Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приближенные методы решения линейных задач теории упругости

Решения реализуются при помощи. различных вариантов метода последовательных приближений (А. А. Ильюшин, 1948 И. А. Биргер, 1951, и др.) или численно. В первом случае нелинейные члены переносятся в правые части уравнений или включаются в коэффициенты упругости , затем в той или иной форме применяется метод последовательных приближений. На каждом этапе приближения необходимо решить линейную задачу теории упругости, но с дополнительными объемными силами ( метод упругих решений ) или с измененными коэффициентами упругости ( метод переменных параметров упругости ). Процессы эти весьма трудоемки, и в неодномерных задачах редко удается построить более чем одно-два приближения. Сходимость большей части используемых процессов ее изучена. Сходимость метода упругих решений при определенных условиях установлена в работах А. И. Кошелева (1955) и С. Г. Петровой  [c.116]


Решение задач теории пластичности связано с решением системы нелинейных дифференциальных уравнений в частных производных (10.24). . . (10.28), что представляет собой чрезвычайно сложную задачу, которая в аналитическом виде решается, как правило, в исключительных случаях. Поэтому решение задачи теории пластичности чаще всего строится с помощью приближенных методов. Одним из них является метод последовательных приближений, предложенный А. А. Ильюшиным и называемый в теории пластичности методом упругих решений. Суть его заключается в рассмотрении последовательности линейных задач теории упругости, решения которых с увеличением порядкового номера сходятся к решению задачи теории пластичности.  [c.310]

Метод последовательных приближений впервые был применен к задачам нелинейной упругости при конечных деформациях в работе Синьорини [130]. Дальнейшее его применение к этим задачам рассмотрено, например, в [17, 18, 32, 78, 103]. Решение задач теории наложения больших деформаций этим методом приведено в [29, 50, 51, 53, 57, 122]. Сущность метода применительно к задачам теории наложения больших деформаций может быть описана следующим образом. В качестве начального приближения выбирается решение линейной задачи, соответствующей исходной нелинейной задаче. Обозначим вектор перемещений, соответствующий этому решению, через Очевидно,  [c.49]

Применение сформулированного метода упругих решений позволяет последовательно на каждом шаге приближения рассматриваемую задачу (4.126), (4.127) об изгибе упругопластического трехслойного стержня сводить к линейной задаче теории упругости с дополнительными внешними нагрузками (4.128). Первым приближением будет служить полученное ранее аналитическое решение задачи теории упругости (4.96).  [c.227]

В заключение первой главы на основе термодинамики линейных необратимых процессов рассматривается вариационный принцип для связанной задачи термоупругости, позволяющий развить приближенные методы решения связанных задач динамической теории упругости и нестационарной теплопровод-иости.  [c.7]

Решение такой нелинейной задачи строится по методу последовательных приближений. В начальном приближении принимаются равными Е, л и из решения задачи линейной теории упругости находятся е ° у%,. . е, . Из зависимости Ф (е ) находится величина а затем < >, G . Далее решается задача линейной неоднородной теории упругости. По найденным из нее компонентам деформированного состояния определяются ei, ali Е ( Как и в рассмотренном примере для одноосного напряженного состояния, процесс последовательных приближений продолжается до тех пор, пока значения компонент тензоров напряжений или деформаций в двух соседних приближениях не будут отличаться друг от друга на величину, меньшую величины допустимой погрешности.  [c.316]


Задачи теории упругости с малыми деформациями линейны. Несмотря на это, во многих случаях теоретическое решение этих задач затруднительно. В инженерной практике с успехом применяются приближенные методы расчета, создание и разработка которых составляет предмет сопротивления материалов .  [c.377]

Заканчивая эту главу, сделаем два замечания. Первое замечание касается метода Галеркина. Как указано во введении к части А, приближенный метод решения, основанный на принципе виртуальной работы и называемый методом Галеркина, может рассматриваться как вариант метода взвешенных невязок. В задачах линейной статической теории упругости этот метод приводит к конечно-элементной формулировке, эквивалентной формулировке, получаемой при помощи принципа минимума потенциальной энергии. Однако в задачах, более сложных, чем задачи линейной теории упругости, предпочтительнее использовать принцип виртуальной работы или его эквивалент. Можно провести аналогичные рассуждения, связанные с методами конечных элементов, основанными на принципе дополнительной виртуальной работы, модифицированном принципе виртуальной работы и модифицированном принципе дополнительной виртуальной работы.  [c.358]

