Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решения в цилиндрических и сферических координатах

Используя решение задачи 19.41, найти гамильтониан осциллятора в цилиндрических и сферических координатах.  [c.202]

Оператор Лапласа А в уравнении (1.2) может быть представлен как в прямоугольных, так и в цилиндрических или сферических координатах. Соответственно решения уравнения (1.2) будут описывать цилиндрические или сферические волны. Уравнение гармонической сферической волны, распространяющейся из начала координат, имеет вид  [c.7]


Точное решение задач этого класса может быть получено в декартовых, цилиндрических и сферических координатах при  [c.71]

Такое решение применимо и к случаям расчета тел в цилиндрической и сферической системах координат при экспоненциальной зависимости t (т). Способ проверки погрешности численных решений по точным аналитическим решениям для тела произвольной  [c.73]

Скорость и ускорение точки в полярных, цилиндрических и сферических координатах. Многие задачи кинематики сложного движения точки целесообразно решать в полярных, цилиндрических и сферических координатах. Одним из способов решения задач в криволинейных координатах является разложение абсолютного движения точки на переносное и относительное движения.  [c.477]

Криволинейные координаты. Во многих случаях является целесообразным заменить декартовы координаты криволинейными например, при наличии осевой и шаровой симметрии цилиндрические и сферические координаты являются наиболее подходящими при решении задач. Чтобы провести наиболее простым образом преобразование основных уравнений, выразим сначала составляющие тензора деформации непосредственно в криволинейных координатах (ограничиваясь случаем ортогональности их) далее, при помощи минимальных принципов сформулируем условия равновесия.  [c.56]

Описанные выше одномерные и двумерные течения являются определенной идеализаций, которая практически применима для ряда технических актуальных задач. Но во многих случаях, когда течения даже приближенно нельзя рассматривать как одно- или двумерные, возникает необходимость решать более сложные задачи о пространственных или трехмерных течениях. Возможность их решения в значительной степени зависит от выбора системы координат. Часто оказываются удобными различные криволинейные ортогональные системы, например цилиндрическая и сферическая.  [c.269]

В задачах установившейся дифракции упругих волн точные решения получают только в круговой цилиндрической и сферической системах координат (см. 1 настоящей главы). Этим исчерпываются возможности метода разделения переменных в его классической формулировке применительно к задачам дифракции для тел, ограниченных цилиндрическими поверхностями. Для тел, ограниченных достаточно гладкими цилиндрическими поверхностями, в предыдущем параграфе решение задачи дифракции сведено к решению бесконечных алгебраических уравнений. Большинство числовых результатов [59—62] получено с помощью приближенного метода возмущения формы границы , предложенного в работе [31]. Заметим, что метод применяется для приближенного вычисления компонентов тензоров, векторов и скаляров различной физической природы в криволинейной цилиндрической системе координат. Сущность метода состоит в получении последовательности краевых задач в цилиндрической системе координат, причем в каждом приближении решаются в круговых координатах одинаковые однородные уравнения, а поправки входят в краевые части граничных условий. Тем самым исключается необходимость построения частных решений, что далеко не всегда удается реализовать.  [c.58]


Класс точных решений уравнений газовой динамики удалось получить, применяя методы теории размерностей и подобия. Основная заслуга в этом принадлежит Л. И. Седову. В 1944 г. он дал общий прием для нахождения решений линейных и нелинейных дифференциальных уравнений в частных производных. Для одномерных неустановившихся течений (которые описы- 331 ваются нелинейными уравнениями) он рассмотрел случаи, когда искомые функции содержат постоянные, среди которых одна или две постоянные с независимыми размерностями. Седов доказал, что если среди размерных параметров, определяющих движение совершенного газа, кроме координаты г и времени t имеются лишь два постоянных физических параметра с независимыми размерностями, то уравнения в частных производных могут быть сведены к обыкновенным дифференциальным уравнениям. Движения газа, определяемые этими условиями, были названы автомодельными. Такими решениями были течения Прандтля — Майера, сверхзвуковые течения около кругового конуса с присоединенным скачком. В 1945 г. Седов нашел точные решения уравнений одномерного неустановившегося движения в случае плоских, цилиндрических и сферических волн (движение поршня в цилиндрической трубе, задача детонации, движение газа от центра и к центру) .  [c.331]

