ, позволяющие рассчитывать по методу конечных элементов очень сложные конструкции с числом неизвестных перемещений, соствляющим тысячи или даже десятки тысяч единиц. Он успешно также применяется в решении нелинейных задач и задач динамики деформируемых систем.  [c.263]

На базе уравнений задачи в напряжениях, сведенных к уравнению совместности в виде (19.11), развиты мощные аналитические методы решения плоских задач теории упругости с использованием функций комплексного переменного. Однако эти методы выходят за пределы данного круга и здесь не излагаются. Получение аналитических решений в замкнутом виде для более или менее сложных областей и видов нагрузок представляет большие трудности. Для сравнительно простых случаев решение может быть построено путем подбора функций Ф, заведомо удовлетворяющих уравнению совместности (19.11). Последующая р омбинация этих частных решений может дать с заданным уровнем приближения решение поставленной задачи. Такая задача рассмотрена в 19.4. Эффективные методы решения плоских задач теории упругости дают метод конечных разностей и метод конечных элементов, которые рассмотрены в последующих параграфах.  [c.444]


Основная, пожалуй, задача, на которой были сосредоточены в последние годы усилия ученых-механиков, занимающихся практическими приложениями механики разрушения к оценке прочности крупногабаритных изделий,— это задача о нахождении условий равновесия или распространения большой трещины в достаточно пластичном материале. Пластическая зона впереди трещины велика настолько, что для нее можно считать справедливыми соотношения макроскопической теории пластичности, рассматривающей среду как сплошную и однородную. Для плоского напряженного состояния модель Леонова — Панасюка — Дагдейла, заменяющая пластическую зону отрезком, продолжающим трещину и не имеющим толщины, оказывается удовлетворительной. В частности, это подтверждается приводимым в этой книге анализом соответствующей упругопластической задачи, которая ре- шается численно методом конечных элементов. С увеличением числа эле-ментов пластическая зона суживается и можно предполагать, что в пределе, когда при безграничном увеличении числа элементов решение стремится к точному решению, пластическая зона действительно вырождается в отрезок. Заметим, что при рассмотрении субмикроскопических трещин на атомном уровне многие авторы принимают гипотезу о том, что нелинейность взаимодействия между атомами существенна лишь в пределах одного межатомного слоя, по аналогии с тем, как рассчитывается так называемая дислокация Пайерлса. Онять-таки, как и в линейной теории, возникает формальная аналогия, но здесь она носит уже искусственный характер, и суждения об относительной приемлемости модели в разных случаях основываются на совершенно различных соображениях степень убедительности приводимой Б защиту ее аргументации оказывается далеко неодинаковой.  [c.10]

Теория Ферриса для гранулированных композитов была использована при решении плоских задач методом конечных элементов [28]. Однако теории, описывающей нелинейное поведение вязкоупругих волокнистых композитов, по-видимому, не  [c.189]

При решении двумерных плоских задач методом конечных элементов прежде всего необходимо рассматриваемую область (рис. 3.1) разбить на конечные элементы. Вершины элементов носят названия узлов. Выберем на рис. 3.1 для рассмотрения какой-либо элeJ Ieнт (pи . 3.2). На этот элемент действуют внешние силы и Yv, под действием которых происходит деформация элемента, рассматриваемого как упругое тело. В данном случае можно соответствующим образом установить узлы конечных элементов и определить усилия, действующие в узлах, полагая, что внешние силы, действующие на элементы, передаются лишь через узлы. Форма элементов, на которые разбивают тело, может быть самой разнообразной. Часто используют элементы треугольной формы, три вершины которых выбираются в качестве узлов (рис. 3.3).  [c.52]

В последние годы для анализа напрнжений и деформаций в атомных реакторах интенсивно развиваются вычислительные методы с использованием ЭВМ [4, 7, 11 и др.]. Это в первую очередь относится к матричному методу теории пластин и оболочек, методу конечных элементов (МКЭ), методу конечных разностей (МКР). Первый из указанных методов позволяет достаточно точно и быстро рассматривать корпусные осесимметричные конструкции (зоны фланцев, днищ, крышек, нажимных колец) с широкой вариацией условий механического и теплового нагружения и выходом в неупругую область деформаций. Метод конечных разностей использовался для решения контактных задач в области главного разъема корпусов ВВЭР. Наибольшее распространение в инженерной практике в СССР и за рубежом получает метод конечных элементов. Этот метод является достаточно универсальным как для зон с относительно невысокой неоднородностью термомеханических напряжений, так и для зон с высокой концентрацией напряжений (в том числе щелевые сварные швы и дефекты типа трещин). В методе конечных элементов получает отражение одновременное решение тепловой задачи и задачи о напряженно-деформированном состоянии. Наиболее эффективно применение МКЭ для плоского и осесимметричного случая, когда в расчет может быть введена неоднородность механических свойств и стадия неупругого деформирования. Решение трехмерных задач методом конечных элементов сводится в основном к анализу пространственных относительно тонкостенных конструкций, а также к рассмотрению объемных напряженных состояний в ограниченных по размерам зонах (например, зона присоединения толстостенного патрубка к толстостенному корпусу).  [c.42]

В оболочке возникает два вида напряженного состояния мембранное и изгибное. Мембранное напряженное состояние соответствует плоской задаче теории упругости. Для решения плоской задачи теории упругости наиболее распространены два типа прямоугольных конечных элементов элемент Мелоша [4 ] (поле перемещений задается в виде линейчатой поверхности) и элемент Клафа [5] (нормальные напряжения изменяются по линейному закону, касательные напряжения постоянны). Элемент Клафа не удовлетворяет условию совместности по перемещениям между соседними элементами, но соответствующее ему поле напряжений удовлетворяет условиям равновесия. При использовании элемента Мелоша условие совместности перемещений между элементами удовлетворяется, но не удовлетворяется условие равновесия внутри элемента.  [c.224]

Задачи температурных режимов элементов конструкций. Этот класс задач объединяет стационарные и нестационарные, плоские и пространственные задачи распространения теплоты в твердых телах при наличии фильтрации при существовании фронтов реакций, источников и стоков теплоты и массы при произвольных граничных условиях на поверхности. Наиболее широко для решения задач данного класса используется метод конечных разностей в сочетании с методом прогонки и методом расщепления [44, 1051. Подробно эти методы рассмотрены выше. Существующие аналитические решения стационарных и нестационарных задач данного класса охватывают только канонические формы (пластина, цилиндр, шар). Нестационарные решения таких задач содержат ряды с использованием тригонометрических функций, функций Бесселя, Грина и др. Такая форма представления решений для определения численных значеннй температурного поля требует использова1н, я  [c.188]


Смотреть страницы где упоминается термин Плоские задачи. Конечные элементы для плоских задач : [c.112]    [c.483]    [c.138]    [c.41]    [c.226]    [c.30]    [c.83]    [c.244]   
Смотреть главы в:

ANSYS в руках инженера  -> Плоские задачи. Конечные элементы для плоских задач



ПОИСК



Г лава И Решение плоских и осесимметричных упругопластических контактных задач методом конечных элементов

Конечный элемент

Метод конечного элемента Идеализация системы в плоской задаче теории упругости

Плоская задача

Соотношения МКЭ для треугольного конечного элемента в плоской задаче теплопроводности

Треугольные конечные элементы в плоской задаче теории упругости



© 2025 Mash-xxl.info Реклама на сайте