Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметры методов контроля

Новые или отремонтированные станки проходят испытания для проверки качества их изготовления или ремонта. С этой целью станки подвергают испытанию на геометрическую точность, на шероховатость поверхности и точность обработанных деталей. Перед испытанием станок устанавливают на фундамент, выверяют по уровню и проверяют геометрическую точность станка. Геометрическая точность станка определяется проверкой точности взаиморасположения, перемещения и соотношения движения рабочих органов, несущих обрабатываемую деталь и инструмент. Проверяемые параметры, методы контроля и нормы точности, в зависимости от конструкции станка и его точности, регламентированы соответствующими ГОСТами или специальными техническими условиями.  [c.246]


Контролируемые параметры Методы контроля Требования е.- готовой шихте  [c.102]

Контролируемые параметры Методы контроля и основные причины дефектов  [c.117]

Контроли- руемые параметры Метод контроля и приборы Рекомендуемые характеристики для натрового стекла  [c.79]

С помощью калибров нельзя определить действительные размеры элементов деталей. Задачей контрольных функций калибров является установление соответствия действительных размеров элементов деталей их предельным значениям, проставленным в рабочих чертежах, на основе чего делаются выводы о годности или негодности детали по ее контролируемому параметру. Методы контроля делят на активные и пассивные. При активных методах контролируют ход технологического процесса, производя по результатам контроля подналадки процесса обработки с целью недопущения появления бракованных деталей. При пассивных методах контроля, осуществляемых предельными калибрами, при различных видах технического контроля констатируют годность или негодность изготовленных деталей. Предельные гладкие калибры получили широкое применение в серийном и массовом производстве.  [c.127]

Параметры Метод контроля  [c.88]

Во второй части таблицы параметров, как и по ГОСТ 9250—59, приводят данные для контроля толщины витка и нормы точности червяка. ГОСТ 2,406—68 предусматривает два метода контроля толщины витка. Им соответствуют различные варианты указания контрольного комплекса  [c.142]

Особое место в обеспечении высокого качества продукции принадлежит стандартизации. Комплексная стандартизация сырья, материалов, полуфабрикатов, комплектующих изделий и готовой продукции — эффективное средство планомерного повышения качества. Стандартизация устанавливает оптимальные показатели качества, его параметрические ряды, приемы контроля и испытаний, режимы технического обслуживания, методы ремонта, нормы запасных частей и т. п. На каждое разрабатываемое изделие составляют технические условия (ТУ) — документ, входящий в комплект технической документации на промышленную продукцию (изделие), в котором указывают комплекс технических требований к продукции, правила ее приемки и поставки, методы контроля, условия эксплуатации, транспортирования и хранения. Технические требования определяют основные параметры и размеры, свойства или эксплуатационные характеристики изделия, показатели качества, комплектность и т. д.  [c.26]


Методы НК основаны на использовании физических явлений для обнаружения и определения параметров дефекта. В свою очередь неразрушающие методы контроля подразделяются на пассивные (интегральные) и активные (локальные).  [c.176]

Точность резьбы можно контролировать дифференцированным (контроль каждого параметра в отдельности) и комплексным (контроль расположения контура резьбы в предписанном поле допуска) методами. Метод контроля каждого параметра резьбы в отдельности (среднего диаметра, шага и угла профиля) трудое.мок, поэтому его применяют для точных резьб ходовых винтов, резьбовых калибров, метчиков и т. и. Иногда по результатам контроля отдельных параметров судят (после вычислений) о комплексном параметре, например о приведенном среднем диаметре резьбы. Комп,лексный контроль резьб выполняют либо с помощью предельных калибров, либо с помощью проекторов и шаблонов с предельными контура. п1.  [c.295]

В современных оптических приборах используют оптические детали, имеющие чаще всего плоскую, сферическую и асферическую поверхности. Наиболее важным параметром, определяющим их качество, является отклонение от заданной геометрической формы. Предельное отклонение от. эталонной поверхности иногда не превышает десятых и даже сотых долей микрометра. Столь малые величины можно обнаружить и измерить с помощью приборов, в основу которых положены голографические методы контроля.  [c.99]

