Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предельные размеры - Методы определения

Распад струй, пленок и отдельных капель на более мелкие является одной из сложнейших проблем капиллярной гидродинамики, которая привлекает внимание многих исследователей. В этой области теоретические работы развиваются в нескольких направлениях 1) изучение распыливания топлива, основанное на использо-. вании метода малых возмущений 2) определение размеров капель на базе предположения о дроблении струи под действием турбулентных пульсаций 3) установление предельного размера капель на основании равенства сил поверхностного натяжения и аэродинамического давления 4) нахождение условия распада вследствие явления кавитации 5) определение вероятного размера капель на основании предположения о равенстве масс и энергии жидкости до и после распада струи.  [c.17]


Увеличение размеров конструкций (толщин стенок S до 500 мм у атомных и химических реакторов, до 70 мм у надводных судов, до 150 мм у корпусов турбин, до 100 мм у глубоководных аппаратов), широкое применение сварки, использование (особенно в ракетной и авиационной технике) высокопрочных материалов пониженной пластичности, интенсивное развитие криогенной техники, промышленное строительство в районах Сибири и Крайнего Севера с низкими климатическими температурами выдвинули задачу расчетов прочности и надежности конструкций в связи с возникновением хрупких состояний. Решение этой задачи потребовало разработки методов определения предельных нагрузок и критических температур с учетом основных конструктивных, технологических и эксплуатационных факторов. Существенное значение при этом имеет создание основ и широкое экспериментальное исследование в области линейной и нелинейной механики разрушения, а также распространение законов механики однократного разрушения на анализ процессов циклического разрушения.  [c.67]

Работы, относящиеся к области исследования путей практического использования голографии сфокусированных изображений, начали появляться с 1970 года, когда были уже достаточно полно изучены физические основы метода. Определенное количество этих работ (см. [40, 51-53]) было посвящено вопросам улучшения качества изображения в микроскопии. В частности, использование голографии сфокусированных изображений, как показано в [53, 57], позволяет устранять спекл-шум в восстановленном изображении путем некогерентного восстановления полихроматическим излучением. При таком восстановлении область когерентности становится меньше размеров предельно разрешаемого пятна в изображении, и в каждом таком пятне уже не происходит когерентного сложения света, порождающего спекл-эффект.  [c.11]

Применение электроконтактного метода схематически изображено на фиг. 258. При определенных значениях измеряемого размера поплавок перемещается настолько, что замыкает контакты, расположенные на высоте, соответствующей предельному размеру, и включенные в схему сеточного контакта.  [c.181]

При прочих равных условиях значение крутящего момента зависит от метода определения величины натяга когда натяг определяется как разность средних диаметров резьбы шпильки и гнезда крутящий момент примерно в 1,5 раза больше (при одинаковой величине натяга) крутящего момента, определенного как разность приведенных средних диаметров резьбы. Поэтому в основу классификации точности резьбы с гарантированным натягом положена величина допуска по средним диаметрам резьбы соединяемых деталей. В ГОСТе 4608—65 даны предельные отклонения средних диаметров резьбы гнезда и шпильки, которые используются при их сортировке на группы для селективной сборки. Одновременно для устранения возможности выхода действительного значения с1 резьбы за установленные размеры вследствие отклонений формы шпильки и гнезда и обеспечения большей надежности соединений в стандарте указано, что нижнее предельное отклонение резьбы гнезда и верхнее предельное отклонение резьбы шпильки ограничивают приведенные средние диаметры резьбы гнезда и шпильки. Это указание обязывает контролировать резьбы шпилек и гнезд после их изготовления (до сортировки) производить предельными калибрами или измерительными приборами, но по приведенному диаметру. Установлены следующие четыре посадки (сочетание полей допусков резьбового гнезда А  [c.151]


Допустимые погрешности измерения сопрягаемых размеров гладких изделий приведены в табл. 3. Выбор метода измерения производится путем сопоставления допустимой погрешности изготовления с предельными погрешностями различных методов измерения. Величины предельных погрешностей наиболее распространенных методов измерения линейных размеров приведены в табл. 4 и 5. Предельные погрешности при измерении элементов резьбы для шага и половины угла профиля указаны в табл. 6, а в табл. 7 — для среднего диаметра резьбы. Эти погрешности подсчитаны исходя из условий, что температуры измерительного прибора и контролируемой детали равны, а результат измерения определен как среднее арифметическое из нескольких измерений.  [c.9]

Изложенный метод определения предельной продолжительности пробежки пламени позволяет решать вопрос об оптимальных размерах противопожарных разрывов при использовании трудногорючих облицовочных материалов. Противопожарные разрывы, которые в ряде случаев целесообразно предусматривать при использовании облицовочных материалов, служат своеобразным стоком тепла и уменьшают температуру горячих газов, возникающих при загорании облицовочных материалов.  [c.363]

