Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модель линейно-упругого тела

По-прежнему теория упругости сохраняет свое неоценимое значение при исследовании напряженно-деформированного состояния элементов обычных инженерных конструкций, в частности машиностроительных, детали которых, как правило, описываются моделью линейно-упругого тела.  [c.6]

В заключение этого параграфа рассмотрим с общей точки зрения модель линейного упругого тела, подчиняющегося зл-кону Гука, о которой уже шла речь в гл. IV т. 1.  [c.319]


Обращение компонент напряжений в бесконечность у конца щели не следует рассматривать как коренное противоречие результатов линейной теории упругости в этой задаче опытам. Наоборот, в рамках линейной теории упругости и сильно упрощенной схематизированной постановки задачи это обстоятельство является хорошим отражением действительности. Использование модели линейно упругого тела в этой задаче, так же как и широко используемые идеализации во многих других случаях (абсолютно твердое тело, поверхности сильных разрывов, явление удара и т. д.), связано с некоторыми эффектами, которые в той или иной степени противоречат опыту. Важно, однако, чтобы такие противоречия не имели существенного значения для распределения искомых величин в основной части тела и для получения нужных выводов при решении поставленных задач ).  [c.514]

Методы сопротивления материалов 377 теории упругости вариационные 388 Модель линейно-упругого тела 319 Модели сред идеальных жестко-пластических 414  [c.564]

ЧАСТНЫЕ МОДЕЛИ ЛИНЕЙНО-УПРУГОГО ТЕЛА  [c.36]

Прочность большинства хрупких тел определяется дефектами типа трещин, размеры которых велики сравнительно с межатомным расстоянием. Такие дефекты в десятки и сотни раз снижают прочность материала по сравнению с теоретическим значением для идеально-периодической структуры. Постановка задачи, учитывающая атомную структуру материала в явном виде, настолько усложняет решение, что почти всегда приходится отказываться от нее и прибегать к модели сплошного деформируемого тела. Для хрупких материалов такой моделью является модель линейно-упругого тела при малых деформациях.  [c.51]

Настоящий раздел содержит краткий обзор решений задач математической теории трещин, основанных на модели линейного упругого тела ).  [c.419]

При слоистом строении грунтовой толщи осадка всей сжимаемой толщи находится суммированием осадок отдельных слоев, а давление для середины каждого слоя определяют на основе модели линейно-упругого тела.  [c.162]

В книге использованы простейшие модели, описывающие свойства материалов. В разделе теории упругости это была модель линейно-упругого сплошного и однородного тела. Вопросы пластичности также рассматривались применительно к простейшим моделям пластического деформирования, а в явлении ползучести мы вынуждены были ограничиться лишь линейной ползучестью. В то же время, например, новые композитные материалы иногда не могут быть описаны с помощью рассмотренной выше модели ортотропного материала и требуют привлечения общей теории анизотропных тел, физические свойства которых описываются соответствующими тензорами параметров упругости.  [c.389]


Построение расчетной схемы можно расчленить на ряд простейших этапов. К первому этапу следует отнести построение модели среда. Приведенные примеры относятся именно к этому этапу. Кроме модели идеально упругого тела (рис. 1.9, а) в механике твердого тела широко используют следующие модели сред тело с линейным упрочнением, когда реальная диаграмма а—е заменя-  [c.18]

Для более точного описания наследств, свойств линейных материалов применяют более сложные модели. Вязко-упругое тело — твёрдое тело,. к  [c.383]

ОБОБЩЕННЫЙ ЗАКОН ГУКА ДЛЯ ЛИНЕЙНО УПРУГОГО ТЕЛА (МОДЕЛЬ ИДЕАЛЬНО УПРУГОГО ТЕПА)  [c.107]

Естественно, что получена именно эта форма уравнений, так как Ф — функционал над и. Выше уже отмечена несвязанность определения потенциальной энергии системы и формулировки принципа минимума ее с представлением о напряженном состоянии. О последнем нет речи в чисто энергетическом принципе, определяющем поведение линейно-упругого тела по заданию некоторого функционала над вектором перемещения. Подобно принципу Гамильтона в общей механике, принцип минимума потенциальной энергии системы синтезирует свойства физической модели упругого тела, включая экспериментальные данные о поведении его под нагрузкой.  [c.153]