В разделе Методы контроля устанавливаются требования к проведению контроля за параметрами работы наземного и глубинного электрооборудования.  [c.134]

Некоторые положения технологии контроля. Прежде чем приступить к контролю качества, необходимо в зависимости от объекта контроля и состояния его поверхности произвести выбор метода контроля, типа акустической волны, контактирующей среды, способа ввода УЗК, установить параметры контроля и произвести настройку аппаратуры.  [c.181]

Схема метода контроля представлена на рис. 6.39. В катушке 1 пропускается переменный или импульсный ток, возбуждающий переменное магнитное поле (указано на рисунке пунктиром). Поле создает вихревые токи в поверхностных слоях объекта контроля 2, электрические параметры которого (частотный спектр, крутизна фрон ГП I да тельность импульсов, со-  [c.198]

Основные геометрические параметры. В целях унификации инструмента, средств и методов контроля стандартизованы параметры, определяющие размеры червяков т — осевой модуль  [c.299]

Тепловизоры — Схемы 136—138 — Характеристики 137, 140 Тепловые методы контроля 116—145 — Информационный параметр 116 — Классификация 116 Термоиндикаторы 128—130 Термометры газовые и жидкостные 123 — Основные параметры 124  [c.486]

Средства контроля прочности материалов, изделий и соединений. Все акустические методы контроля прочности являются косвенными. Они основаны на корреляционных зависимостях прочности от параметров материалов или соединений, которые можно измерить акустическими методами.  [c.286]

Средства контроля нескольких параметров. Метод измерения второго критического угла падения, [29]. При  [c.288]

Для выявления параметрических отказов, снижающих работоспособность сложного изделия, например ракеты, применяют автоматические методы контроля работоспособности, когда анализ состояния системы ведется на основе алгоритма, оценивающего характер сигнала об отказе и выбирают лишь те категории отказов, которые связаны с основными параметрами изделия.  [c.44]

Схема формирования показателей надежности технологического процесса. Формирование выходных параметров изделия в процессе его изготовления имеет свою специфику, связанную со структурой технологического процесса, методами контроля," надежностью осуществления отдельных операций и переходов. Рассмотрим схему оценки надежности технологического процесса, состоящего из п последовательных операций (рис. 144). В результате этого техпроцесса должно быть обеспечено нахождение т параметров Х Ха . . в пределах допуска. Вероятность  [c.443]


Рассмотрим конечный результат формирования т выходных параметров некоторой технологической цепочки (см. рис. 144), считая, что для каждого из параметров определена вероятность его получения в пределах допуска. Эта вероятность учитывает принадлежность параметра к одной из трех категорий и наличие для части из них промежуточного контроля. В конце технологической цепочки по ряду параметров производится выходной контроль, эффективность которого характеризуется вероятностью отбраковки изделий, имеющих параметры за пределами допуска. Контрольные операции не обладают 100%-ной гарантией отбраковки в случае применения статистических методов контроля (суждение о годности изделия по выборке) и с учетом метрологической надежности измерительных приборов [35].  [c.445]

Суждение о годности изделия осуществляется по альтернативному или количественному признакам. При контроле по альтернативному признаку все изделия в выборке разбиваются на две категории — годные и негодные (дефектные). Оценка партии производится по величине доли дефектных изделий от общего числа проверенных. При контроле изделий по количественному признаку у каждого изделия определяется один или несколько параметров и оценка партии изделий производится по статистическим характеристикам распределения этих параметров, поскольку каждое значение параметра является случайной величиной. В работах, посвященных статистическим методам оценки качества продукции, рассматриваются такие вопросы, как оценка риска забраковать годную продукцию или принять дефектную, выбор различных планов приемочного контроля изготовленной продукции, методы контроля по количественным признакам с различными законами распределения параметров и др. 188]. Обычно статистические методы контроля качества применяются в массовом и крупносерийном производстве.  [c.453]