Обычно нормируемая предельная величина дополнительной усадки при Температурах от 1350 до 1600° С лежит в пределах десятых долей процента. Рост нормируется лишь для динасовых огнеупоров. Температура деформации под нагрузкой огнеупоров имеет существенное значение в тех случаях, когда срок службы длителен, а статические нагрузки на огнеупор значительны. Эта температура измеряется при нагрузке 2 кгс/см для различных степеней деформации. За точку начала принимается сжатие образца на 0,6%. Термическая стойкость огнеупорных изделий определяется по стандарту путем одностороннего нагрева образцов при 1300° С и охлаждения в воде, причем норма устанавливается по количеству теплосмен, выдерживаемых образцом до потери веса 20%. Приводимые в справочнике величины относятся именно к этому методу определения термической стойкости, кроме специально оговоренных случаев. Огнеупоры в службе большей частью испытывают температурные колебания, нередко довольно резкие, поэтому термической стойкости при выборе огнеупора следует придавать большое значение. Имеется еще ряд технических характеристик огнеупорных изделий, не нормируемых действующими ГОСТами и ТУ шлакоустойчивость, теплопроводность, теплоемкость, ранее упоминавшаяся газопроницаемость и некоторые другие. Определение этих показателей выполняется институтами и заводскими лабораториями в ходе исследовательских работ или по отдельным заданиям. Кроме химических и физико-механических показателей свойств огнеупоров, для изделий устанавливаются допустимые предельные отклонения размеров, дефекты внешнего вида и структуры. В связи с выходом в 1975 г. официального сборника стандартов Огнеупоры и огнеупорные изделия в настоящем справочнике помещены только основные сведения из ГОСТов без данных о рме и размерах, которые при необходимости следует брать из действующих стандартов.  [c.13]

Процесс проектирования состоит из комплекса взаимосвязанных и выполняемых в определенной последовательности этапов. К ним относятся определение типа производства, выбор метода получения заготовки и установление предъявляемых к ней требований, выбор баз, выбор последовательно выполняемых методов (маршрута) обработки отдельных поверхностей, составление маршрута обработки детали в целом, предварительная наметка содержания операций, расчет промежуточных припусков, установление технологических допусков и предельных размеров заготовки по технологическим переходам, уточнение содержания и степени концентрации операций, выбор оборудования, инструментов и приспособлений, установление режимов резания, определение настроечных размеров, уточнение схемы установки и закрепления заготовки для разработки задания на проектирование специальных приспособлений, установление норм времени и квалификации исполнителей, оформление технологической документации.  [c.309]


Принято считать, что метод измерения приемлем лишь в том случае, если предельная погрешность данного метода измерения не превышает определенной части допуска на контролируемую величину. Допускаемые предельные погрешности измерения зубчатых колес зависят от степени точности контролируемых зубчатых колес и контролируемого показателя. При измерении зубчатых колес высокой степени точности рекомендуется применять зубоизмерительные приборы, предельная погрешность которых не превышает 10—15% величины допуска на контролируемый показатель [33]. При измерении зубчатых колес более грубых степеней точности эта погрешность соответственно увеличивается до 35% допуска на контролируемую величину, что регламентирует ГОСТ 8.051—73 Государственная система обеспечения единства измерения. Погрешности, допускаемые при измерении линейных размеров от 1 до 500 мм , в котором установлена взаимосвязь между допуском на изготовление и погрешностью измерения. Согласно указанному ГОСТу пределы допускаемых погрешностей измерения в зависимости от допуска на изготовление могут колебаться от 35 до 20%.  [c.268]

Однако еще в первые десятилетия XIX в. на русских оружейных заводах массового производства начали практиковать изготовление деталей по предельным калибрам, т. е. с определенными допусками в размерах. Этот метод обеспечивал взаимозаменяемость деталей при сборке при серийном и массовом изготовлении деталей можно без слесарной пригонки соединить любую из готовых деталей с произвольно выбранной второй готовой деталью кинематической пары, причем получались зазоры или натяги в определенных заданных пределах, обусловливающих правильную работу деталей как в подвижных, так и в неподвижных посадках.  [c.13]

Предельные размеры - Методы определения 27 Правка заготовок валов 752  [c.835]

