Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние объемное напряжение

Образцы. Выбор размеров образцов. Форма и размеры образцов должны соответствовать определенным требованиям [5]. В процессе разрушения наблюдается именение характера разрущения прямой излом переходит в косой и смешанный (прямой под углом 90° к оси образца, косой под углом 45°). Это соответствует изменению характера напряженного состояния объемное напряженное состояние при прямом изломе переходит в плоское напряженное состояние при косом. При этом испытания становятся неполноценными. Возможен и другой путь обеспечения полноценности испытаний по определению Кх . Известно, что условия хрупкого разрушения можно обеспечить несколькими путями, изменяя внешние условия. Один из них состоит в увеличении размеров испытательных образцов, другой — в снижении температуры. Достоверность полученных результатов по при различных температурах оценивается по стандартным критериям полноценности диаграмм нагрузка — смещение указанным в [5].  [c.206]


Они используются для оценки прочности конструкций в случае плоского и объемного напряженных состояний. Исходя из принятого критерия эквивалентности, лежащего в основе той или иной гипотезы прочности, сложное напряженное состояние заменяется эквивалентным ему растяжением.  [c.7]

Настоящая монография является одной из попыток среди такого рода работ подойти к проблеме разрушения, базируясь на системном подходе, лежащем на стыке механики деформируемого твердого тела, механики разрушения и физики прочности и пластичности. В книге изложены разработанные авторами физико-механические модели хрупкого, вязкого и усталостного разрушений, позволяющие анализировать повреждение материала при сложном нагружении в условиях объемного напряженного состояния. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Кроме того, в работе рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях.  [c.3]

Следует отметить, что в (2.11) физический смысл S вполне соответствует интерпретации этого параметра, достаточно устоявшейся в настоящее время критическое напряжение хрупкого разрушения S является параметром, достижение которого наибольшими главными напряжениями является достаточным условием для реализации хрупкого разрушения, т. е. для обеспечения страгивания и распространения микротрещины. При этом в качестве необходимого условия выступает условие зарождения микротрещин, которое многие исследователи, например в работах [101, 149—151], принимают в виде (2.3). В предлагаемом критерии хрупкого разрушения (2.11) необходимое условие хрупкого разрушения соответствует условию зарождения микротрещин скола в виде (2.7). Как уже говорилось, разрушающее напряжение а/ при одноосном растяжении образцов в диапазоне температур Го Г Тем (см. рис. 2.6 и 2.7) совпадает с напряжением распространения микротрещин Ор, тождественно равным S , что позволяет получать значения S (x) на основании указанных предельно простых экспериментов. Однако совпадение а/ с S не является общим правилом даже при хрупком разрыве в условиях одноосного растяжения в области температур Т <То разрушающее напряжение а/ не является напряжением распространения микротрещин (см. рис. 2.7), а соответствует напряжению, при котором выполняется условие зарождения микротрещин. Такая же ситуация наблюдается при хрупком разрыве в условиях объемного напряженного состояния, например при разрушении образцов с концентраторами и трещинами (см. подразделы 2.1.4 и 4.2.2).  [c.72]


Подчеркнем, что в общем случае при циклическом нагружении в условиях объемного напряженного состояния (ОНС), реа-лизирующегося, например, у вершины трещины или острого концентратора в конструкции, соотношение компонент приращения напряжений при упругой разгрузке может не совпадать с идентичным соотношением напряжений в момент окончания упругопластического нагружения [66 68, 69, 72, 73]. Поэтому интенсивность приращения напряжений 5т, при которых возобновится пластическое течение при разгрузке (или, что то же самое, при реверсе нагрузки), может быть меньше, чем в одноосном случае, где циклический предел текучести 5т = 20т для идеально упругопластического тела [141, 155]. Это обстоятельство приводит к некоторым особенностям деформирования и соответственно повреждения материала в случае ОНС. Например, при одинаковом размахе полной деформации в цикле можно получить различные соотношения интенсивности размаха пластической АеР и упругой Де деформаций за счет изменения параметра 5т-  [c.130]

Размах неупругой деформации при знакопеременном упругопластическом деформировании материала в условиях объемного напряженного состояния может быть различным при одном и том же размахе полной деформации. Поэтому долговечность материала в этом случае не описывается однозначно размахом полной деформации.  [c.148]

НАПРЯЖЕНИЯ В НАКЛОННЫХ ПЛОЩАДКАХ ПРИ ПЛОСКОМ И ОБЪЕМНОМ НАПРЯЖЕННЫХ СОСТОЯНИЯХ.  [c.148]

В случае объемного напряженного состояния напряжения по наклонным площадкам, не параллельным ни одному из главных напряжений, определяются по следующим формулам  [c.150]

Установим зависимость между относительными деформациями и напряжениями в случае объемного напряженного состояния.  [c.150]

Как уже отмечалось, вследствие упругой деформации в теле накапливается потенциальная энергия деформации. Удельная потенциальная энергия в случае осевого растяжения или сжатия определяется по формуле (9.6). Для объемного напряженного состояния эта энергия  [c.152]

