Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Погрешности формы

Обычно суперфиниширование не устраняет погрешности формы, полученные на предшествующей обработке (волнистость, конусность, овальность и др.), но усовершенствование процесса позволяет снимать увеличенные слои металла, использовать особые режимы обработки. В этом случае погрешности предыдущей обработки значительно уменьшаются  [c.379]

Макрогеометрия (макронеровности) поверхности, характеризуемая погрешностями формы — отклонениями от правильной геометрической формы (овальность, конусность, бочкообразность и т. д.).  [c.81]


При этом необходимо предусмотреть слой металла, компенсирующий погрешности формы, возникающие в результате предшествующей обработки (особенно термической), а также погрешности установки детали на данной операции.  [c.98]

Из всего сказанного выше следует, что величина общего припуска зависит от толщины дефектного поверхностного слоя, подлежащего снятию, и припусков, необходимых для всех промежуточных операций механической обработки — межоперационных припусков, учитывающих погрешности формы, пространственные отклонения, возникающие в предшествующей обработке, погрешности установки, допуски на операционные (промежуточные) размеры, необходимую шероховатости поверхности.  [c.98]

Основные отверстия обрабатываются по 1—3-му классам точности с шероховатостью поверхности 6—8-го классов, а иногда 9—11-го. Погрешность формы отверстий 0,5—0,7 от допуска на отверстие.  [c.411]

При обработке валов о закреплением их в патроне или цанге под действием силы резания Ру также может возникнуть погрешность геометрической формы. Погрешность формы объясняется тем, что жесткость заготовки увеличивается по мере приближения резца к патрону, отжим заготовки от резца меняется от максимального значения до минимального. Величину прогиба можно определить, если принять заготовки за консольную балку, тогда  [c.59]

Погрешности формы и заданных размеров деталей, обработанных на фрезерных станках, вызываются неточностью станка погрешностью установки заготовки (ориентации и закрепления) неточностью изготовления, установки, настройки, а также износом фрез упругими деформациями технологической системы тепловыми деформациями внутренними напряжениями в заготовках.  [c.63]

Система станок — приспособление — инструмент — заготовка образует замкнутую упругую систему тел. В процессе фрезерования возникает сила резания, которая действует через один элемент этой системы — инструмент на все остальные элементы системы. При обработке резанием интерес представляют деформации, вызывающие погрешности формы и размеров заготовок. Значение жесткости J дает отклонения составляющей силы резания Py, направленной по нормали к обрабатываемой поверхности, к смещению заготовки в том же направлении или инструмента в обратном направлении J = Ру у-  [c.63]

Значение V определяют из соображений получения достаточной точности при оптимальных затратах на изготовление изделий. При регламентированных значениях поля рассеяния за пределы К/2 может выходить не более чем 0,27% случайных погрешностей от их общего количества. Это значит, что в 1000 обработанных деталях бракованных может оказаться не более трех штук. Такая ничтожно малая вероятность получения бракованных изделий оправдывается тем, что дальнейшее уменьшение процента риска связано с неоправданным увеличением погрешностей. Форма кривой зависит от метода обработки и измерения изделий точные методы дают кривую 1 (рис. 3.2, а), имеющую поле рассеяния Ух, методам высокой точности соответствует кривая 2, для которой < Ух методам низкой точности—кривая 3 (Уз> 1/г).  [c.33]


Реальные втулки также имеют отклонения основных размеров и суммарную погрешность формы, поэтому для сборки реальных втулок с теоретически точными валами необходимо, чтобы действительный контур втулок также не выходил за пределы полей допусков по О, д и Ь (рис. 15.6, а). Следовательно, собираемость деталей, образующих шлицевое соединение, гарантируется, если реальные валы и втулки порознь собираются с теоретически точными втулками и валами,  [c.186]