Рассмотренные методы вызывают большой интерес и позволяют глубоко овладеть чтением чертежа. Каждый метод, взятый отдельно, не решает поставленной задачи до конца, но вместе взятые они могут составлять некоторую методику для целеустремленного чтения чертежа. Оценивая каждый из рассмотренных методов, можно заключить, что в развитии навыков определения формы детали по чертежу хорошие результаты получают по первому и второму методам, т, е. выполняя упражнения на расчленение деталей по элементам и на составление эскизов. В развитии навыков чтения размеров на чертежах с обоснованием их простановки лучшим может оказаться третий метод — изучение чертежа с использованием технологической карты. По этому методу получение заданной чертежом формы детали, шероховатости поверхностей, исполнение размеров и технических требований будут восприняты гораздо глубже. Чертеж будет изучаться в тесной связи с конкретным оборудованием и технологическими процессами, которые всегда указаны в технологической карте. Станет понятнее, как обеспечиваются заданные чертежом предельные отклонения от номинальных размеров, геометрической формы и расположения поверхностей.  [c.34]

Вопрос о том, какому размеру усталостной трещины уделять внимание на практике, определяется условием дости ения предельного состояния тела с трещиной и возможностями методов и средств неразрушающего контроля, используемыми на практике для выявления трещин. Исходя из представлений о длительности процесса развития трещин и возможностей неразрушающих методов и средств контроля, а также доступности самих мест контроля эту проблему можно рассматривать непосредственно в рамках рассмотренного выше вопроса об относительной живучести материала. Живучесть основных силовых элементов конструкции оказывается достаточной для введения обоснованного и экономически целесообразного надежного периодического контроля. Вместе с том даже в однотипных элементах конструкций могут возникать усталостные трещины в результате повреждения поверхности детали в разных сечениях и зонах с различной концентрацией нагрузки. В этих условиях стратегия определения периодичности осмотра, выбор и обоснование метода и средств контроля не мог>т быть рассмотрены с общих позиций. Необходим анализ особенностей проведения контроля по таким различным критериям, как доступность зоны контроля, геометрия детали, месторасположение трещины, периодичность осмотров с учетом кинетики роста трещины в зоне контроля, чувствительность метода и стоимость процедуры контроля. Интенсивность осмотров и их трудоемкость могут перекрывать положительный эффект от эксплуатации элемента конструкции по принципу безопасного поврежде-  [c.65]

Определение предельного или критического размера трещины, при достижении которого происходит быстрое развитие разрушения, а, следовательно, дальнейшая эксплуатация детали невозможна, основано на методах механики разрушения [1-4, 47-50]. Переход к быстрому разрушению может быть реализован в разных состояниях материала хрупко, вязко или смешанно вязко-хрупко. Промежуточное состояние материала при вязко-хрупком переходе, когда изменяются условия воздействия на материал, будем относить к вязкому разрушению с меняющейся работой пластической деформации в вершине распространяющейся трещины.  [c.102]

Аналитическое определение размеров механизма. Для точного определения параметров механизма и для составления справочных материалов для конструкторов одних графических методов часто бывает недостаточно, так как наряду с таким свойством, как наглядность, они имеют такие недостатки, как невысокая точность получаемых результатов, особенно в предельных положениях, а также трудность решения тех задач, когда линии построения выходят за пределы чертежа.  [c.58]


Однако в более поздних разработках лазерных интерферометров широкое распространение при обработке результатов измерения получило совмещение функций суммирования и умножения за счет введения итерационного алгоритма умножения [191], что позволило значительно уменьшить габаритные размеры электронно-вычислительной части интерферометра. Сущность итерационного метода заключается в том, что каждому импульсу вместо его истинной цены (например, V8 0,0791 мкм) формально приписывается ближайшая к ней величина, кратная выбранной единице измерения (в данном случае 0,1 мкм вместо 0,0791 мкм). Нарастающая при перемещении подвижного отражателя погрешность вследствие различия истинной и приписанной цены каждого импульса компенсируется исключением из суммируемого потока импульсов одного импульса в тот момент, когда погрешность приближается к предельно установленной величине. При этом порядок исключения импульсов подчиняется определенному алгоритму, описание одного из которых приведено в [191].  [c.244]