ПОНЯТИЕ ОБ ОБЪЕМНОМ НАПРЯЖЕННОМ СОСТОЯНИИ  [c.173]

В задачах сопротивления материалов трехосное, или объемное, напряженное состояние встречается редко. Поэтому отметим здесь лишь некоторые моменты теории объемного напряженного состояния.  [c.173]

На рис. 165 изображен элемент, который находится в объемном напряженном состоянии и грани которого представляют собой главные площадки. Вычислим для него напряжения на других, неглавных площадках.  [c.173]

Вычислим теперь удельную потенциальную энергию в общем случае объемного напряженного состояния. Для этого вырежем элемент в виде кубика с длинами ребер, равными единице (рис, 170), грани которого являются главными площадками, На этих площадках действуют главные напряжения Oj, Oj и Og, Поскольку площади граней равны единице, то действующие в них усилия численно равны Oj, и Од, Они производят работу на тех перемещениях, которые получают грани вследствие деформации рассматриваемого элемента. Перемещения в данном случае численно равны главным удлинениям 6i, S2, вз, так как ребра имеют единичную длину.  [c.180]

Основанная целиком на опытных данных, теория Мора в общем не нуждается в дополнительной экспериментальной проверке. Однако построение предельных огибающих для каждого материала может быть произведено в результате ряда сложных опытов с плоскими и объемными напряженными состояниями, что, собственно, и ограничивает ее применение. Кроме того, эта теория, как уже отмечалось, не учитывает влияния на прочность промежуточного главного напряжения Oj.  [c.189]

В случае плоского или объемного напряженного состояния сопротивление усталости можно охарактеризовать, исходя из соответствующих гипотез прочности, согласующихся с экспериментальными данными.  [c.599]

В зависимости от характера напряженного состояния собственные напряжения могут быть одноосными — линейными, двухосными — плоскостными и трехосными — объемными.  [c.32]

ПРИ ПЛОСКОМ И ОБЪЕМНОМ НАПРЯЖЕННЫХ СОСТОЯНИЯХ (ОБОБЩЕННЫЙ ЗАКОН ГУКА)  [c.60]

Уравнения (11.40) представляют собой обобщенный закон Гука для объемного напряженного состояния. Деформации 8 , 82 и Ез в направлении главных напряжений называются главными деформациями.  [c.61]


При объемном напряженном состоянии удельная потенциальная энергия получится как сумма трех слагаемых  [c.65]

Удельная потенциальная энергия деформации при объемном напряженном состоянии равна (см. 18)  [c.230]

Наиболее просто при помощи оптического метода осуществляется анализ плоского напряженного состояния в моделях постоянной толщины. Вместе с тем существуют приемы исследования и объемного напряженного состояния. Эта задача, однако, оказывается значительно более сложной как по технике эксперимента, так и по обработке полученных результатов.  [c.516]

Наиболее удобно и просто воспроизводить термодеформационный цикл закручиванием тонкостенного цилиндрического трубчатого образца, так каК в этом случае дилатометрические эффекты в металле образца не будут влиять на угол закручивания. Для определения закона изменения эквивалентного компонентам деформаций в свариваемом объекте угла закручивания трубчатого образца в общем случае объемного напряженного состояния Угх используется математический аппарат теории неизотермического пластического течения. Приращение полной угловой деформации тонкостенного образца на шаге деформиро-  [c.414]

Первопричиной хрупких разрушений нефтегазохимической аппаратуры является сложность напряженного состояния металла конструктивных элементов корпуса аппарата объемность напряженного состояния, особенно в местах концентраторов напряжений пониженные (хладноломкость) или повышенные (химическая неоднородность и ползучесть) температурные условия эксплуатации и повышенные эксплуатационные нагрузки.  [c.93]

Металл конструктивных элементов нефтехимического оборудования в виде оболочек вращения (обечайки, сферы, конические переходы к днищам, трубы и др.), нагруженный внутренним (внешним) давлением, испытывает плоское (двухосное) и реже объемное напряженное состояние. При  [c.277]

Передача давлений в местах соприкосновения тел происходит по малым площадкам. Тело около такой площадки испытывает объемное напряженное состояние, не имея возможности свободно деформироваться. Контактные напряжения имеют местный характер, быстро убывая по мере удаления от мест площадки контакта. Расчеты и исследования показывают, что материал, подверженный всестороннему давлению в зоне контакта, может выдержать большое давление, не пропорциональное приложенной силе. Наибольшее напряжение в зоне контакта возникает на некотором расстоянии от поверхности касания. Контактные напряжения имеют место в шариковых и роликовых подшипниках, зубчатых и червячных передачах, опорных устройствах.  [c.51]

При простом растяжении и сжатии в каждой точке образца из трех главных напряжений только одно не равно нулю. Такое напряженное состояние называется линейньш. При наличии двух главных напряжений (при третьем главном напряжении, равном нулю) имеем плоское напряженное соспюянт и, наконец, если все три главные. напряжения не равны нулю, получаем самый общий случай напряженного состояния — объемное напряженное состояние.  [c.18]