Большая часть уравнений, приведенных в тексте, записана в прямоугольных, цилиндрических или сферических координатах. Заметное исключение составляют уравнения пограничного слоя, для вывода которых необходимо было использовать параллельные координаты, и решение обтекания эллипсоида, для которого были введены эллипсоидальные координаты. Унифицированная форма всех этих уравнений может быть дана в криволинейных ортогональных координатах.  [c.376]

При решении задач теории упругости, пластичности и ползучести кроме декартовой используются и другие системы координат, в первую очередь цилиндрическая и сферическая. Элементарные объемы.  [c.20]

Здесь число л) =1,2,3 для плоского, цилиндрического и сферического случаев соответственно. Представим решение уравнений в виде произведения масштабных функций, зависящих от времени, на новые неизвестные функции автомодельной переменной = г/Я, где Я = Я t) — переменная длина, свойственная данной задаче (например, координата фронта ударной волны). Выбирая в качестве основных масштабы длины Я  [c.238]

Отметим, что решения для тел цилиндрической и сферической форм с коэффициентами с, X и у, являющимися степенными функциями координат, включаются как частные случаи в последнюю из рассмотренных задач. Например, уравнение в изображениях для шара имеет вид  [c.438]

Введенная система координат 5, г , 0, естественно, не является единственно возможной. Преимущество ее перед декартовой, цилиндрической и сферической системами координат в том, что границы исследуемой области в координатах 5, г ), 0 обычно являются плоскостями или прямыми линиями. Система координат 5, г , 0 не является ортогональной подобные системы координат называют нормальными. При решении прямой задачи также используются координаты, в которых границы области переходят в плоскости или прямые линии, что достигается соответствующей нормировкой переменных у и 2.  [c.28]

Большое внимание уделено решению конкретных задач. На выбор задач определенное влияние оказал тот факт, что в настоящее время наиболее полно изучены системы частных решений уравнения Гельмгольца в декартовой, цилиндрической и сферической системах координат. При анализе полученных решений определенное  [c.3]

Как было показано выше, в рамках моделей таких процессов, предложенных в предыдущей главе, фундаментальные решения задач Коши для соответствующих уравнений в одномерном по пространственным координатам случае, которые мы предполагаем существующими, могут быть представлены в простран-ственно-временных координатах в виде (3.87). Исследованию свойств этих решений, построению достаточно простых и эффективных вычислительных процедур, обобщению развитых методов на случаи цилиндрических и сферических волн, а также их применению к решению задач о распространении волновых импульсов в таких средах будут посвящены оставшиеся главы данной части книги. Ключевыми при этом для исследования интересующих нас проблем, связанных с переходными волнами в средах с фрактальными элементами, оказываются методы решения задач, содержащих отмеченную выше слабую степенную сингулярность в ядре наследственности.  [c.161]


Рассмотренная в общем случае для обобщенных волновых уравнений фундаментальная задача Коши (3.78)-(3.79) с точки зрения физики представляет собой задачу об определении двухточечной функции Грина (пропагатора) для волнового поля, в случае распространения в пространстве плоских волн, созданного мгновенным источником, равномерно распределенным по плоскости д = О. Отсутствие явной зависимости от двух из трех пространственных координат формально сводит эту задачу к пространственно одномерной. В этом смысле мы будем называть эту задачу одномерной, а соответствующее ей решение - одномерной функцией Грина (пропагатором) для соответствующего обобщенного волнового уравнения. Имея в виду в дальнейшем рассмотрение аналогичных задач для цилиндрически- и сферически- симметричных случаев, введем для обозначения этих функций обозначения N = 1,2,3 - математическая размерность задачи, а (.) - определяет положения точки в пространстве соответствующей размерности в подходящей системе координат (для плоской волны - это декартова координата л ). В этих обозначениях, с учетом (3.87), (3.88), функции Грина для всех рассматриваемых вариантов обобщенных волновых уравнений в случае рассмотрения плоских волн  [c.162]