Это напряжение должно быть значительно ниже предела текучести материала, который за пределами пластической зоны у кончика трещины работает в пределах упругости деформирования. Безразмерный коэффициент а отражает как геометрический фактор, так и характер распределения напряжения а. При весьма большом отношении ВИ этот коэффициент равен единице, что имеет место и в случае бокового надреза длиной I. При конечном отношении В/1 и неравномерном распределении напряжений коэффициент а принимает другие значения [101]. Случай сквозной трещины (рис. 4.15, а) в растянутой или изгибаемой пластине встречается при проведении различных опытов на трещиностойкость материалов. В расчетах конструкционных элементов чаще встречается случай плоской поверхностной трещины (рис. 4.15,6). Очертание фронта такой трещины в процессе ее развития по ряду экспериментальных данных близко к полу-эллипсу. Соотношение его полуосей по данным опытов [65] составляет примерно 0,38. Постоянство этой величины при изменении абсолютных размеров трещины объясняется тем, что независимо от исходной формы, она приобретает через некоторое число циклов нагружения устойчивую форму равного сопротивления продвижению во всех точках ее фронта. Коэффициент интенсивности /( сохраняет и в этом случае выражение (4.35) при иных значениях а, но часто используют также и выражение К — оа у лЬ, где Ь — глубина трещины (рис. 4.15, б). В тех случаях, когда глубина Ь соизмерима с расстоянием от контура трещины до противоположной поверхности тела, теоретическое определение коэффициента К оказывается затруднительным и его обычно находят экспериментальным путем (так называемый метод /С-тарировки) с использованием энергетической трактовки условий предельного равновесия трещин, распространяющихся путем квазихрупкого разрушения, т. е. такого, когда пластические деформации могут появляться лишь в локальных зонах у кончиков трещины.  [c.130]

Погрешность настройки станка Ан является разностью предельных положений режущего инструмента на станке при настройке его на выполняемый размер. Значение Ан для данного метода обработки регламентируется вполне определенной величиной. Для каждой партии заготовок текущее значение настроечного размера н является величиной случайной, распределение которой также подчиняется нормальному закону или закону по характеру, близкому к нему.  [c.321]

Еще один показатель выполнения контракта вводится в тех случаях, когда вознаграждение за обеспечение надежности обусловливает приемлемость изделий. Необходимо проявлять предельную осторожность при переговорах об условиях таких контрактов, так как условия часто допускают большое различие в размерах прибыли, иногда свыше 10%. Очевидно, что вопросы, противоречащие честному подходу, нельзя включать в решение о применении вознаграждений и штрафов с другой стороны, окончательное решение не может основываться на мнении контролеров, не имеющих достаточной подготовки и опыта. Следовательно, персонал службы обеспечения надежности и контроля качества, участвующий в переговорах при заключении контракта и при определении окончательного заключения о его выполнении, должен обладать как технической эрудицией, так и личным тактом, которые необходимы при определении возможности выплаты вознаграждения. Если эти лица не облечены соответствующими административными полномочиями по вопросам надежности и контроля качества, то они, безусловно, должны иметь полномочия в вопросе оценки условий контракта для фирмы. Желательно, чтобы те же лица, которые участвуют в переговорах по вопросам заключения поощрительных контрактов, занимались проверкой методов и результатов оценки действия стимулирующих факторов.  [c.252]

При назначении допусков часто исходят из табличных значений возможных зазоров или натягов в соединении, которые могут получиться при сочетании предельных размеров сопрягаемых компонентов. В этих случаях об--наруживаются противоречия, одним из разительных примеров которых может явиться тугая посадка, превращающаяся в подвижную посадку при сочетании наибольшего предельного размера отверстия с наименьшим предельным размером вала. Практическая оценка таких противоречий возможна только путём применения основных принципов теории вероятностей в области взаимозаменяемости. Этот метод, базирующийся на определении параметров рассеивания размеров сопрягаемых компонентов и на учёте вероятности различных значений зазоров и натягов, щироко применяется при разрешении всех вопросов, относящихся к взаимозаменяемости. С помощью этого же метода разрешается вопрос о допустимой погрешности отдельных звеньев механизма в зависимости от заданной, предельной погрешности всего механизма, о вероятностях различных значений зазоров и натягов в соединении, о вероятностях случаев нарушения взаимозаменяемости в зависимости от увеличения допусков отдельных компонентов, о вероятностях получения брака при выбранном технологическом процессе, о влиянии погрешностей измерений на отклонения размеров контролируемых объектов и т. д.  [c.2]

Методы 349 — 351, 356 Предельные размеры — Определение 470 Преобразователи давления в пневиогидрав-лических приводах 111 — 113 Предельные отклонения размеров, формы и расположения поверхностей 482—483 Приборы иамерит ьные механические 506-510  [c.564]

Предельное значение в наименьшей степени зависит от формы и размеров образца (в том числе и его толщины) и является страховочной характеристикой, определяемой при наиболее жестких условиях нагружения. Испытание на растяжение образцов с трещиной является наиболее распространенным методом определения Критический анализ этого метода был сделан в работе [111]. Там отмечено, что основными недостатками этого метода являются 1) трудность обеспечения условий плоской деформации, в особенности для вязких материалов 2) влияние на вязкость разрушения условий получения в образце трещины 3) трудность фиксирования момента достижения критической интенсивности напряжейип в образце.  [c.108]