Выбор посадок основан на методе подобия. Собираемость шлицевых соединений с натягами затруднена из-за сложности контуров шлицевых деталей, поэтому в стандарте отсутствуют посадки с натягами. Неподвижные соединения получают с помощью переходных посадок или посадок, имеющих 6 т(п = О (Н7/Н7, Н8/к7). С увеличением длины неподвижных сопряжений, а также с увеличением длины и частоты переме. цений подвижных соединений применяют посадки с увеличенными зазорами. Это необходимо для компенсации погрешностей формы шлицевых деталей и хорошей смазки шлицевых поверхностей. Обычно для сопряжений по боковым сторонам зубьев назначают посадки с большими допусками, чем на центрирующие поверхности (см. пример 15.2).  [c.188]

Недостатки подшипников качения большие радиальные размеры и масса, высокая стоимость жесткость работы, отсутствие демпфирования колебаний нагрузки шум во время работы, обусловленной погрешностями формы сложность установки и монтажа подшипниковых узлов повышенная чувствительность к неточностям установки невозможность разъема подшипника в меридиональной плоскости металлический контакт между телами качения и обоймами. Долговечность подшипников качения определяется числом циклов нагружения, которое может выдержать материал подшипника при данной нагрузке.  [c.453]

Достоинствами фрикционных передач являются простота конструкции катков, плавность и бесшумность работы, возможность осуществления бесступенчатого регулирования угловых скоростей. К недостаткам относятся большие давления на валы и опоры, что ограничивает использование фрикционных передач при значительных мощностях непостоянство мгновенных передаточных отношений, обусловленное проскальзыванием и погрешностями формы рабочих поверхностей необходимость регулировки силы прижатия катков сравнительно высокий износ, а также опасность местного износа рабочих поверхностей при пробуксовке катков.  [c.250]

Работоспособность подшипников качения ограничивается усталостным выкрашиванием рабочих поверхностей дорожек и тел качения (этот вид разрушения является основным критерием работоспособности) пластическими деформациями, в результате которых при п < 1 об/мин и больших нагрузках на дорожках качения могут появляться вмятины-лунки расклиниванием колец и тел качения (раскалывание может быть вызвано неправильным монтажей подшипников, погрешностями формы и размеров посадочных поверхностей валов и корпусов, ударными и вибрационными нагрузками) разрушением сепараторов, что характерно для подшипников, работающих при высоких числах оборотов абразивным износом трущихся поверхностей, который наблюдается у подшипников, работающих в загрязненной среде при недостаточной защите от загрязнения.  [c.437]

Кроме того, возможны потери на трение, связанные с погрешностью формы тел качения и колец, перекосом роликов и т. д.  [c.362]

Методы, основанные на использовании линейного и поверхностного контактов средств контроля с поверхностью детали, как правило, обеспечивают высокую производительность и универсальность используемых средств измерения, но позволяют надежно отбраковывать детали лишь по проходному пределу. Часто выбор этих методов контроля обусловлен видом технологического процесса, обеспечивающего незначительные погрешности формы или взаимного положения поверхностей.  [c.142]

На прочность соединений с натягом влияют также погрешности формы сопрягаемых поверхностей, уменьшающие площади контакта, поэтому погрешность формы не должна превышать определенной доли допуска на изготовление детали. Соединения с натягом, детали которых испытывают упругую деформацию, допускают разборку и повторную сборку, но при этом из-за смятия неровностей прочность соединений несколько уменьшается. Потери прочности оценивают экспериментально.  [c.226]


Коэффициенты Кн и Кр учитывают динамическую нагрузку, возникающую в зацеплении вследствие кромочного удара зубьев при входе в зацепление. Основной причиной возникновения динамических нагрузок являются неточности сборки и изготовления (погрешности формы и значение ошибок шага). Динамические нагрузки растут с увеличением скорости и уменьшением степени точности, и уменьшаются с увеличением твердости рабочих поверхностей зубьев. При 7...9-й степенях точности ориентировочные значения коэффициентов для прямозубых передач при м/с  [c.356]