На построение системы саморегулирования существенное влияние оказывают скорости действующих на машину процессов. Именно они определяют метод контроля изменяющихся параметров, периодичность или непрерывность работы" механизмов под-наладки. Для быстропротекающих процессов, процессов средней скорости и медленных структура системы саморегулирования будет различна. В последние годы появился ряд систем автоматической подналадки или стабилизации работы машин с функциями приспособляемости и защиты от влияния различных воздействий на устойчивую работу оборудования.  [c.461]

Образование дефектов в изделии зависит от характера технологического процесса, его режимов, методов контроля параметров, степени автоматизации и других характеристик. Для каждого технологического процесса имеются, как правило, типичные виды дефектов, связанные с теми или иными нарушениями хода процесса или неблагоприятным сочетанием факторов.  [c.468]

Анализ надежности технологического процесса. Технологический процесс должен обеспечить устойчивое формирование всех параметров изделия, которые определяют его надежность. Анализ с этих позиций структуры технологического процесса, применяемых методов и режимов обработки, методов контроля, учет остаточных и побочных явлений, связанных с обработкой и  [c.573]

Причины такого поведения Ti-сплавов однозначно не установлены. Какая-либо связь с контролируемыми параметрами их структуры по литературным источникам не прослеживается. Имеющиеся в литературе объяснения отдельных, частных вариантов реакции материала на то или иное внешнее воздействие не состоятельны по отношению к другим вариантам. Это позволяет предположить, что Ti-сплавы могут обладать не выявляемой принятыми методами контроля особенностью состояния субструктуры, которая обусловливает в зависимости от условий внешнего нагружения реализацию соответствующей кинетики разрушения материала.  [c.385]

Конт )ОЛИр е,чые параметры Методы контроля Основные причины дефектов  [c.115]

Контролируемые параметры Методы контроля 1 Основные причины дефеьтов  [c.123]

С целью охвата небольших автопредприятий, где невозможно организовать работу специализированных постов или групп, в рамках автотранспортных объединений целесообразно создавать передвижные лаборатории (посты) контроля токсичности автомобилей. Такая лаборатория имеет в своем составе приборы контроля токсичности и дымности ОГ в соответствии с действующими стандартами, набор диагностической аппаратуры для двигателей, учебнометодические материалы. В функции передвижной лаборатории входит проведение всего комплекса работ контрольно-диагностического поста крупных АТП—контроль токсичности и дымности, диагностирование двигателей и автомобилей, поэлементный контроль и восстановление параметров отдельных узлов двигателя. Кроме того, работа передвижного поста должна сопровождаться демонстрацией эффективности методов контроля и регулирования двигателей по токсичности и топливной экономичности, обучением прогрессивным приемам эксплуатации автомобилей.  [c.102]

Классификация. Общие технические требования. Методы контроля. Типы. Основные параметры. Терми- мы и определения  [c.99]

В отличие от методов просвечивания, ультразв>тсовые методы позволяют успешно выявлять именно трещиноподобные дефекты. Спецификой ультразвукового метода контроля является то, что он не дает конкретной информации о характере дефекта, так как на экране дефектоскопа появляется импульс, величина которого пропорциональна отражающей способности обнаруженного дефекта. Последняя зависит от многих факторов размеров дефекта, его геометрии и ориентации по отношению к направлению распространения ультразвуковых колебаний. В связи с тем, что эти параметры при контроле остаются неизвестными, обнар> -женные дефекты обычно характеризуются эквивалентной площадью, которая устанавливается в зависимости от интенсивности полученного сигнала Достоинствами л льтразвукового метода являются его меньшая по сравнению с методами просвечивания трудоемкость, а также возможность достаточно точного определения координат обнаруженного дефекта. Как показала практика применения ультразвукового метода, он не позволяет достаточно надежно обнаружить дефекты, лежащие вблизи поверхности изделия в связи с экранированием сигнала от дефекта сигналом ог поверхности. Это обстоятельство также необходимо ч читы-вать при практическом использовании данного метода контроля. Ультразвуковые методы используют как для контроля дефектов металла листов и поковок на стадии их изготовления, так и для контроля сварных соединений, для диагностики трубопроводного транспорта. На данном принципе созданы внутритрубные инспекционные снаряды (ВИС) — Ультраскан-СД, которые, двигаясь внутри трубы, считывают информацию о техническом состоянии трубопроводов. При этом фиксируется толщина стенки, коррозионные каверны, расслоения мета.лла, дефекты стресс-коррозионного происхождения.  [c.61]