С помощью такого метода можно определить дисперсный состав отдельных компонентов загрязняющих примесей (см. рис. 3), а также дисперсный состав загрязняющих примесей, приведенных к средней плотности всех примесей (см. рис. 5 и 101). При этом принимают, что осаждение отдельных компонентов загрязняющих примесей в роторе центрифуги происходит независимо один от другого. Для расчета размеров частиц и их количества (в % по весу) используют приближенный метод определения дисперсного состава измерением количества загрязняющих примесей, выделенных по высоте ротора суперцентрифуги. Предельные значения эквивалентных диаметров частиц, полностью выделяемых из жидкости на данной высоте ротора, определяют в соответствии с законом Стокса по уравнениям (127) или (134).  [c.204]


В основе проектирования С. т. лежит определение величин, характеризующих телефонное сообщение. Эти величины, являясь исходными при всех расчетах, должны характеризовать С. т. не только в момент проектирования их, но на весь период работы сооружаемой С. т. Важнейшей величиной, характеризующей имеющееся телефонное сообщение, является число занятых номеров на станции. На ручных станциях это число определяется числом включенных вызывных сигналов местного поля, а на автоматических—числом включенных предыскателей, или линий контактного поля искателей вызова. Это число представляет собою лишь часть < монтированной емкости и предельной емкости станции, понимая под первым термином количество станционных номеров, для использования которых достаточно уложить кроссовый проводник между станционной и линейной сторонами кросса, а под вторым термином—общее количество станционных номеров, до к-рого имеется возможность монтировать станцию. Далее разновидностью этой величины являются число занятых на станции номеров, число абонентов и число установленных на сети телефонных аппаратов, причем последнее характеризует собою размер охвата населения телефонной связью. Исследование развития С. т. привело к построению метода определения ожидаемого роста числа телефонов. Этот метод в основном сводится к установлению темпов роста телефонов для различных отраслей городской жизни, причем для каждой отрасли изучаются нек-рые определенные показатели, темп изменения к-рых увязывается с темпом роста числа телефонов.  [c.339]

Выше рассматривались методы определения максимально возможных ошибок положения ведомых звеньев механизмов. В выра -жения для ошибок положения входили первичные ошибки (A i) параметров механизмов, которые представляют собой допуски на соответствующие размеры. Таким образом, рассматривались <)шиб-, ки механизмов в самых неблагоприятных случаям, когда размеры деталей максимально отличались от номинальных. Появление подобных соотнбшений маловероятно, так как в реальных условиях отклонения параметров ( ,) от номинала как правило меньше предельных.  [c.146]

Методы определения предельных износов не нашли еще достаточного применения. Предельные размеры изнашивающихся деталей в процессе проектирования машин могут быть назначены согласно нормативным данным, по аналогии с ранее выпущенными машинами, расчетным, экспериментальным, расчетно-экспериментальным путями. Нормативные значения предельных размеров и зазоров в сопряжениях для некоторых деталей лиАтпп ы х сспрлжский мил. пи найги, например, в отраслевых стандартах Минстройдормаша, однако не все они являются достаточно обоснованными.  [c.185]

Расчет водосточной сети сводится к определению размеров лотков, труб и каналов, которые зависят от расчетного максимального стока, поступающего в сеть. Этот расход зависит от принятой расчетной интенсивности дождя, его продолжительности, коэффгщиек-та стока и площади водосбора, с которой поступают дождевые воды. При проектировании водостоков принимают, что продолжительность расчетного дождя равна времени добегания выпавшей капли от наиболее удаленной точки площади стока (точка 1) до расчетного сечения (/—/) (рис. 133). Эта продолжительность выпадения дождя называется критической кр, а метод определения расчетных расходов по кр называется методом предельных интенсивиостей.  [c.298]

Определение гранулометрического состава. Сущность метода заключается в рассеве всей первичной пробы на ситах, взвешивании материала выделенных классов, вычислении выходов отдельных классов крупности и определения после этого качественных характеристик. Определение гранулометрического состава топлива необходимо при испытаниях котлоагрегатов со среднеходными и молотковыми мельницами, с мельницами-вентиляторами, с циклонными- и слоевыми топками. Требованиями ПТЭ и типовых инструкций установлено, что после дробления угля и сланца размеры кусков топлива не должны превышать 25 мм, а остаток на сите ЮХЮ мм — не более 5%. В случаях замазывания дробильного оборудования при работе на углях повышенной влажности допускается увеличение остатка на сите ЮХЮ мм до 14%. Исходя из этого, и учитывая, что для топок с механическими решетками предельный размер кусков не должен превышать 100 мм, для рассева топлива должны применяться штампованные сита основного ряда с круглыми отверстиями диаметром 150, 100 и 50 мм, а для рассева под-решетного продукта — проволочные. сита с отверстиями 25X25, 13X13, 10X10,. 6X6, 3X3, 1X1 и 0,5X0,5 мм. При отсутствии сит какого-либо размера можно использовать сита соседних номеров дополнительного ряда по табл. 3-2 (ГОСТ 2093-69). О примененных номерах сит и форме отверстий в них должна быть сделана запись в журнале. Согласно рекомендациям 150 [16] комплект сит должен выбираться с таким расчетом, чтобы на сите с большим размером отверстий оставалось не более 5% продукта, а через сито с меньшим размером проходило не более 5% продукта. Для промежуточных сит не более 25% продукта должно выпадать между каждой парой сит.  [c.87]

Подчеркнем две особенности, которые следует учитывать при составлении расчетных схем для трубопроводных конструкций с дефектами. Во-первых, современные методы дефектоскопического контроля позволяют определить лишь некоторые параметры дефекта (площадь, линейный размер, глубину залегания). Определение точных размеров и формы дефектов оказывается возможным лишь в очень ограниченном числе случаев. Во-вторых, построенная расчетная схема должна давать гарантированное незавышение расчетных величин предельной нагрузки и критических размеров несплошностей (дефект--аналог должен быть опаснее дефекта-оригинала, но не не слишком значительно).  [c.68]

Второй тип применений ИК-методов, указанный в табл. 14.4, относится к обнаружению изменений и возможной оценке тепловых свойств материалов. Методы определения тепловой инерций, теплопроводности и диффузии тепла в твердых телах описаны в работе [16]. У большинства материалов многие дефекты пред-ставляют собой аномальные изменения тепловых свойств. Соз-давая в материале градиент температуры или сообщая тепловой импульс, можно получить ИК-излучение от таких дефектов. Оптимальные условия для наблюдения поверхностных дефектов и порядок размера дефекта, который можно наблюдать, были определены в работе [8]. Предельная глубина пустотного дефекта равна удвоенной длине дефекта. Фиг. 14.13 показывает влияние пустотного дефекта в форме отверстия, просверленного под поверхностью, на распределение температуры по поверхности при нагреве тепловым импульсом, сообщенным обратной стороне пластинки. Об искажении распределения можно судить по изменению яркости и изотермам.  [c.485]

Перед выбором точности средства измерения или контроля следует решить вопросы выбора организационно-технических форм, целесообразности контроля определенного вида параметров и производительности таких средств (универсальных или специальных, автоматизированных или автоматических). Как правило, одну метрологическую задачу можно решить с помощью различных измерительных средств, которые имеют не только разную стоимость, но и разные точность и другие метрологические показатели, а следовательно, дают неодинаковые результаты измерений. Это объясняется отличием точности результатов наблюдения от точности измерения самих измерительных средств, различием методов использования измерительных средств и дополнительных приспособлений, применяемых в сочетании с универсальными или сиециализированными средствами (стойками, штативами, рычажными и безрычажными передачами, элементами крепления и базирования, измерительными наконечниками и др.). В связи с этим вопрос выбора точности средств измерения или контроля приобретает первостепенное значение. Так, предельные погрешности измерения наружных линейных размеров контактными средствами в диапазоне 80—120 мм составляют для штангенцнркулей 100—200 мкм, для индикаторов часового тииа  [c.136]

Использование комплекса физических методов исследования показало, что при определенном химическом составе стали происходит образование ячеистой структуры в виде объемных ячеек из карбидов V . Мультифракталь-ный анализ позволил установить, что этот переход контролируется достижением предельного значения показателя скрытого упорядочения структуры, определяемого 5 =0,21. Так что при 8 <0,21 сопротивление пластической деформации контролируется размером зерен, а при 5s >0,21 - размером субзерен.  [c.127]

Определение массы деталей производят взвешиванием на весах приборных, лабораторных, аналитических. Такие весы рассчитаны на предельную нагрузку от 0,5 до 200 г и обеспечивают погрегиность в пределах ( 2 10 )-( 3 10 ) г. Массовый износ не рекомендуется определять в тех случаях, когда изменение размеров детали произошло не юлько вследствие отделения частиц наноса, но и по причине пластического деформирования. Массовый метод неприемлем и при определении величины износа деталей из пористых материалов, пропитанных маслом, потому ччо невозможно сказать, было ли одинаково количество масла в порах до и после испытания.  [c.201]

Чувствительность поиска дефектов при контроле этим методом определяется точностью измерения времени пробега импульса. Охарактеризуем предельную точность определения времени прохождения импульса величиной и = .х/х, где х = SOR —толщина объекта контроля, а Aj = SDR—SOR. Тогда минимальный размер дефекта 2Ь т а, выявляемого временным теневым методом, в наиболее неблагоприятном случае, когда дефект расположен посредине между преобразователями, определяют из равенства [2 ]/(0,5л ) (ЬтшУ —л ]/дг = и  [c.119]