Использование полимеров, высокопрочных сплавов и резины потребовало развития нелинейной теории упругости. Так называемая физически нелинейная теория упругости, т. е. такая теория, где нелинеен лишь закон, связывающий напряжения и деформации, практически тождественна теории упруго-пластических деформаций при нагружении. Поэтому мы не будем рассматривать ее отдельно от последней и обратимся к развитию так называемой нелинейной теории упругости, в которой учитываются нелинейные эффекты, связанные с большими перемещениями и деформациями. Интерес к этой теории, возникший в связи с работами Ламе и Кирхгофа, потом надолго угас и возродился лишь в 20-х годах. В работах Н. В. Зволинского и П. М. Риза развивается квадратичная теория упругости, в которой во всех соотношениях удерживались члены второй степени относительно деформаций. При решении задач нелинейной теории упругости наиболее эффективен метод последовательных приближений, который позволяет свести их к решению линейных задач. В развитии этого метода большую роль сыграли  [c.260]

Общие методы решения задач теории пластичности. Для решения нелинейных уравнений теории упруго-пластических деформаций применяют различные варианты метода последовательных приближений. Решение задач теории пластичности сводится при этом к решению последовательности линейных задач, каждая из которых может быть интерпретирована как некоторая задача теории упругости.  [c.74]

К настоящему времени достаточно разработаны общие методы получения приближенных решений большого класса задач при наличии случайных внешних воздействий, однако имеется сравнительно небольшое число решений конкретных задач. В этой области необходима дальнейшая разработка методов решения различных классов линейных и нелинейных задач, учитывающих и использующих специфику стохастических краевых задач теории упругости и фактическое построение решений важных для практики задач. Особо следует отметить актуальность разработки проблемы расчета тел и конструкций при наличии ограниченной информации о статистических свойствах нагрузки (например, при сейсмических воздействиях) и проблему оптимального проектирования при наличии случайных внешних воздействий.  [c.6]

Прямая задача теории упругости, т. е. определение перемещений и напряжений упругого тела по заданным внешним силам и условиям закрепления, даже в линейной ее постановке, весьма трудна, и в настоящее время нет эффективного общего метода ее аналитического решения. Иными словами, сформулировав какую-либо конкретную задачу этой теории математически, мы часто не имеем достаточных математических средств, для того чтобы ее решить, если не говорить о приближенных методах интегрирования или об использовании вычислительных машин. Однако поскольку всякая задача теории упругости является по существу физической задачей, уместно привлекать к ее решению не только математические, но и физические соображения. Именно этим путем и было решено большинство задач теории упругости, представляющих наибольший практический интерес.  [c.236]


В книге со всей разумной полнотой и строгостью рассматривается линейная статика тонкой упругой однородной изотропной оболочки. Выводятся общие уравнения теории, обсуждаются возможные приближенные методы их решения, исследуются краевые задачи, возникающие в процессе приближенного расчета оболочек.  [c.2]

Традиционные модели механики разрушения не учитывают появления в процессе нагружения пор и микротрещин, вследствие чего моделирование кинетики трещин их методами невозможно. Известны модели, в которых изменение механического поведения материала в окрестности вершины трещины описывается с помощью введения функции повреждения (типа Качанова-Работнова) [93, 94, 212. Этим моделям, к сожалению, присущ общий недостаток феноменологических подходов получение надежных предсказуемых результатов возможно только на основе обширной и соответственно трудоемкой экспериментальной программы. И кроме того, они опираются на использование линейной теории упругости, но линейная теория упругости, основанная на допущении о малости деформации, имеет в этих задачах в качестве решения напряжения и деформации, неограниченно возрастающие при приближении к особой точке, т. е. отнюдь не являющиеся малыми. Тем самым линейная теория вступает в противоречие сама с собой [183, 230, 234, 268, 400.  [c.253]

В дальнейшем под термином аналитические методы будем понимать методы, позволяющие получить решение краевой задачи в виде аналитической функции (скалярной или векторной), удовлетворяющей точно или приближенно уравнениям и граничным условиям этой задачи. Если метод позволяет получить решение, которое точно удовлетворяет как уравнениям краевой задачи во всей области, в которой она решается, так и граничным условиям на всей границе этой области (или на той части границы, на которой они заданы), за исключением, возможно, конечного числа точек, то метод является точным для данной задачи или класса задач. Например, метод Колосова-Мусхелишвили 65] является точным методом решения плоских статических задач линейной теории упругости для односвязных областей, которые могут быть конформно отображены на единичный круг с помощью дробно-рациональной функции. Для многих классов задач точные аналитические решения неизвестны. Это, например, плоские статические задачи линейной упругости для многосвязных областей или статические задачи нелинейной теории упругости при конечных деформациях. Только отдельные задачи этих классов имеют точное аналитическое решение. Существуют методы, позволяющие свести решение таких задач к последовательному решению более простых задач, для каждой из которых точное аналитическое решение может быть найдено. Например, при решении задач линейной упругости для много-  [c.45]