Уравнение (5) характеризует реологическое состояние среды, в которой при постоянной деформации напряжение релаксирует до нуля по экспоненциальному закону. Уравнение (6) описывает деформацию среды с последействием. В этой среде при мгновенном снятии напряжений деформация экспоненциально убывает до нуля. Уравнение (7) соответствует деформации сложной среды с релаксацией напряжения и последействием. Следует отметить, что в литературе деформацию упругого последействия часто называют эластической. Если она достигает очень высоких значений, ее общепринято именовать высокоэластической. Аналогично уравнениям (5)—(7) можно составить уравнение модели вязко-упругого тела с любым (конечным или бесконечным) набором времен релаксации и последействия. Естественным обобщением модельной теории вязко-упругой среды является интегральная теория вязко-упру-гости, в которой спектры времен релаксации и последействия могут быть как дискретными (тогда реологическое поведение тела можно описать соответствующей моделью), так и непрерывными. Изложение этой теории описано, например, в монографии Д. Бленда Теория линейной вязкоупругости (Издательство Мир , М. 1965).  [c.16]

Выполнение условия Адамара для линейно упругих тел свидетельствует также о наличии вещественных значений скоростей распространения волн сдвига и сжатия-растяжения в данной среде [163], следовательно, постановка динамических задач при деформировании на стадии разупрочнения в противном случае некорректна и лишена физического смысла. Если учесть, что любой реальный процесс осуществляется с некоторой, пусть малой, но конечной скоростью, не затрагивать структуры материала и условий проведения опытов, то в силу указанного противоречия модель однородной разупрочняющейся среды, строго говоря, не является допустимой.  [c.196]

В книге рассматриваются процессы распространения волн в идеальном линейно-упругом теле. Такая модель среды полностью характеризуется тремя величинами —двумя упругими постоянными и плотностью в невозмущенном состоянии.  [c.16]

Непропорциональное нагружение изучено меньше, как теоретически, так и экспериментально. Это объясняется, с одной стороны, экспериментальными трудностями, с другой — тем, что формулировка модели для произвольного напряженного состояния практически означает возможность ее дальнейшего использования при произвольных траекториях нагружения в пространстве напряжений (линейном пространстве, векторы которого взаимно однозначно связаны с компонентами тензора напряжений). Например, модель нелинейного упругого тела а =/(е) преобразуется на основании постулата изотропии в деформационную теорию  [c.146]


Исходной, опорной задачей механики разрушения является расчет напряженно-деформированного состояния в окрестности неподвижной трещины. Исходная модель представляет собой линейно-упругое тело с традиционным предположением о малости деформаций (геометрически линейная постановка задачи). Несмотря на сильную идеализацию, эта модель позволила определить важный параметр состояния, используемый в дальнейшем коэффициент интенсивности напряжений (КИН).  [c.238]

Перенесение результатов испытаний с модели на, натуру при использовании материалов модели, проявляющих нелинейную ползучесть, рассмотрено в работе [3]- В случае применения материалов модели), проявляющих линейную ползучесть, методика перехода от модели к натуре не отличается от принятой для линейно упругих тел.  [c.121]

Для описания механических свойств материалов цилиндров используется модель однородного изотропного линейно упругого тела. Градиент нормальных перемещений У х) поверхности цилиндра определяется соотношением  [c.286]

Простейшая модель линейного упруго-вязкого тела может быть получена, если положить т = н обозначить -рг- = т.  [c.214]

Данные модели, однако, с чисто механической точки зрения внутренне не противоречивы и обладают одним немаловажным достоинством они позволяют найти соответствующие им точные решения задач о трещине. При удалении от края трещины поля напряжений и деформаций, отвечающие этим двум моделям (и соответственно - линейной теории упругости), сближаются и, если деформации и повороты вдали от трещины малы, становятся неразличимыми. Это дает основания полагать, что влияние геометрической нелинейности в данных задачах носит локальный характер и что там, где она не проявляется, результаты линейной теории правильны. Область, вне которой влияние геометрической нелинейности несущественно, для обычных жестких материалов оказывается достаточно малой, что оправдывает применение геометрически линейной теории не только для упругого, но и для упругопластического тела. При этом зависимости для напряжений и перемещений у края трещины в линейно-упругом теле следует  [c.68]

Обобщенный закон Гука для линейно упругого тела (модель идеально упругого тела)  [c.125]

Под влиянием остаточных напряжений на герметизирующей кромке наблюдается остаточное изменение формы. Указанное явление учитывается включением в модель последовательно с пружиной демпфера (рис. 30). Таким образом, последовательное соединение элементов Максвелла и Фойгта дает модель линейного вязкоупругого тела, общая деформация которого состоит из трех составляющих Уо = Уе + Уо + Уо, где Уе - упругая составляющая уо - высокоэластическая составляющая Уо - вязкая составляющая.  [c.50]