В 10—30-х годах текущего столетия были опробованы методы микроскопического анализа изучение под микроскопом поперечного шлифа электролитически покрытой поверхности, измерение под микроскопом неровностей поверхности по репликам из желатина и т. д. Предпринимали попытки косвенной оценки неровностей поверхности по потерям энергии маятника при торможении его неровностями поверхности во время качания, по разности размеров деталей до и после доводки, по предельному углу регулярного отражения света, по теневой картине поверхности на экране с увеличенными изображениями поверхностных дефектов, по расходу воздуха через участок контакта сопла с испытуемой поверхностью, по четкости изображения растра на испытуемой поверхности или на экране после отражения от нее светового пучка, по электрической емкости контактирующей пары испытуемая поверхность — диэлектрик с нанесенным слоем серебра , по нагрузке на индентер при определенном его сближении с испытуемой поверхностью, по изображению мест плотного соприкосновения призмы с неровностями поверхности и т. д. Были опробованы методы исследования рельефа поверхности с помощью стереофотограмм и стереокомпаратора. На производстве в этот период доминировали органолептические методы контроля визуальное сравнение с образцом, сравнение с помощью луп, сравнение на ощупь ногтем, краем монеты и т. п. В 30-х годах был предложен и реализован в двойном микроскопе метод светового сечения (Линник, Шмальц), а также метод микроинтерференции и основанные на нем микроинтерферометры, сочетающие схемы микроскопа и интерферометра Майкельсона. В этот же период  [c.58]

Метод выборок является наиболее теоретически обоснованным, но связан с необходимостью подсчета средних арифметических пробных деталей непосредственно у станка и выполнения ряда других расчетов в процессе наладки. Эти подсчеты увеличивают затраты времени на наладку и требуют известной подготовки наладчика. Определение среднего размера партии пробных деталей, а не самих размеров деталей затрудняет также ясное понимание наладчиком существа происходящих колебаний размеров. Поэтому выборочный метод не отвечает второму и третьему требованиям качества наладки, что подтверждается и данными табл. 10. Разброс центров группирования Дн и величина Он наладок, выполненных по этому методу, оказались значительными, а значения качества наладки — предельными. Очевидно, что этот метод наладки станков на точность может быть успешно использован главным образом там, где применяется статистический контроль деталей по методу средних и трудно применим в других условиях работы. В этом случае наиболее эффективно проявляются и преимущества такого метода наладки, поскольку он указывает направление подналадни и дает воз-  [c.124]

При определении величин производственных допусков и выборе средств измерения изготовитель может учитывать малую вероятность таких неблагоприятных сочетаний, как получение размеров изделий, близких к предельным, и наличие погрешности измерений, направленной (по величине и знаку) к переходу действительных размеров за границы поля допуска. По проекту руководящих технических материалов Коммерприбора имеется в виду с этой целью даже рекомендовать оценку расчётной погрешности методов измерений, удвоенной средней квадратической ошибкой (2 а вместо 3 о). Это, однако, не освобождает изготовителя от ответственности при предъявлении ему соответствующих рекламаций, как бы ни была мала вероятность неблагоприятных сочетаний погрешностей измерений и изготовления.  [c.221]

Для рассматриваемой модели оказывается затруднительным построение формул суммирования погрешностей деталей из-за нелинейности исходного уравнения (11.219). Эта нелинейность возникает вследствие того, что текущий размер детали выражает суммарно и погрешность размеров, и погрешность формы, и не-прямолинёйность геометрического места центров поперечных сечений. Между тем существует практическая потребность в определении формул такого рода и, в частности, для расчета математического ожидания, дисперсии, среднего квадратического отклонения, практически предельного поля рассеивания и т. п. Для преодоления этого затруднения может быть использован метод статистических испытаний (Монте-Карло), который является весьма перспективным при моделировании, анализе и расчете точности нелинейных технологических процессов. Для упрощенного решения этой задачи можно ограничиться расчетом вероятностных характеристик двух более простых случайных функций, получаемых из исходной формулы (11.219) путем приравнивания нулю либо выражения Wp os ( — -j-nip , либо г +  [c.438]

Комплексный метод измерения — измерение приведенного значения размера, определяющего положение идеальной поверхности, описывающей действитгль-ную проверяемую поверхность. Контроль сводится к определению положения действительной поверхности относительно предельных ее положений, например контроль мелких слолгных деталей по проекториым чертежам на проекторах, контроль изделий калибрами.  [c.62]

Наиболее серьезные повреждения и аварии турбомашин, как правило, связаны или с начальными технологическими макродефектами или с трещинами, возникшими на первых стадиях нагружения (в процессе испытаний или при эксплуатации). В соответствии с уравнениями механики разрушения предельные разрушающие нагрузки (для хрупких состояний) связаны степенными функциями с размерами макродефектов (при их возможной вариации в 5—10 раз и более), фактические запасы прочности могут уменьшаться в 1,2—2 раза и более. Поэтому определение фактического состояния дефектов на стадиях изготовления и эксплуатации становится одним из важнейших мероприятий по назначению и уточнению исходного, выработанного и остаточного ресурса. Для выявления дефектов в роторах и корпусах все более широко применяют средства ультразвукового дефектоскопического контроля, позволяющие надежно обнаруживать дефекты с эквивалентным диаметром 3—20 мм при глубине их залегания от 5 до 1200 мм. Перспективны для этих же целей методы контроля параметров акустической эмиссии, использование волоконной оптики, амплитудно-частотного анализа вибраций, аэрозолей, магнитно-порошковой и люминесцентной дефектоскопии, метода электропотенциалов и др. В связи с усовершенствованием средств контроля и использованием механики разрушения в качестве научной основы определения прочности и живучести роторов и корпусов с дефектами меняются последовательность и объем дефектоскопического контроля при изготовлении и эксплуатации роторов, а также повышается роль контроля при испытаниях и перед пуском в эксплуатацию энергоблоков.  [c.8]

На рис. 3 представлена зависимость критического числа Фруда от эквивалентного размера графитных частиц (рис. 3,а) и предельной скорости слоя (ipH . 2,6) для различных условий движения слоя и геометрических характеристик каналов. Если учесть, что в условиях плотного слоя критерий Фруда измеряется многими десятками и тысячами, а также принять во внимание предварительность данного определения (в проведенных опытах граница разрыва плотного слоя не устанавливалась достаточно точной то можно независимо от размера частиц принять в качестве области критического числа Фруда Ргкр = 2-4-5. При этом определенную корректировку можно производить методом последовательного приближения по рис. 3,6.  [c.656]

В то же время для получения достоверных оценок предельных и допускаемых размеров дефектов требуется разработка методов, учитывающих ограничения, связанные с экспериментальными особенностями определения характеристик трещиностойкости, включая требования их корректности во всем диапазоне размеров трещин и технологичееких дефектов. Такая постановка задачи может быть эффективно рассмотрена при использовании характеристик трещиностойкости, дающих наиболее интегральное представление о процее-сах деформирования и разрушения, происходящих в локальных областях материала и элемента конструкции в целом. Этому условию наиболее удовлетворяют энергетический критерий в форме 1-инте-грала и деформационный в виде коэффициента интенсивности деформаций Кхе, которым уделено основное внимание.  [c.35]

Значения к в табл. 8.4.2, относящиеся к случайным упаковкам цилиндров, получены путем сложения двух третей от соответствующих значений для перпендикулярного течения и одной трети значений для параллельного течения при равной порозности. Интересно отметить, что полученные таким путем значения близки к значениям для сфер в диапазоне е от 0,40 до 0,80 и ненамного отличаются от экспериментально определенного значения к = 5,0 в интервале е от 0,40 до 0,70. Так как цилиндры можно рассматривать как частицы, форма которых предельно отличается от сферической, то это обстоятельство представляет дополнительный аргумент в пользу теории Кармана — Козени для проницаемости пористых сред. Более того, действительный диаметр частиц не фигурирует в соотношениях, определяющих гидравлический радиус т. Поэтому постоянство множителя Козени к в некоторой степени оправдывает использование метода усреднения размера частиц в полидисперсных облаках при условии сохранения постоянного значения гидравлического радиуса. Это представление о замене облака частиц разных размеров облаком частиц одинакового размера, характеризуемым тем же самым отношением полной площади смачиваемой поверхности к объему пор, что и исходное полидис-персное облако, приводит к определению так называемого обратного среднего диаметра D = 1/ wilDi), где Wi — весовая доля  [c.457]


Смотреть страницы где упоминается термин Предельные размеры - Методы определения : [c.513]    [c.175]    [c.323]    [c.107]    [c.239]    [c.294]   
Машиностроение энциклопедия ТомIII-3 Технология изготовления деталей машин РазделIII Технология производства машин (2002) -- [ c.27 ]



ПОИСК



793 — Размеры — Определение

Методы определения размеров

Предельные Определение

Предельные размеры — Определени

Предельные размеры — Определение

Предельный размер



© 2025 Mash-xxl.info Реклама на сайте