При решении упругопластических задач в качестве нулевого приближения используется решение задач в упругой области, поэтому в данном параграфе приводятся основные уравнения линейной теории упругости и методы их решения.  [c.73]

Книга известного механика (ФРГ), содержащая четкое изложение основ линейной теории упругости и ее применений к решению одномерных, плоских и трехмерных задач. В ней последовательно вводятся основные понятия и результаты, дается обзор точных, приближенных и численных методов решения задач, приводится обширная библиография. Изложение отличается полнотой и доступностью, систематичностью и ясностью интерпретаций.  [c.4]

По-видимому, наиболее часто используемым методом решения систем нелинейных уравнений, встречающихся в задачах нелинейной теории упругости, является метод последовательных нагружений. Будучи в некоторых чертах сходным с методом Ньютона — Рафсона, этот метод обладает рядом особенностей, делающих его особенно полезным в приложениях к физическим задачам. Во-первых, каждый шаг итерационного процесса допускает ясную физическую интерпретацию. А именно рассматривается нагружение деформируемого тела приращением нагрузки бр, которое считается достаточно малым, так что реакция тела на это приращение линейна. После приложения каждого приращения нагрузки выписывается новое жесткостное соотношение и осуществляется следующее приращение нагрузки. Продолжая этот процесс, мы получаем полную картину нелинейного поведения тела в виде последовательности кусочно-линейных шагов. Поскольку до приложения нагрузок тело, как правило, находится в естественном ненапряженном состоянии, вопрос о выборе начального приближения отпадает. Действительно, если X обозначает вектор неизвестных узловых перемещений, то мы просто полагаем Хо = О, что дает начальную точку, соответствующую недеформированному состоянию тела. В случае же, когда тело несжимаемо, мы приравниваем нулю узловые перемещения и вычисляем гидростатические давления в недеформированном состоянии. Они и служат компонентами начальной точки Хо-  [c.317]

Как видно, метод упругих решений в основе своей есть метод линейных приближений. Выделение линейных операторов может производиться различными способами и не обязательно гак, чтобы эти операторы отвечали обычной линейно-упругой задаче. Тем не менее все модификации этого метода, если они основаны на использовании деформационной теории, принято называть методами упругих решений.  [c.75]

Сочетание методов строительной механики оболочек и колец и теории упругости. Вместо использования приближенных соотношений, связывающих контактные перемещения и давления в разъемных соединениях, возможно определение местной податливости путем решения краевых задач теории упругости для этих зон. При малой ширине шюшадок контакта, составляющих 1/10-1/5 толщины фланцев и расположенных на краю фланцев, здесь также удобно использовать предположение, что осевые контактные напряжения распределены линейно и могут быть заменены нормальными и изгибающими контактными усилиями. При этом разрывные сопряжения, естественно, включаются в общую расчетную схему составной многократно статически неопределимой конструкции. Получающиеся в соответствии с принятым предположением перемещения на площадках контакта несколько отличались от линейных, однако максимальное отклонение не превышало 5% наибольшего значения прогиба на площадке. Эту величину можно приближенно считать оценкой погрешности принятого предположения, так как компенсирующие эти отклонения напряжения составили такую же часть от заданных.  [c.134]


Широко известно, что одним из первых математиков, принимавших участие в становлении МКЭ, был Курант. Он представил приближенный метод решения задачи кручения Сен-Венана с помощью принципа минимума дополнительной энергии, используя линейную аппроксимацию функции напряжений внутри каждого из совокупности треугольных элементов [1]. С другой стороны, наиболее важными и исторически первыми среди пионерских работ по МКЭ в задачах расчета конструкций считаются статьи Тёрнера, Клафа, Мартина и Топпа [2] и Аргириса и Келси [3]. После появления этих статей вариационный метод стал интенсивно использоваться в математических формулировках МКЭ. И обратно, быстрое развитие МКЭ сообщило мощный стимул к разработке вариационных методов за последнее десятилетие появились новые вариационные принципы, такие, как вариационные принципы со смягченными условиями непрерывности [4—8], принцип Геррмана для несжимаемых или почти несжимаемых материалов [9, 10] и для задач изгиба пластин [11, 12] и т. д. Цель части В состоит в том, чтобы дать краткий обзор достижений в области вариационных принципов, которые служат основой МКЭ в теории упругости и теории пластичности. С практическим использованием этих принципов при формулировке МКЭ читатель может ознакомиться по работам [5—7].  [c.340]