Обратим внимание на важную особенность системы (4.17) в нее не входят константы упругости и и. Следовательно, при заданных на поверхности пластинки нагрузках р , ру (4.4) эти уравнения могут быть решены и дадут напряжения, не зависящие от упругих свойств изотропного линейно-упругого материала. Это положение обычно называют теоремой Леви. Она служит теоретическим основанием, позволяющим напряжения, найденные на моделях, изготовленных из какого-либо материала, переносить на геометрически подобные и аналогично загруженные детали конструкций, выполненные из другого материала. Например, в методе фотоупругости используются прозрачные модели, а результаты экспериментальных исследований переносят на стальные, бетонные и т. п. элементы конструкций. Подчеркнем, что строго это положение справедливо только для элементов с заданной поверхностной нагрузкой (а не перемещениями) и, как показывает более подробный анализ, только для односвязных тел, т. е. тел без отверстий. В телах с отверстиями для применимости теоремы Леви надо, чтобы выполнялось дополнительное условие, а именно на каждом из замкнутых контуров тела и отверстий главные векторы и момент поверхностной нагрузки должны быть равны нулю.  [c.77]

Силовой критерий Ирвина и эквивалентный ему энергетический критерий Гриффитса в линейной механике разрушения полностью исчерпывают вопрос о предельном состоянии равновесия континуального упругого тела с трещиной. В нелинейной механике разрушения существует ряд формулировок, также устанавливающих предельное состояние равновесия упругого тела с трещиной. Среди них наиболее известной является б -модель [31, 116, 118, 209]. Суть этой модели состоит в том, что перед концом существующего разреза вводится зона ослабленных связей в виде тонкого слоя. При этом тело обладает следующими  [c.55]

Классические модели линейной теории упругости изотропных или анизотропных кристаллических или других сред описывают далеко не все явления, происходящие при деформировании твердых тел.  [c.410]

Общие положения. Соединяя различным образом элементы, соответствующие телам Н, N и St-V, можно получить механические модели значительно более сложных по своим свойствам реологических тел, оставаясь в области тел, обладающих линейными упругостью и вязкостью. При составлении реологического уравнения сила в механической модели заменяется-напряжением, а удлинение — относительной деформацией. Соеди-  [c.515]

На первом этапе поликристаллический материал с микродефектами моделируется при помощи некоторой сплошной, но регулярно неоднородной среды, например i), при помош,и однородной упругой изотропной среды со сферическими анизотропными включениями. Таким образом, модель первого этапа —это композитный материал. Далее выделяется так называемый характерный объем ). Это минимальный объем, содержаш,ий такое число включений, которое позволяет считать, что тело в рассматриваемом объеме макроскопически однородно. Последнее понятие трактуется так. Если на поверхности макроскопически однородного тела в рассматриваемом объеме задать нагрузки, которые в абсолютно однородном теле вызвали бы однородное напряженное состояние, то длина волны флуктуаций полей тензоров напряжений и деформаций должна быть пренебрежимо мала по сравнению с линейными размерами тела, имеющего обсуждаемый объем.  [c.594]


Первоначальные исследования в области реологии, относящиеся ко второй половине прошлого столетия и связанные с именами Максвелла, Фойгта, Кельвина, Больцмана, были посвящены течению весьма вязких жидкостей и дисперсных систем (коллоидных растворов, суспензий). Отправным пунктом этих исследований послужила идея объединения в одной модели свойств упругости и вязкости. Наибольшее развитие получила теория линейных вязко-упругих тел, т. е. таких, для которых реологическое соотношение имеет вид  [c.753]

Задачи третьего класса могут быть и такой разновидности, в которой рассматривается местная деформация в зоне контакта соударяющихся тел. В этой зоне реологические свойства модели могут быть иными, чем в остальной части тела. В частности, в области контакта могут развиваться чисто пластические деформации или может происходить хрупкое разрушение, в то время как остальная часть соударяющихся тел линейно упруга.  [c.255]

Из многочисленных моделей для описания диссипативных свойств реальных материалов наиболее правдоподобной представляется модель неоднородного упруго-пластического тела [58, 104, 130]. Такая модель может быть образована путем параллельного, последовательного или смешанного соединения линейных упруго-пластических элементов. Причем, как показано в работе [104], соответствующим подбором параметров можно  [c.162]