Отклонения (погрешности) формы и взаимного расположения поверхностей возникают в процессе обработки детали пз-за неточности технологической системы (станок — приспособление-заготовка— инструмент). На эти отклонения влияют износ инструмента, деформация детали и резцедержателей, неравномерность нагрева детали, неоднородность материала заготовки II т. д.  [c.101]

Погрешность формы и расположения контактной линии  [c.695]

Погрешность формы и расположения контактной ЛИ№НИ kr 3-7 8—12 6 < 1250 Ь <630  [c.696]

Для изучения курса сопротивления материалов и основ теории упругости и пластичности студент должен обладать знаниями в области высшей математики, теоретической механики и физики в объеме программ для технических вузов. В книге более широко, чем обычно, используется понятие вектора. Наряду с этим дается анализ вводимых упрощений с оценкой порядков вносимых при этом погрешностей. Форма изложения сочетает методы от простого к сложному (индуктивный) и от сложного к простому (дедуктивный). Гл. 1 носит вводный характер. Здесь же дается краткая историческая справка. В гл. 2. .. 4 рассмотрены простейшие задачи, которые представляют первый этап раздела Сопротивление материалов и вводят читателя в круг рассматриваемых вопросов.  [c.3]

Погрешность обработки отверстия фасонного профиля будет складываться из погрешности обработки в радиальном направлении, погрешности формы отверстия и погрешности пространственного положения отверстия относительно баз. Эти погрешности зависят от точности изготовления основных узлов и деталей головки, наладки станка, от влияния процессов, протекающих с различной скоростью и действующих во время обработки.  [c.370]

В связи с сужением возможного диапазона смещения настройки из-за увеличения составляющих погрешности обработки от быстро протекающих процессов и погрешности формы может наступить момент, когда проведение подналадок станет невозможным. Поэтому программой предусмотрена проверка возможности проведения подналадки. Если такая возможность имеется, то определяется направление подналадочного импульса и выдается команда на исполнение требуемой подналадки.  [c.467]

Коэффициентом К учитывается динамическая нагрузка, возникающая в зацеплении. Основной причиной возникновения динамической нагрузки в зацеплении являются погрешности формы и взаимного расположения зубьев (окружного шага). Динамические нагрузки растут с увеличением скорости и уменьшением степени точности.  [c.260]

Огибающая линия (система Е). В некоторых странах наряду со средней линией регламентирован другой способ проведения базовой линии профиля в пределах базовой длины. Полученную этим способом базовую линию вместе с определяемыми от нее параметрами шероховатости поверхности называют системой огибающей линии или системой Е. Базовая линия системы Е в пределах базовой длины совпадает не с формой номинального профиля, а с огибающей линией, получающейся обкатыванием реального профиля окружностью достаточно большого радиуса (например, равного = 25 мм). Выбирая разные радиусы окружности, можно выделить волнистость (например, при радиусе % = 250 мм) и погрешность формы (при Г[ = оо).  [c.27]

Погрешность формы и рас- Лйо Расстояние по нормали между двумя  [c.226]

Площадь фактического контакта двух деталей сильно уменьшается при наличии волнистости поверхности, которая обычно характеризуется шагом, высотой и радиусом округления вершин волн. По своим характеристикам волнистость занимает среднее положение между погрешностями формы и шероховатостью поверхности. Основной причиной ее появления являются вибрации, которые в ряде случаев сопровождают процесс резания. Повышение жесткости заготовок и резцовых оправок, устранение биения шпинделей и шлифовальных кругов — вот только некоторые из путей предупреждения вибраций.  [c.9]

Применение алмазов позволило в 2—3 раза интенсифицировать процессы финишной обработки и доводки по сравнению с абразивной доводкой. Высокие режущие свойства алмазов в ряде случаев дали возможность заменить абразивное шлифование более производительным алмазным хонингованием. При алмазном хонинговании, в отличие от абразивного, можно существенно повысить точность размеров и формы деталей. Погрешность формы некоторых деталей при алмазной обработке снижается в несколько раз, например хонин-гование коренных подшипников в блоке цилиндров некоторых двигателей обеспечивает размерную точность в 25 мкм и соосность в пределах 20 мкм.  [c.69]

Алмазное хонингование часто применяется как метод размерной обработки со снятием значительного припуска (до 0,2—0,3мм), Величина его определяется погрешностью формы отверстия, которую нужно устранить. Обычно припуск должен примерно в 1,5 раза превышать суммарную погрешность геометрической формы. Хонингование при указанных припусках проводится в несколько операций с использованием брусков различной зернистости. При предварительном хонинговании исправляют форму отверстия, при чистовом — получают нужный размер и при окончательном — доводят поверхность до нужного класса шероховатости.  [c.70]

Вввду того, что конечные значения формы и размеров днищ формируются на протяжении всего технологического процесса штамповки, то для выявления закономерностей образования погрешностей формы и размеров днищ необходимо использовать явление технологической наследственности с применением методов матемягичэсюй статистики [22].  [c.34]


Хонингованием исправляют погрешности формы от предыдущей обработки в виде отклонений от круглости, цилиндричности и т. п., если общая толщина суишаемого слоя не превышает 0,01—0,2 мм. Погрешности расположения оси отверстия (например, отклонение  [c.377]

При учебном [[роектировании нужно учитывать следующие виды погрешностей формы и расположения поверхностей.  [c.283]

Погрешности формы и взаимного расположения зубьев (окружного шага) являются причиной неплавности работы зубчатой пары, колебаний угловой скорости колес. Последние вызывают в зацеплении дополнительные инерционные усилия, которые и называют динамической нагрузкой. Эта нагрузка является вредным фактором, снижающим долговечность передачи и вызывающим шум и вибрацию деталей передачи.  [c.291]

Подшипники качения вызывают некоторые вибрации валов и шум в связи с биением, погрешностями формы, волнистостью дорожек качения, с разноразмер-ностью тел качения и с переменной жесткостью под[пинников но углу [юворота.  [c.361]

Принцип Тейлора. При наличии погрешностей формы и взаимного расположения геометрических элементов сложных деталей в соответствии с принципом Тейлора надежное определение соответствия размеров всего профиля предписанным предельным значениям возможно лишь в том случае, если определяются значения проходного и непроходного пределов ГОСТ 25346—82 (СТ СЭВ 145—75)], например действительные значения наибольшего и наименьшего размеров. Следовательно, любое изделие должно быть проконтролировано по крайней мере дважды, точнее по двум схемам контроля с помощью проходного и иепроходного калибров.  [c.141]

Выбор переходных посадок определяется требуемыми точностью центрирования и легкостью сборки и разборки соединения. Точность центрирования определяется радиальным биением втулки на валу (или вала во втулке), возникаюицш при зазоре и одностороннем смещении вала в отверстии. Погрешности формы и расположения поверхностей сопрягаемых деталей, смятие неровностей, а также износ деталей при повторных сборках и разборках приводят к увеличению радиального биеиня, поэтому для компенсации указанных погрешностей, а также для создания запаса точности наибольший допускаемый зазор в соединении необходимо определять по формуле  [c.220]

На полноту контакта колес влияют погрешности формы зубьев и погрешности их взаимр[ого расположения в передаче.  [c.313]

В качестве примера можно остановиться на широко применяемой для окончательной обработки прецизионных деталей абразивной доводке при помощи притиров с абразивной пастой или суспензией на их поверхности. При этом достигается точность обработки (погрешность формы) до 0,02 мкм, а шероховатость поверхности до 12—14-го классов. Этим методом обрабатываются калибры, точные керамические опоры, пластины резцов и другие прецизионные детали, особенно выполненные из труднообрабатцваемых материалов. Как показали исследования, проведенные в МВТУ им. Баумана П. Н. Орловым, на строение поверхности, получаемой в результате доводки, основное влияние оказывает характер  [c.77]

Наибольшими возможностями в отношении повышения точности и производительности обладают новые способы окончательной и доводочной обработки. Большинство из них связано с применением синтетических алмазов и кубического нитрида бора (эльбора). Алмазные и эльборовые круги отличаются высокой размерной стойкостью и обеспечивают в 1,5—2,5 раза более высокую производительность, чем инструмент из обычных абразивных материалов. Тарельчатые круги с эльбороносным слоем позволяют получать зубчатые колеса 4—5-й степеней точности и избежать образования при шлифовании прижогов. Высокая режуш,ая способность и стойкость алмазных брусков гарантируют не только существенное улучшение чистоты поверхности, но и устранение погрешностей формы отверстия при хонинговании. Большим достоинством является также то, что при работе алмазным инструментом резко снижается влияние на точность обработки теплового фактора.  [c.6]


Смотреть страницы где упоминается термин Погрешности формы : [c.130]    [c.98]    [c.182]    [c.116]    [c.186]    [c.186]    [c.153]    [c.213]    [c.332]    [c.458]   
Справочник машиностроителя Том 5 Изд.2 (1955) -- [ c.432 ]



ПОИСК



Аналитическое выражение погрешностей размеров и формы

Вероятностный анализ элементарных погрешностей размеров и формы в поперечном и продольном сечениях

Влияние отклонения формы, волнистости, шероховатости и погрешностей положения на качество и надежность машин и приборов

ДЕТАЛИ Формы — Погрешности

Измерения диаметров — Погрешности отклонений от правильной цилиндрической формы

Контроль абразивной т погрешностей формы

Контроль погрешностей формы

Контроль погрешностей формы и расположения

Контроль погрешности формы н расположения контактной лиОпределение отклонений осевого шага

Контроль — Производительные погрешностей формы

Коченов, Е, А. Правоторова ИССЛЕДОВАНИЕ ВЛИЯНИЯ СЛУЧАЙНЫХ И СИСТЕМАТИЧЕСКИХ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ НА ПРАВИЛЬНОСТЬ РАЗБРАКОВКИ ДЕТАЛЕЙ ПРИ НАЛИЧИИ ОТКЛОНЕНИЙ ИХ ФОРМЫ

Коченов, Е. А. Правоторова. Исследование влияния погрешностей приемочного контроля и отклонений формы деталей на точность их сопряжения

Методы и средства измерения погрешностей формы цилиндрических деталей

Некоторые вопросы автоматизации контроля погрешности формы изделий Крипякевич)

Нормирование погрешностей и формы представления результатов измерений

Нормированная плотность вероятности суммарной погрешности размеров и формы (композиция законов Гаусса и Релея)

Нормированная плотность вероятности суммарной погрешности размеров и формы (композиция законов Гаусса и арксинуса)

Нормированная функция распределения суммарной погрешности размеров и формы (композиция законов Гаусса и Релея)

Нормированная функция распределения суммарной погрешности размеров и формы (композиция законов Гаусса и арксинуса)

Общий вид выражения размера и формы детали через производственные погрешности

Поверхности внутренние — Раскатывани цилиндрические — Формы — Погрешности

Поверхности — Погрешности расположения и формы

Погрешности Определение расчетноаналитическим форм деталей

Погрешности базирования геометрической формы при

Погрешности базирования геометрической формы приотделочной обработке абразивным инструментом

Погрешности в размерах и форме обработанных изделий. Причины и характер их возникновения

Погрешности геометрической формы при

Погрешности формы поверхностей и расположения отверстий в корпусных деталях

Погрешности формы я шероховатость поверхности

Погрешности — Рассеивание формы

Погрешности — Суммирование — Правил формы деталей

Предельные значения погрешностей геометрической формы при обработке на токарных, револьверных, карусельных и шлифовальных станках

Примеры расчетов суммарных погрешностей формы и размеров при токарной обработке

Средства активного погрешностей формы

Цилиндрические детали — Формы — Погрешности



© 2025 Mash-xxl.info Реклама на сайте