При решении прямой задачи используют уравнения газовой динамики, записанные в декартовой, цилиндрической или сферической системах координат. Решать обратную задачу и формулировать граничные условия удобно, используя уравнения, в которых в качестве независимых переменных взята длина дуги вдоль некоторой кривой и функции тока. Использование функций тока особенно удобно, так как начальные условия в обратной задаче задаются обычно на поверхности тока (жесткая стенка или ось симметрии).  [c.50]

Одномерные движения жидкости или газа определяются как движения, все характеристики которых зависят только от одной единственной геометрической координаты и от времени. Можно показать, что одномерные движения возможны только со сферическими, цилиндрическими и плоскими волнами ). Методы теории размерности позволяют найти точные решения некоторых задач об одномерном неустановившемся движении сжимаемой жидкости ). Эти задачи представляют во многих случаях значительный теоретический и практический интерес. Но даже в тех случаях, когда постановка задачи не представляет самостоятельного интереса, получаемые точные решения можно использовать как примеры для проверки  [c.167]

Домашние задания заключаются в самостоятельном составлении алгоритмов и программ численного решения достаточно простых задач, отладке этих программ и проведении расчетов на ЭВМ. Например, в качестве домашнего задания можно предложить решение одномерной задачи теплопроводности, а необходимый набор вариантов можно обеспечить выбором декартовой, цилиндрической или сферической систем координат, комбинациями граничных условий и различных пространственно-временных и температурных зависимостей коэффициентов уравнений, видом разностной схемы. При самостоятельном составлении программ целесообразно использовать рекомендации и практические приемы, разобранные в книге на примере приведенных текстов учебных программ и фрагментов программ.  [c.204]

В некоторых задачах более простые решения получаются при пользовании другими системами координат полярными, сферическими, цилиндрическими и т.д.  [c.444]

Тонкие торсы. В соответствии с постановкой задачи положим далее сферическое изображение поверхности в виде дуги большого круга единичной сферы. В этом случае от пластины переходим к цилиндрической оболочке. Переход к решению задач ТТО с использованием изометрических координат и третьей квадратичной формы разобран в работах [13—17]. Этим способом определяются НДС не только в цилиндрических, но и в конических оболочках, так как по отмеченным в [13] разрешающим уравнениям для торсов можно придать аналогичный вид  [c.36]

Грин [25], а затем Робертсон [26], использовав (9.2), разработали метод решения широкого круга задач с линейным потоком и затем распространили его на задачи в сферических и цилиндрических координатах. Главная особенность этого метода заключается в принятии в качестве частного решения для ограниченной области такой комбинации волн типа (9.1), которая удовлетворяла бы условиям непрерывности на границах. Подобный метод хорошо известен в учении о волновом движении. Источники и дублеты вводят, используя комбинации частных решений (9.3) и (9.4). Таким методом можно получить многие решения, приведенные в гл. XIV.  [c.267]

Многослойная структура с полостью или упругим включением канонической формы. Рассмотрим случай, когда полость (упругое включение) целиком расположено в одном из элементов многослойной структуры и имеет границу, представляющую собой координатную поверхность в ортогональной криволинейной системе координат (цилиндрической, сферической, эллипсоидальной). В этом случае при исследовании задачи о динамическом воздействии плоского жесткого штампа на поверхность пакета слоев или многослойного полупространства с полостью или включением целесообразно использовать принцип суперпозиции. Это позволяет точным образом свести краевую задачу динамической теории упругости к системе интегро-функциональных уравнений, при решении которой можно использовать, в зависимости от расположения неоднородности, различные методы анализа.  [c.311]


Построение решения. Потенциал возмущенного движения представим в виде суммы (Л + 1) слагаемого, одно из которых Фо является решением уравнения (1) в цилиндрических координатах, а остальные Ф/, / = 1, 2,..., Л , — решениями уравнения (1) в сферических координатах г/, (р1 и представляют собой возмущения, вносимые 1-м включением в потенциал скоростей  [c.491]

Заключение. Разработан подход к решению стационарных динамических внутренних задач гидроупругого взаимодействия для системы, состоящей из жесткой цилиндрической полости, заполненной сжимаемой жидкостью и содержащей конечное число произвольно расположенных сферических включений. Подход основан на использовании теорем сложения специальных функций и соотношений, позволяющих представлять частные решения уравнения Гельмгольца в цилиндрических координатах с помощью его частных решений в сферических координатах, и наоборот. Это дает возможность, используя принцип суперпозиции, записывать общее решение в системе координат каждого тела и тем самым удовлетворять граничным условиям на его поверхности.  [c.500]

При решении многих задач механики твердого деформируемого тела часто пользуются не декартовой системой координат, а цилиндрической или сферической. Дифференциальные уравнения равновесия в цилиндрической системе координат г, 0, г выводятся из рассмотрения равновесия элементарного объема (рис. 23) и имеют следующий вид  [c.62]

Вследствие того, что линза ограничена сферической поверхностью, решение удобнее производить в цилиндрической системе координат, т. е. находить перемещения и , щ и г. вариациями которых будут соответственно бы,, бмв и бы .  [c.160]

В первой главе представлены основные уравнения простран ственной задачи теплопроводности и термоупругости тел, облада ющих прямолинейной анизотропией, уравнения теплопроводности и термоупругости в цилиндрических и сферических, координатах, выведены уравнения теплопроводности и термоупругости пластин, обладающих прямолинейной и цилиндрической анизотропией. Отметим, что существование и единственность решения задачи термоупругости для анизотропной неоднородной среды обосновывается Р. Фурухаши [162].  [c.8]

Уравнения движения и их решение. Рассмотрим одномерные движения невязкого, нетенлонроводного газа нри наличии раснространяюгцейся но газу ударной волны. Газ совершенный с постоянными удельными теплоемкостями. За основные искомые функции примем расстояние К частиц от центра (осп, плоскости) симметрии, плотность р и давление р, а за независимые переменные -время I и лагранжеву координату ш, определенную формулой йт = р1 г)г (1г, г - значение К в начальный момент времени, р (г) - начальное распределение илотности, и = 1, 2, 3 для течений с плоскими, цилиндрическими и сферическими волнами. При сделанных предположенпях уравнения неразрывности, движения и энергии записываются в виде  [c.262]

Для механики сплошной среды вообще и механики деформируемого твердого тела в частности аппарат теории тензоров является естественным аппаратом. В большинстве теорий выбор системы координат, в которых ведется рассмотрение, может быть произвольным. Проще всего, конечно, вести это рассмотрение в ортогональных декартовых координатах. Очевидно, что доказательство общих теорем и установление обнщх принципов при написании уравнений именно в декартовых координатах не нарушает общности. Что касается решения задач, то иногда бывает удобно использовать ту или иную криволинейную систему координат. Однако при этом почти всегда речь идет о простейших ортогональных координатных системах — цилиндрической или сферической для пространственных задач, изотермической координатной сетке, порождаемой конформным отображением, для плоских задач. В некоторых случаях, когда рассматриваются большие деформации тела, сопровождаемые существенным изменением его формы, система координат связывается с материальными точками и деформируется вместе с телом. При построении соответствующих теорий преимущества общей тензорной символики, не связанной с определенным выбором системы координат, становятся очевидными. Однако в большинстве случаев эти преимущества используются при формулировке общих уравнений, не открывая возможности для решения конкретных задач. Поэтому мы будем вести основное изложение в декартовых прямоугольных координатах, случай цилиндрических координат будет рассмотрен отдельно.  [c.208]

Хаберман и Сэйр [27] также рассматривали осесимметричный случай для больших alR , используя представление общих решений уравнений медленного течения через функцию тока, выраженную как в цилиндрической, так и в сферической системах координат. Для удовлетворения граничных условий на стенках цилиндра использовалось решение для функции тока в цилиндрических координатах. Полученное таким образом выражение представляет собой поле течения внутри кругового цилиндра, пока еще не полностью определенное, но удовлетворяющее граничным условиям на поверхности цилиндра. Затем это выражение преобразовывалось к сферическим координатам. Сравнивая почленно константы в предыдущем выражении с постоянными в выражении для разложения функции тока, полученном непосредственно в сферических координатах, получаем связь между этими константами. Граничные условия на сфере дают связь между константами для решения в сферических координатах. После подстановки предыдущих соотношений в соотношения, полученные из граничных условий на сфере, получаем бесконечную систему линейных алгебраических уравнений для определения коэффициентов, фигурирующих в разложении функции тока.  [c.366]

Остановимся подробнее на получении системы интегро-функциональ-ных уравнений контактной задачи. Использование принципа суперпозиции предполагает возможность получения аналитического решения краевой задачи динамической теории упругости с однородными граничными условиями в напряжениях для составляющих многослойную область с каноническим включением элементов. Таковыми являются однородный упругий слой, однородное упругое полупространство, полость в безграничном пространстве и упругое включение, граница которого тождественна границе полости. Решение задач для однородного слоя (полупространства) строится методом интегральных преобразований с использованием принципа предельного поглощения и может быть получено в виде контурного несобственного интеграла [2,4,14]. В зависимости от постановки задачи (пространственная, плоская, осесимметричная) получаем контурные интегралы типа обращения преобразования Фурье или Ханкеля [16]. Решение задачи для пространства с полостью, описываемой координатной поверхностью в ортогональной криволинейной системе координат, получаем в виде рядов по специальным функциям (сферическим, цилиндрическим (Ханкеля), эллиптическим (Матье)) [17]. При этом важно корректно удовлетворить условиям излучения, для чего можно использовать принцип излучения. Исключение составляет случай горизонтальной цилиндрической полости при исследовании пространственной задачи. Здесь необходимо использовать метод интегральных преобразований Фурье [16] вдоль образующей цилиндра и принцип предельного поглощения [3] для корректного удовлетворения условиям излучения энергии вдоль образующей.  [c.312]


В данной работе развит метод построения потенциала скоростей сжимаемой жидкости в жестком цилиндрическом сосуде, содержащем несколько взаимодействующих сферических включений. Строится решение уравнения Гельмгольца для соответствующей пространственной многосвязной области. При этом решение, записанное в цилиндрических координатах, удается переразложить по системе сферических волновых функций (и наоборот), что позволяет удовлетворить соответствующим граничным условиям на сферических и цилиндрических поверхностях и в итоге получить бесконечную систему алгебраических уранений относительно коэффициентов искомых представлений. В качестве конкретной задачи  [c.489]


Смотреть страницы где упоминается термин Решения в цилиндрических и сферических координатах : [c.673]    [c.114]    [c.108]    [c.303]    [c.312]    [c.255]    [c.13]    [c.256]    [c.30]    [c.288]    [c.319]    [c.501]    [c.247]   
Смотреть главы в:

Теплопроводность твердых тел  -> Решения в цилиндрических и сферических координатах



ПОИСК



Координаты сферические

Координаты цилиндрические

Общее решение уравнений медленного течения в сферических координатах цилиндрических

Цилиндрические и сферические координаты



© 2025 Mash-xxl.info Реклама на сайте