При деформировании материала между компонентами напряжений и компонентами деформаций существует связь. В упругих материалах эта связь является алгебраической, однозначной. В данной главе мы займемся простейшей моделью гипотетического тела, обладающего свойствами линейной упругости. Закон линейной упругости в случае сложного напряженного состояния вводится путем обобщения известных формул закона Гука, полученных для случаев растяжения-сжатия и чистого сдвига. Деформацию элемента линейно упругого материала при сложном напряженном состоянии можно найти на основе принципа наложения, состоящего в том, что некоторая деформация, вызванная системой напряжений, определяется как алгебраическая сумма деформаций, вызванных каждым напряжением в отдельности.  [c.107]

Наиболее простой моделью МДТТ является модель линейного упругого тела. Почти все деформируемые твердые тела (а иногда даже и жидкости) в той или иной степени обладают упругими, свойствами, хотя бы при кратковременных нагрузках.  [c.16]

Рассмотрт другие частные модели сплошных сред модель линейного упругого тела и модель линейной вязкой жидкости. Построение этих моделей проводится параллельно, так как способы их введения, как мы увидим, формально аналогичны. По существу же эти две модели описывают два совершенно различных типа механического поведения реальных сред.  [c.165]

Используемая ниже модель роста трещины — это модель Г. И. Ба-ренблатта [14] и ее обобщение, предложенное Баренблаттом с соавторами в работе [15]. Предполагается, что процесс роста трещины путем отрыва (скола) в идеальном кристалле можно смоделировать подвижной трещиной в виде полуплоскости в некотором неограниченном линейно-упругом теле в условиях плоской деформации. Если трещина идеально острая, то при приближении к ее вершине напряжения неограниченно растут, что несовместимо с естественным предположением об ограниченности сил сцепления (когезии) в кристалле. Поэтому предполагается, что трещина раскрывается постепенно и это раскрытие происходит на интервале конечной длины D перед действительно существующей вершиной трещины прямо по направлению пути ее распространения данный интервал называют зоной сцепления.  [c.99]

В главе рассматриваются определяющие соотношения МДТТ в операторном виде, которые в дальнейшем конкретизируются на различных примерах. Дается математическое определение композита и модели МДТТ. Рассмотрены модели линейного упругого, вязкоупругого и упруго-пластического тела (теория малых упругопластических деформаций). Дается схематическое описание экспериментов, необходимых для проведения расчетов по выбранной модели. Читателю рекомендуется сначала ознакомиться с приложением I (и частично с приложением II), чтобы были понятны используемые в главе обозначения.  [c.7]

Модель контактной задачи как системы с неудерживающими связями была предложена впервые А. Синьорини [8, 9], который исследовал равновесие линейно упругого тела в жесткой гладкой оболочке. Исследование проблемы существования и единственности решения было дано в работах Г. Стампаккья, Ж.-Л. Лионса и Г. Дюво и др. [10]. Анализ возможных форм условия непроникания выполнен в работе [11]. Здесь же даны обобщения на задачи о контакте нескольких деформируемых тел, динамические контактные задачи, задачи с учетом трения и адгезии.  [c.478]

Следовательно, для линейно-упругого тела, обладающего свойством вязкости, т. е. сочетающего в себе свойства упругого тела и вязкой жидкости (механическая модель Кельвина — Фойхта), связь между напряжениями и деформациями и их скоростями при линейном напряженном состоянии выразится линейным дифференциальным уравнением  [c.52]

Как мы видели, трещина в деформируемом теле создает очаг возмущения напряженного состояния, характерный сильной концентрацией напряжений у ее острия. На первый взгляд любая малая трещина благодаря стремлению напряжений к неограниченному росту с приближением к кончику трещины должна была бы породить прогрессирующий процесс разрушения. Однако такой теоретический результат следует из модели идеально упругой сплошной среды и не соответствует реальным физическим свойствам материала. Дискретная структура реального материала и нелинейность механических соотношений для него в сильной степени изменяют картину фиаико-меха-нического состояния, следующую из линейной теории упругости. В результате, как показывает опыт, в одних условиях трещина может устойчиво существовать, не проявляя как-либо себя, а в других — происходит взрывоподобный рост треш ины, приводящий к внезапному разрушению тела. Существуют попытки проанализировать это явление на атомном уровне методами физики твердого тела. Они представляют определенное перспективное направление в этой проблеме, но, к сожалению, до сих пор полученные здесь результаты далеки от уровня прикладных инженерных запросов.  [c.383]

При деформирован ии материала между компонентами материала и компонентами деформаций существует связь. В упругих материалах эта связь является алгебраической, однозначвюй. В данной главе мы займемся простейшей моделью гипотетического тела, обладающего свойствами линейной упругости. Закон линейной  [c.125]

Необходимо подчеркнуть, что теорема единственности доказана нами для геометрически линейной постановки задачи теории упругости. Если условие (8.4.8) не выполнено, единственности может не существовать. Это может означать одно из двух о либо принятая модель сплошной среды некорректна, либо материал неустойчив. При- Рис. 8.4.1 мером такого неустойчивого материала служит материал с падающей диаграммой растяжения, подобной изображенной на рис. 8.4.1. Видно непосредственно, что одному п тому же значению напряжения на этой диаграмме соответствуют два разных значения деформации. Вопрос о действительном существовании таких неустойчивых упругих материалов остается открытым диаграммы вида изображенной на рис. 8.4.1 наблюдаются при описании пластического поведения и представляют зависшюсть условного напряжения, т. е. растягивающей силы от деформации. Пример неустойчивости такого рода был рассмотрен в 4.13. Для геометрически нелинейных систем теорема единственности несправедлива нарушение единственности соответствует потере устойчивости упругого тела. Рассмотрению подобного рода задач в элементарной постановке была посвящена вся четвертая глава.  [c.247]


Исследователи, изучающие движение сыпучей среды, из общих законов механики могут предсказать основные качественные черты движения. Поэтому к математическим способам описания неизвестных эмпирических зависимостей, в которых выбор вида аппроксимирующей функции осуществлен формальным образом, обычно не прибегают. Наиболее привычной формой описания движения являются дифференциальные уравнения. Достаточно просто решаются дифференциальные уравнения с постоянными коэффициентами. Поэтому сплошную среду описывают моделью, состоящей из системы твердых тел, связанных взаимно и с пове])Хностью лотка со стандартными элементами линейной упругости, линейной вязкости, сухого трения с постоянными коэффициентами и простейшими ударными элементами. Такие модели позволяют получить общее решение, поэтапно используя решения линейных систем. Число масс упругих, вязких, ударных элементов сухого грения определяет число посгоянных, подлежащих определению из эксперимента. С увеличением числа элементов возрастает точность описания экспериментальных результатов. Такие модели способны описывать с достаточной гочносгью все необходимые зависимости — = Кг (о), где вектор а — совокупность всех параметров, влияющих на /(, т. е пространство параметров, в котором ведется эксперимент. Решение дифференциальных уравнений движения дает теоретические значения К . Но эти значения зависят от численных значений параметров модели с . Их определяют, минимизируя квадратическую ошибку между экспери енгальными значениями (aj и теоретическими значениями подсчитанными при тех же комбинациях параметров а,-, при  [c.90]

С точки зрения практических приложений исследование иесквоз-ной трещины, находящейся в конструкционном элементе, который можно представить пластиной или оболочкой, является одной из наиболее важных задач механики разрушения. В самом общем случае эта задача сводится к задаче о трехмерной трещине, развивающейся в теле конечных размеров, где поле напряжений, возмущенное трещиной, испытывает сильное влияние границ твердого тела. В настоящее время точное решение подобной задачи даже в случае линейно-упругих твердых тел представляется весьма сложным. В связи с этим, как показано Б книге, для решения задачи используются разнообразные численные методы, в частности метод конечных элементов. Возобновившийся в последние годы интерес к так называемой модели в виде линейных пружин (стержневой модели трещины), впервые описанной в [1], частично объясняется желанием получить более простое и менее дорогое решение задачи о несквозной трещине, а частично тем обстоятельством, что для некоторых и весьма важных конфигураций трещин эта модель приводит к результатам, обладающим приемлемым уровнем точности.  [c.243]


Смотреть страницы где упоминается термин Модель линейно-упругого тела : [c.290]    [c.728]    [c.8]   
Механика сплошной среды. Т.2 (1970) -- [ c.319 ]



ПОИСК



Линейно-упругое тело

Линейное наследственно-упругое тело. Реологические модели

Малые деформации элемента материала. Преобразование деформаций при повороте осей координат. Направления главных деформаОбобщенный закон Гука для линейно упругого тела (модель идеально упругого тела)

Модели линейно-упругого тела - Изотропное тело

Модели линейные упругие

Модель линейная

Модель линейного упругого тела

Модель линейного упругого тела

Модель упругого тела

Обобщенный закон Гука для линейно упругого тела (модель идеально упругого тела)

Упругие тела

Упругости линейная



© 2025 Mash-xxl.info Реклама на сайте