Существенным шагом в развитии критериев хрупкого разрушения являются исследования Л. А. Копельмана [101], который записывает критерий хрупкого разрушения для случая объемного напряженного состояния (ОНС) в виде двух условий  [c.58]

На рис. 3.7, 3.8, 3.9 представлены расчетные и экспериментальные данные по кинетике деформирования и повреждения сплава ХН55МВЦ при одноосном и объемном напряженных состояниях. Из рис. 3.7 видно, что объемное сжатие значительно  [c.176]

Следует отметить, что в общем случае многоосного и сложного нагружений концепция обобщенной кривой циклического деформирования не применима [72, 73, 155]. Наиболее распространенным описанием деформирования при циклическом нагружении и объемном напряженном состоянии является схема трансляционного упрочнения, модификация которой использована при формулировке модели кавитационного разрушения в разделе 3.3. В случае одноосного циклического нагружения схема трансляционного упрочнения сводится к допущению, что 5ф(ёР)/ЭёР = = onst. С целью анализа применимости данной схемы параллельно с представленными выше расчетами были проведены вычисления долговечности при =(ф(ДеР) —  [c.185]

Закономерности разрушения материала при длительном нагружении достаточно хорошо могут быть описаны с помощью разработанной физико-механической модели межзеренного разрушения, которая базируется на математическом описании процессов зарождения и роста пор, обусловленного как пластическим деформированием, так и диффузией вакансий, а также на введенном в гл. 2 при анализе внутризеренного вязкого разрушения понятии — потере микропластической устойчивости. Модель позволяет прогнозировать долговечность при статическом и циклическом длительном нагружениях элементов конструкций в условиях объемного напряженного состояния и переменной скорости деформирования. В частности, с помощью указанной модели могут быть описаны процессы залечивания межзе-ренных повреждений при сжатии и рассчитана долговечность в условиях циклического нагружения при различной скорости деформирования в полуциклах растяжения и сжатия.  [c.186]

В общем случае объемного напряженного состояния для материалов с различными пределами прочности при растяжении и сжатии (ь = оь1аьс, чугун и = 0,22. .. 0,3, закаленная сталь г = 0,5...0,75), когда все главные напряжения не равны нулю (а1>а2>сгз)  [c.6]


Месыгые напряжения, возникающие при взаимном нажатии двух соприкасающихся тел, называют контактными напряжениями. Вследствие деформации материала в месте соприкосновения возникает площадка контакта, по которой и происходит передача давления. Материал вблизи такой площадки, не имея возможности свободно деформироваться, испытывает объемное напряженное состояние.  [c.219]

В случае объемного напряженного состояния максимальные касательные напряжения имеют место в плоскости AB D (см. рис. VIII.I)  [c.228]

В области концентраторов напряжений и з астков с разными механическими свойствами реализуется объемное напряженное состояние в металле конструктивного элемента аппарата. Оценка его прочности путем натурных испытаний сопряжена с большими трудностями и материальными затратами.  [c.278]

Уменьшение пластической деформации путем увеличения толщины образца ведет к снижению значения до некоторого предела, к которому она асимптотически приближается (рис. 17.1). Это есть именно то значенне для объемного напряженного состояния при нлоской деформации, для которого (благодаря достаточной для данного материала толщине) практически запрещается макропластическая деформация перед краем трещины и разрушение происходит по типу прямого излома без боковых скосов. Эта величина носит название критического коэффициента интенсивности напряжений при плоской деформации и обозна-  [c.125]


Смотреть страницы где упоминается термин Состояние объемное напряжение : [c.312]    [c.186]    [c.174]    [c.176]    [c.651]    [c.430]    [c.226]    [c.369]   
Сопротивление материалов усталостному и хрупкому разрушению (1975) -- [ c.9 , c.12 , c.16 , c.19 , c.21 , c.82 ]



ПОИСК



Зависимость между деформациями и напряжениями при плоском и объемном напряженных состояниях (обобщенный закон Гука)

Зависимость между напряжениями и деформациями линейно-деформируемых упруго-вязких тел при объемном напряженном состоянии

Напряжение объемное

Напряжения в наклонных площадках при плоском и объемном напряженных состояниях. Обобщенный закон Гука (доц. канд. техн. наук Е. И. Моисеенко)

Напряжения при объемном напряженном состоянии

Нахождение наибольших напряжений для объёмного напряжённого состояния

Общая теория напряжений при объемном напряженном состоянии

Объемное напряженное состояние. Главные площадки и главные нормальные напряжения. Плоское и линейное напряженное состояние

Объемное напряженное состояние. Напряжения на произвольной площадке

Примеры плоского и объёмного напряжённого состояний Расчёт цилиндрического котла. Понятие о контактных напряжениях

Соотношения между напряжениями и деформациями при объемном напряженном состоянии

Состояние напряжение



© 2025 Mash-xxl.info Реклама на сайте