В деформационной теории пластичности для анализа напряжений широко используется метод упругих решений, разработанный А. А. Ильюшиным [103]. Названный метод в каждом приближении состоит в решении задачи неоднородной теории упругости. С этой целью уравнения поля для процесса нагружения выражаются в перемещениях . В нулевом приближении принимается решение линейной термоупругой задачи для неоднородного тела с заданными граничными условиями при данной интенсивности поверхностной нагрузки. Если известны деформации, согласно (4.12) можно вычислить эквивалентные деформации. Далее, когда в какой-либо точке возникает текучесть, секущий модуль в Х4.9) ф 2[х при (О == (о(ёу, 0) О, Соотношение напряжений — деформации для рассматриваемого материала дается, например, выражением (4.16), следовательно, можно определить секущий модуль. Это позволяет найти из закона Гука соответствующее напряжение, скажем Wij, Если дулевое приближение является точным, будет справедливо равенство ац = ц. Если же это приближение не является точным, то ищется следующее приближение, при котором значение рассматривается как ис-трчник фиктивных массовых сил /П/ и поверхностных нагрузок д ], определяемых как рт,- = Wi/, /, qi s где / — внеш-  [c.135]

Методы последовательных приближений. Естественным приемом решения нелинейных задач механики твердого тела является способ последовательных приближений, когда на каждом этапе решается линейная задача. В методе упругих решений А. А. Ильюпшна в каждом приближении решается задача теории упругости с фиктивными массовыми силами и видоизмененными граничными условиями.  [c.134]

Вопрос о том, относить те или иные задачи к классическим и неклассическим, является су0ъективным. Классическими будем считать задачи динамической механики разрушения, рассматриваемые в рамках идеализированной линейно-упругой модели хрупкого динамического разрушения, которые допускают точные или приближенные аналитические решения. Это задачи для областей, содержащих бесконечно удаленные точки (пространство, полупространство, слой в трехмерном случае плоскость, полуплоскость, полоса в двумерном). Такие задачи могут быть сведены к смешанным краевым задачам для уравнений с частными производными. Для их решения применяются простые и хорошо разработанные методы интегральные преобразования, дуальные интегральные уравнения, теория функций комплексного переменного, метод Винера — Хопфа, интегральные уравнения Фред-гольма второго рода, сингулярные интегральные уравнения. Эти методы подробно изложены в известных курсах математической физики 121, 56, 208, 209, 249, 259, 260 и др.], а также более специальных руководствах [265, 266, 278, 288, 299, 313, 350, 352 и др.].  [c.35]

Идея представления конструкций в виде набора дискретных элементов восходит к раннему периоду исследования конструкций летательных аппаратов, когда, например, крылья и фюзеляжи рассматривались как совокупности стрингеров, обшивки и работающих на сдвиг панелей. Хренников [1941] ввел метод каркасов — предшественник общих дискретных методов строительной механики — и применил его, представляя плоское упругое тело в виде набора брусьев и балок. Топологические свойства некоторых типов дискретных систем изучались Кроном [1939] ), который разработал универсальные методы анализа сложных электрических цепей и строительных конструкций. Курант [1943] дал приближенное решение задачи кручения Сен-Венана, используя кусочнолинейное представление функции искажения в каждом из треугольных элементов, совокупностью которых заменялось поперечное сечение тела, и формулируя задачу с помощью принципа минимума потенциальной энергии. Пример применения Курантом метода Ритца содержит в себе все основные моменты процедуры, известной теперь как метод конечных элементов. Аналогичные идеи использовал позже Пойа [1952]. Метод гиперокружностей , предложенный в 1947 г. Прагером и Сингом [1947] и подробно исследованный Сингом [1957] ), легко может быть приспособлен для конечноэлементных применений он проливает новый свет на приближенные методы решения некоторых краевых задач математической физики. В 1954 г. Аргирис и его сотрудники ) начали публикацию серии работ, в которых они далеко развили некоторые обобщения линейной теории конструкций и представили методы  [c.12]

А. А. Ильюшин [7] для решения задач теории малых упругопластических деформаций при активном нагружении предложил метод последовательных приближений, названный им методом упругих рашений. Согласно этому методу в каждом приближении необходимо решать задачу линейной теории упругости. Предположим, что последнюю мы решать умеем, т. е. умеем находить 15 функций 0,7, е,/, Ui из системы 15 уравнений  [c.273]