Объективный количественный анализ перечисленных параметров сложен, а поэтому в значительной степени определяется развитием комплексных средств неразрушающего контроля, использующих одновременно различные по физической природе методы исследования. Только разные по принципу взаимодействия с веществом методы контроля могут исключить недостатки исследования, взаимно дополнить друг друга и обеспечить получение необходимой информации о качестве изделия. При исследовании отдельных свойств и характеристик изделий выявляется лишь преимущественное положение того или иного метода контроля. В большей степени это зависит от физической сущности метода и возможности его практической реализации в условиях производства. Над созданием новых и совершенствованием существующих мето-  [c.8]

Особенность неразрушающего контроля заключается в том, что все указанные параметры необходимо определять непосредственно в технологическом процессе. Это обстоятельство накладывает на метод контроля существенные ограничения. Как показала практика неразрушающего контроля, наиболее эффективными являются методы, к которым можно отнести радио-волновые, тепловые, радиационные, акустические. При этом наиболее универсальными и информативными являются бесконтактные радио-вол новые методы, которые позволяют контролировать влажность, вязкомь, кинетику твердения, геометрические размеры, содержание компонент, наличие различных дефектов, ориентацию наполнителя и другие параметры.,  [c.253]

Контроль неразрушающйй. Дефектоскопы ультразвуковые. Методы измерения основных параметров 23694—79 Контроль неразрушающий. Паста магнитная для магнитно-порошковой дефектоскопии КМ-К. Технические условия 23702—79 Контроль неразрушающий. Преобразователи ультразвуковые. Основные параметры и методы их измерений 23764—79 Гамма-дефектоскопы. Общие технические условия 23829—79 Контроль неразрушающйй акустический. Термины и определения 23858—79 Соединения сварные стыковые и тавровые арматуры железобетонных конструкций. Ультразвуковые методы контроля качества. Правила приемки  [c.474]

ЭДС (или сопротивление) преобразователя зависит от многих параметров объекта контроля, т. е. информация, даваемая преобразователем, мно-гопараметровая. Это определяет как преимущество, так и трудности реализации вихретоковых методов (ВТМ). С одной стороны, ВТМ позволяют осуществить многопараметровый контроль с другой стороны, требуются специальные приемы для разделения информации об отдельных параметрах объекта. При контроле одного из параметров влияние остальных на сигнал преобразователя становится мешающим, поэтому это влияние необходимо уменьшать.  [c.82]

Так, электроемкостный метод контроля (ЭМК) предусматривает введение объекта контроля или его исследуемого участка в электростатическое поле и определение искомых характеристик материала по вызванной им обратной реакции на источник этого поля. В качестве источника ноля применяют электрический конденсатор, который является одновременно и первичным электроемкостным преобразователем (ЭП), так как осуществляет преобразование физических и геометрических характеристик объекта контроля в электрический параметр. Обратная реакция ЭП проявляется как изменение его интегральных параметров, чаще всего двух параметров, из которых один характеризует емкостные свойства ЭП, а другой — диэлектрические потери (например, емкость и тангенс угла потерь — составляющие комплексной проводимости). Эти параметры являются первичными информативными параметрами ЭМК.  [c.160]

Следует отметить, что информативные параметры ЭП зависят также от его конструкции и электрических характеристик среды, в которую помещен объект контроля. Первое обстоятельство учитывается при оптим изацин конструкции ЭП, второе обычно является причиной возникновения мешающих контролю факторов. Как видно из рис. 1, в качестве первичного информативного параметра наиболее целесообразно использовать емкость ЭП и тангенс угла потерь. Однако для изучения анизотропных свойств объекта контроля необходимо пользоваться диаграммой зависимости диэлектрических параметров от направления вектора напряженности поля, созданного в объекте контроля. По назначению электроемкостные методы контроля могут быть классифицированы на три группы измерение параметров состава и структуры материала, определение геометрических размеров. объекта контроля, контроль влажности.  [c.160]

Все компоненты технологического процесса — метод обработки и применяемое оборудование, последовательность операций, режимы обработки, методы контроля — определяют его выходные параметры и в первую очередь показатели качества изделия, ука-занныё конструктором в ТУ — его точность, качество поверхности, механические свойства и др.  [c.433]

Создание запаса надежности технологического процесса. В ряде случаев, особенно при освоении новых образцов машин, отказы, связанные с технологией, возникают потому, что ее уровень не соответствует возросшим требованиям к изделию, не оздан запас надежности и параметры технологического процесса близки к предельным. Технологическое оборудование, методы контроля, организация технологического процесса уже перестают удовлетворять требованиям, предъявляемым для изготовления изделий с более высокими показателями их качества. Например, при повышении сложности и прецизионности изделий большое значение приобретают допуски не только на точность размеров, но и на точность формы и взаимное положение отдельных поверхностей.  [c.445]

Статистические методы контроля параметров технологического процесса. Статистические методы контроля могут быть применены к оценке параметров технологического процесса и их изменений под действием различных факторов. Контролируются характеристики качества оборудования, технологической оснастки и инструмента, проверяются методы их наладки, оценивается рабочая среда, а также контролируются параметры изготовляемых изделий. Принципиальная разница по сравнению с контролем качества продукции здесь заключается в том, что анализируются процесс и тенденции развития или стабилизации технологического процесса, близость его параметров к граничным значениям и т. п. Поэтому возможность появления де( ктного изделия не будет неожиданностью, а явится следствием определенного (как правило, постепенного) изменения характеристик технологического процесса. Обнаружение этих тенденций позволит принять меры по предотвращению брака, т. е. создать условия для бездефектного изготовления продукции. Для металлообрабатывающей промышленности применяются такие статистические методы контроля, как составление точечных диаграмм изменения точности обработки, по которым можно определить рассеивание параметров точности, смещение центра группирования во времени, вероятность выхода размера за пределы допуска или наличие запаса по точности. Эти  [c.453]


Смотреть страницы где упоминается термин Параметры методов контроля : [c.75]    [c.75]    [c.326]    [c.69]    [c.196]    [c.210]    [c.175]    [c.69]    [c.444]   
Ультразвуковая дефектоскопия (1987) -- [ c.117 ]



ПОИСК



84- Кинематическая точность 814- Контакт зубьев 815 Контроль 814 - Методы обработки 807 - Параметры

84- Кинематическая точность 814- Контакт зубьев 815 Контроль 814 - Методы обработки 807 - Параметры получения заготовок 804 - Технологические маршруты

84- Кинематическая точность 814- Контакт зубьев 815 Контроль 814 - Методы обработки 807 - Параметры шероховатости 84 - Плавность работы 815 - Способы

Аппаратура для контроля эхо-методом — Основные параметр

Вибродиагностика Методы 406—411 - Объекты контроля 411 Параметры 407,408 - Преобразователи измерительные

Выбор метода контроля и основных параметров

Контроль акустический многослойных конструкций — Классификация методов 289 Основные параметры 292, 293 — Применение 292, 293— Свойства точечного контакта

Контроль акустический многослойных конструкций — Классификация методов 289 Основные параметры 292, 293 — Применение 292, 293— Свойства точечного контакта i— велосиметрическим методом

Контроль параметров

Методы и средства контроля отдельных параметров шлицевой протяжки

Методы контроля

Методы контроля геометрических параметров металлоконструкций кранов

Основные направления совершенствования методов и средств контроля геометрических параметров самолетных конструкций

Рассеяние лазерного пучка как метод контроля за его параметрами

Средства и методы контроля основных параметров резьбы (Коротков

Статистические методы контроля, параметров технологического процесса

Тепловые методы контроля 1)6—145 Информационный параметр 116 Классификация



© 2025 Mash-xxl.info Реклама на сайте