Запись уравнений в форме (5.237) позволяет сформулировать метод последовательных приближений для их реигения, известный под названием метода упругих решений. В нулевом приближении правую часть (5.237) полагают тождественно равной нулю, при это.м получается краевая задача линейной теории упругости. В перво.м и последующих приближениях правая часть вычисляется по результатам предыдущего приближения таким образом, на каждом uiare приходится рен/ать одну и ту же систему уравнений с различными правыми частями. Условия (5.235) обеспечивают сходимость метода последовательных приближений к решению (вообще говоря, обобщенному) краевой задачи для уравнений  [c.271]

Задание закона состояния приводит к замкнутой системе дифференциальных уравнений, по которой определяется реализуе- мое в теле напряженное состояние и вектор перемещения точек среды. Из сказанного следует, что в линейной постановке задача определения формы и размеров упругого тела в конечном состоянии отодвигается на второй план—их находят после того, как задача решена в предполон<ении неизменности начальной формы тела. Этот прием позволяет избежать серьезной трудности нелинейной теории упругости, когда напряженное состояние приходится разыскивать в 1/-объеме — в теле с неизвестной наперед границей О. Его законность подтверждается тем, что при решении задач нелинейной теории упругости методом последовательных приближений, например в форме ряда по степеням параметра ма.пости, характеризующего малость градиента вектора перемещения, исходное приближение, получаемое при пренебрежении слагаемыми, содержащими этот параметр, представляет решение задачи для линейно-упругого тела, когда определяющие уравнения отнесены к начальному объему и начальной форме его границы.  [c.102]


И. А. Прусов [1] рассмотрел задачу об усилении отверстия в растягиваемой бесконечной пластинке кольцом переменного сечения, ограниченным по внешнему контуру окружностью, а по внутреннему — эллипсом. Задача решается приближенно методом, основанным на приведении к задаче линейного сопряжения, примененным впервые к решению задач плоской теории упругости в работе Н. И. Мусхелишвили [22] (см. гл. VI настоящей книги). В другой работе И. А. Прусов [2] рассмотрел тем же методом случай полуплоскости с подкрепленным круговым отверстием ранее эта задача иным методом была решена в упомянутой в 151а работе И. Г. Арамановича [1].  [c.591]

Эти вариационные и минимальные принципы имеют большое значение прежде всего потому, что они лежат в основе важных приближенных и численных методов решения. Следует заметить, что существуют широкие возможности для введения обобщенных принципов >. К ним относятся, иапример, принцип Хеллинджера — Рейсснера, Ху — Вашицу, Прагера — Буфлера, которые могут применяться как для линейно-, так и нелинейно-упругих задач. С другой стороны, из обобщенных принципов получаются в качестве частных случаев классические минимальные принципы теории упругости, обсуждаемые в последующих разделах.  [c.90]

Метод осреднения применяется к решению квазистатически Е задач линейной теории вязкоупругости для композитов. Особое внимание уделяется теории нулевого приближения. Для слоистых-вязкоупругих композитов тензоры эффективных ядер релаксации и ползучести находятся в явном виде. Выясняются особенности строения этих тензоров в случае структурной анизотропии. Вводится понятие канонических вязкоупругих операторов и описывается схема экспериментального определения их ядер. Дается описание метода численной реализации упругого решения и на" двух конкретных задачах показывается его применение. Даются постановки связанной задачи термовязкоупругости для физичес- ки линейных композитов и квазилинейной теории вязкоупругости, для композитов.  [c.268]


Смотреть страницы где упоминается термин Приближенные методы решения линейных задач теории упругости : [c.745]    [c.137]    [c.74]    [c.517]    [c.8]    [c.509]    [c.23]    [c.136]    [c.261]    [c.268]    [c.93]    [c.322]   
Смотреть главы в:

Основы теории упругости и пластичности  -> Приближенные методы решения линейных задач теории упругости



ПОИСК



Задача и метод

Задача упругости

Задачи и методы их решения

Задачи теории упругости

К упругих решений

Линейная задача

Линейная теория

Метод решения задач теории упругости

Метод теории решений

Метод упругих решений

Методы линейного

Методы приближенные

Методы решения задач линейной теории упругости

Приближенная теория

Приближенные методы решения

Приближенные методы решения задач

Приближенные методы решения задач теории упругости

Решение задачи упругости

Решение линейных задач на ЭВМ

Решения метод

Решения приближенные

ТЕОРИЯ УПРУГОСТИ Линейная теория упругости

Теория Метод сил

Теория Методы решения задач

Теория и задачи линейно-упругих тел

Теория упругости

Теория упругости линейная

Упругости линейная

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте