Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерение погрешности зубчатых колес

ИЗМЕРЕНИЕ ПОГРЕШНОСТИ ЗУБЧАТЫХ КОЛЕС  [c.262]

Проверка кинематической точности зубофрезерного станка по изделию. Метод заключается в оценке точности станка по результатам измерения погрешности зубчатого колеса, нарезанного на этом станке.  [c.98]

На многих заводах измерение накопленной погрешности окружного шага производится только у точных колес или при контроле пробных колес для выяснения ошибки обката, вносимой зуборезным станком. В последнем случае принимаются специальные меры для того, чтобы тщательно установить заготовку, т. е. из общей погрешности зубчатого колеса исключить радиальные составляющие. Результаты этих измерений используются для ремонта и юстировки зуборезного станка.  [c.188]


Вследствие этого на многих заводах для определения толщины зубьев измеряется номинальная длина общей нормали. Преимуществом измерения длины общей нормали является то, что в результаты измерения не входят погрещности промежуточной базы — наружный диаметр, однако результаты измерения длины общей нормали включают часть кинематической погрешности, возникающей на угле обката между точками, контактирующими с измерительными поверхностями. Контроль длины общей нормали получил распространение при измерении цилиндрических зубчатых колес.  [c.213]

Большинство этих приборов является сложными стационарными устройствами, непригодными для использования в условиях монтажной площадки. Современный уровень теории зубчатого зацепления и практики производства зубчатых колес на большинстве отечественных машиностроительных заводов настолько высок, что в практике монтажа машин необходимость измерения погрешностей зубчатого зацепления встречается очень редко.  [c.217]

Новым в конструкции системы является наличие специального устройства, которое позволяет проводить определение кинематической погрешности исследуемых колес без применения образцовых зубчатых колес устанавливать единые нормы точности на измерения как кинематической погрешности зубчатых колес и передач, так и на измерения шаговых погрешностей зубчатых колес проводить исследования всех типов зубчатых колес и зацеплений, а также всех видов профильных форм зубьев внутреннего и внешнего зацеплений.  [c.242]

ГОСТ 25513— (СТ СЭВ 3004—81) устанавливает следующие условные обозначения приборов прибор для измерения цилиндрических зубчатых колес с от > 1 и кинематической погрешности, станковый, класса точности А обозначается следующим образом -S1-1-A.  [c.234]

Погрешностью обката Р называется составляющая кинематической погрешности зубчатого колеса, а практически этим параметром стандарт устанавливает требования к кинематической точности зуборезного станка, на котором осуществляется окончательная обработка зубчатого венца. Измерение кинематической точности станка наиболее часто осуществляют с помощью кинематомеров. Принцип измерения кинематомерами аналогичен применяемому в электронных приборах для измерения кинематической погрешности. Кинематомером осуществляется замыкание конечных звеньев кинематической цепи обката — деления станка.  [c.119]


Средства измерения цилиндрических зубчатых колес. Контроль по нормам кинематической точности. Контроль кинематической погрешности заключается в определении разности действительных и номинальных перемещений измерительного колеса или рейки при одинаковых перемещениях ведущего элемента в условиях  [c.681]

Измерение кинематической погрешности зубчатых колес  [c.133]

Для обеспечения взаимозаменяемости большое значение имеет использование преемственности, существующей между тремя процессами, через которые проходит деталь, т. е. процессами изготовления, контроля и эксплуатации, так как одна и та же деталь является сначала объектом обработки, затем объектом измерения и, наконец, элементом механизма. Такое изменение роли и места детали и возможный переход погрешностей обработки и измерения на погрешность в функционировании детали в механизме названо принципом инверсии [5]. Из этого принципа вытекают практические следствия. Например, согласно этому принципу должны учитываться как погрешности изготовления, так и погрешности измерения. Для уменьшения последних и выявления погрешностей, которые будут проявляться в работающем механизме, схема проверки детали должна быть тождественной или близкой схеме работы этой детали в механизме. Этому требованию отвечает, например, проверка кинематической погрешности зубчатых колес в однопрофильном зацеплении с точным (измерительным) колесом.  [c.18]

Рис. 10.7. Измерение кинематической погрешности зубчатого колеса Рис. 10.7. <a href="/info/284701">Измерение кинематической погрешности</a> зубчатого колеса
Погрешность Аф (ф ), определяемая выражением (8.69), является главной составляющей так называемой кинематической погрешности зубчатого колеса — нормы точности, регламентированной государственным стандартом. Кинематическая погрешность зубчатого колеса может быть определена экспериментально как ошибка перемещения контролируемого колеса при однопрофильном зацеплении его с образцовой рейкой или образцовым колесом. Полученную измерением кинематическую погрешность " Aф (ф ) можно представить в виде тригонометрического ряда, используя методы гармонического анализа. Первая гармоника полученного таким образом ряда и представит функцию (8.69). К аналогичным результатам придем, если определить экспериментально накопленную погрешность окружного шага и выделить затем первую гармонику. Размах кинематической погрешности  [c.294]

Работа измерительных приборов, предназначенных для определения кинематической погрешности зубчатых колес и передач, заключается в непрерывном сравнении мгновенных передаточных отношений и перемещении ведомых звеньев двух связанных между собой механизмов принятого в качестве образцового и содержащего проверяемое зубчатое колесо, сопрягаемое с измерительным колесом. При этом определяется кинематическая погрешность проверяемого зубчатого колеса, погрешностью измерительного колеса пренебрегают. При необходимости установить кинематическую погрешность зубчатой передачи с образцовым механизмом сравнивают колебание мгновенного передаточного отношения этой передачи. В качестве образцового механизма могут быть использованы гладкие фрикционные диски или электрические цепи в измерительных приборах, основанных на импульсных методах измерения с использованием магнитных или оптических преобразователей.  [c.105]

В настоящее время для определения кинематической и циклической погрешностей зубчатых колес и передач при различных скоростях вращения применяется импульсный способ измерения с использованием магнитных шкал и растровых решеток.  [c.111]

При измерении разности окружных шагов вместо индикатора 7 устанавливают жесткий упор. Во впадину проверяемого зубчатого колеса вводят измерительный наконечник, а верхний индикатор 5 устанавливают на нуль. Затем каретку 6 отводят от колеса, а проверяемое колесо поворачивают маховичком оптической делительной головки и, вводя последовательно измерительный наконечник в каждую впадину зуба, определяют показание по шкале оптической делительной головки 4. Таким образом, по шкале оптической головки можно определить разность угловых шагов Ут, и накопленную погрешность на к угловых шагов Рх г и по всему зубчатому колесу Рх .. При измерении конических зубчатых колес ось измерительного наконечника зубомерного столика устанавливают перпендикулярно образующей делительного конуса кон-  [c.148]


Волномер представляет собой штангу 5 (рис. 64, а), на которой расположены три наконечника два из них 2 и являются опорными, третий 3 — измерительным. Для измерения циклической погрешности зубчатого колеса волномер устанавливают на проверяемое колесо так, чтобы опорные наконечники сферической поверхностью касались впадины зуба. Измерительный наконечник 3 также приводится в соприкосновение с боковой поверхностью зуба при этом измерительная головка прибора 6, связанная через рычаг с этим наконечником, должна иметь некоторый натяг. Опорная ножка 1 волномера устанавливается на вершину соседнего с проверяемым зубом колеса.  [c.153]

Для того чтобы исключить влияние побочных факторов на погрешность окружного шага пробного зубчатого колеса, рекомендуется установку режущего инструмента и заготовки на столе станка производить весьма тщательно. Зубья пробных колес следует нарезать прецизионными червячными фрезами на пониженных режимах резания, а окружной шаг на уже нарезанном колесе измерять, не нарушая соосности базы измерения и базы обработки данного колеса. В связи с этим, при измерении пробного зубчатого колеса необходимо поворачивать его (не снимая) вместе со столом станка.  [c.253]

При определении циклической погрешности зубофрезерного станка по данным измерения пробного зубчатого колеса рекомендуется для этой цели нарезать два косозубых колеса с правым и левым направлениями зубьев. Проверка циклической погрешности на зубчатых колесах с разным направлением зубьев дает возможность обнаружить причины, вызывающие эту погрешность при вращении стола станка в разных направлениях. Число зубьев пробного зубчатого колеса не должно быть равно или кратно числу зубьев делительного колеса станка. Угол наклона зубьев р должен быть —30°. Ширину зубчатого венца Ь нужно выбрать с таким расчетом, чтобы на длине зуба укладывалось не менее 1,5 длин волн, возникающих на его боковой поверхности из-за циклической погрешности кинематической цепи станка.  [c.253]

Погрешности зубчатых колес, возникающие при зубофрезеровании, их измерение и причины возникновения. Для описания геометрических параметров эвольвентного цилиндрического зубчатого колеса необходимо различать параметры, связанные с погрешностями, параметры, не связанные с погрешностями, а также погрешности закрепления  [c.106]

Диаграмма, получаемая при измерении, представляет собой непрерывную кривую, которая характеризует кинематическую погрешность колеса Fir как разность между высшей и низшей точками кривой и местной кинематической погрешностью в виде наибольшей разности между местными соседними экстремальными (минимальными и максимальными) значениями кинематической погрешности зубчатого колеса в пределах его оборота.  [c.169]

Измерение погрешности обката. Под погрешностью обката понимают составляющую кинематической погрешности зубчатого колеса. Ее определяют при вращении его на технологической оси и при исключении циклических погрешностей зубцовой частоты и кратных ей более высоких частот. Этим показателем устанавливается требование к точности непосредственно процесса зубообработки за один оборот колеса. Практически эта погрешность Может определяться, как погрешность кинематической цепи деления зубообрабатывающего станка. Определение погрешности обката относительно технологической оси, т. е. оси, вокруг которой  [c.170]

Погрешности определяют отдельно для каждого зуба. В начале измерения зубчатое колесо поворачивают так, чтобы измерительный наконечник рычага соприкасался с основанием боковой поверхности измеряемого зуба, а стрелку индикатора устанавливают на нуль. Затем ходовым винтом сообщают каретке поступательное, а диску и зубчатому колесу вращательное движение. При этом измерительный наконечник начинает скользить по боковой поверхности зуба до выходя из зацепления с ним, но занимает все время вертикальное положение. Лишь погрешности боковой эвольвентной поверхности зуба вызывают небольшие угловые повороты рычага и соответствующие отклонения стрелки индикатора. Погрешности можно считывать со шкалы индикатора или фиксировать самописцем на диаграмме.  [c.213]

Плавность работы зубчатых колес можно выявлять при контроле местной кинематической погрешности, циклической погрешности колеса и передачи и зубцовой частоты передачи на приборах для измерения кинематической точности, в частности путем определения ее гармонических составляющих на автоматических анализаторах. С помош,ью поэлементных методов контролируют шаг зацепления, погрешность профиля и отклонения шага. Шаг зацепления контролируют с помощью накладных шагомеров (схема VII табл. 13.1), снабженных тангенциальными наконечниками 2 и 3 и дополнительным (поддерживающим) наконечником 1. Измерительный наконечник 3 подвешен иа плоских пружинах 4 6. При контроле зубчатого венца перемещение измерительного наконечника фиксируется встроенным отсчетным устройством 5, При настройке положение наконечников 1 1 2 можно менять G помощью винтов 7.  [c.332]

Цель текущего контроля в зуборезном производстве — выявление погрешностей процесса изготовления по результатам измерения зубчатых колес или контроль окончания технологической операции или же наладки технологического процесса и управления ходом обработки. Текущий контроль включает технологический, активный и пооперационный.  [c.693]

Так как число первичных ошибок в зубчатых передачах велико и определение их всех затруднительно, то об их точности можно судить по комплексному показателю кинематической точности зубчатых колес — кинематической погрешности АГе — оцениваемой непосредственным измерением или по допускаемому отклонению 6F,.  [c.284]


Кинематическая точность зубчатых колес может быть установлена в результате комплексного однопрофильного контроля или при определении накопленной погрешности окружного шага. При этих измерениях выясняется функция кинематической погрешности колеса, причем при контроле накопленной ошибки окружного шага она определяется не совсем полной величиной [18].  [c.181]

В цеховых условиях часто применяется упрощенный метод контроля накопленной погрешности окружного шага. Заключается он в определении накопленной ошибки окружного шага на зубьях, расположенных через 180°. Этот метод измерения может быть назван приблизительным, ибо, если накопленная ошибка окружного шага не выражена синусоидальной кривой, с максимумом и минимумом, расположенными через 180°, то в результаты измерения вносится ошибка. Этот метод сравнительно легко поддается механизации, повышая производительность контроля в цеховых условиях. МИЗом разработаны и изготовляются две модели приборов, предназначенные для контроля цилиндрических зубчатых колес малых и средних модулей. Прибор для контроля зубчатых колес средних модулей показан на фиг. 184.  [c.186]

Определение тангенциальных составляющих кинематической погрешности цилиндрических зубчатых колес контролем колебания длины общей нормали широко распространено в машиностроении. На многих заводах в цеховых условиях осуществляется измерение не только колебания длины общей нормали, но и отклонения длины общей нормали от номинальной величины. Эти измерения производятся с целью определения толщины зуба прежде всего корригированных зубчатых колес. Распространение данного метода для выяснения толщины зуба объясняется главным образом тем, что на результаты измерения не влияют погрешности промежуточной базы, в качестве которой используется поверхность выступов при контроле зубомерами. При измерении номинальной длины общей нормали производится определение отклонения толщины зубьев, а в стандарте нормируется колебание длины общей нормали, при котором выясняются тангенциальные составляющие кинематической погрешности.  [c.188]

Ограниченность конфигурации облучаемых на ускорителях деталей и образования активированных участков в труднодоступных местах (например, на ножках зубьев) необходимость прибегать к методу радиоактивных вставок, а износ детали характеризовать износом радиоактивной вставки можно далеко не всегда. Активация радиоактивными вставками, широко применяемая при исследовании низших кинематических пар, работающих в режиме трения скольжения, для количественного измерения износа зубчатых колес (и, вообще, тяжелонагруженных, высших кинематических пар) непригодна. Кроме непоказательности локального измерения износа и несоответствия износа вставки износу зубчатого колеса, расположение вставок на зубьях представляет собой искажение исследуемой поверхности, влияющее на приработку и гидродинамику тяжелонагруженного контакта. С повышением твердости зубчатых колес возрастает роль вставки как концентратора напряжений. Если же целью исследования является не количественное измерение износа зубчатых колес, а качественное определение влияния на их изнашивание какого-либо фактора, причем влияние этого фактора на изнашивание несравненно сильнее, чем погрешностей метода вставок, то последний может быть применен в некоторых специфических условиях на крупногабаритных, неупрочненных, слабонагружен-ных упрочненных, слабонагруженных зубчатых колесах и т. п.  [c.276]

Кинематическую погрешность зубчатых колес с выявлением погрешности обката проводят на кинематомерах, основанных на механическом, электрическом и фотоэлектрических принципах. Кине-матомеры основаны на измерении, регистрации, гармоническом анализе текущего рассогласования углов поворота ведущего и ведомого зубчатых колес (ведущим может быть измерительное колесо или колесо, парное к ведомому), установленных на номинальном межосевом расстоянии по отношению друг к другу. В современных моделях рассогласование измеряют с помощью различных электрических и фотоэлектрических датчиков углов поворота, преобразующих рассогласование в электрические сигналы, смещение которых по фазам измеряют фазометрами.  [c.128]

Разновидностями магнитоэлектрического метода измерения кинел1атической и циклической погрешностей зубчатых колес являются абсолютный, разностный и разностно-абсолютный методы. Ознакомимся кратко с их принципиальными особенностями [32]. Абсолютный магнитоэлектрический метод контроля кинематической и циклической погрешностей заключается в следующем.  [c.111]

На выпуске зубоизмерительных приборов, в которых используется фотоэлектрический метод измерения, специализируется английская фирма Голдер Микрон , выпускающая следующие зубоизмерительные приборы однопрофильные приборы для контроля кинематической и циклической погрешностей зубчатых колес автоматические приборы для определения накопленной погрешности окружного шага, эвольвентомеры для измерения погрешностей профиля зуба.  [c.119]

I, X Кинематическая погрешность зубчатого колеса и передачи 1 Прибор для измерения кинематической погрешности мелкомодульных зубчатых колес, тип БВ-5083, ЧЗИП н.р = 5,..20С вв = 60..160 /п=0,2...1  [c.165]

Измерение отклонений шага. Под отклонением шага понимают кинематическую погрешность зубчатого колеса при его повороте на один номинальный угловой шаг. Обычно при измерении определяют разность действительного и среднего значения шага по окружности, проходящей в средней части по длине и высоте зуба с центром на рабочей оси вращения колеса. Для колес 9—12-й степени нормируется отклонение шага. Отклонения этого параметра колеса оказывают такое же влияние на работу, как погрешности шага зацепления цилиндрических зубчатых колес. Для конических колес невозможно нормировать погрешность шага зацепления, поскольку применяемое зацепление не является эвольвентным. При измерении отклонения шага на данном радиусе колеса нет необходимости знать действительное значение радиуса окружности, на котором осущест-  [c.341]

Контроль углового и окружного шага. Погрешности окружного шага вызываются ошибками кинематической цепи зубообрабатывающих станков и радиальным биением заготовки. Погрешность окружного шага влияет на плавность работы и контакт зубьев. Шагомеры для контроля углового и окружного шага бывают накладные и стационарные. Накладные шагомеры базируются обычно по окружности выступов или впадин. На эти окружности обычно устанавливают грубые допуски, поэтому накладные шагомеры не обеспечивают высокой точности измерений и более предпочтительны стационарные шагомеры. Принцип действия стационарного шагомера показан на рис. 17.3. Проверяемое зубчатое колесо 7 устанавливают на оправке соосио с лимбом 2 н неподвижно относительно него. Лимб при повороте на каждый угол у фиксируется стопором 3. О точности окружного и углового шага судят ио равномерности расстояний между одноименными профилями зубьев по делительной окружности. Для этого стрелку индикатора устанавливают на нуль по первой паре зубьев. Затем каретку 4,  [c.211]

Толщину зуба по постоянной хорде можно измерять штангензубо-мером, имеющим две шкалы (рис. 17.7, а). По шкале / определяют высоту Нс, а по шкале 7 — длину постоянной хорды 5о. Перед измерением хорды (рис. 17.7) упор 4 устанавливают по шкале / и по нониусу 2 на размер Нс и закрепляют в этом положении. Принцип измерения длины хорды 5с показан на рис. 17.7, б. Размер хорды отсчитывают по шкале 7 и нониусу 6. Штангензубомеры выпускают двух типоразмеров для измерения зубчатых колес с модулем от 1 до 18 и 01 5 до 36 мм. Штангензубомеры обеспечивают точность отсчета до 0,02 мм. К их недостаткам относятся низкая точность измерения, быстрый износ кромок измерительных губок <3 и 5, влияние на результаты измерения погрешностей установки упора 4 и диаметра окружности выступов,  [c.215]


Измерение зубчатых колес при помощи двух роликов В две диаметрально расположенные впадины проверяемого колеса помещают ролики расстояние Л/т между крайними точками их цилиндрических поверхностей измеряют микрометрами. По размеру Мт вычисляют толш ину зуба. Этот метод не требует специальных измерительных средств на точность измерения не влияют погрешности окружности вершин зубьев.  [c.187]

Чонтролируемое зубчатое колесо устанавливается на вертикальном шпинделе прибора. Накопленная погрешность окружного шага измеряется с помощью двух диаметрально расположенных измерительных наконечников. Процесс измерения осуществляется по автоматическому циклу. После первоначальной установки контролируемого колеса и измерительных наконечников и включения электродвигателя, каретки с измерительными наконечниками разводятся, колесо поворачивается на один зуб, после чего каретки вновь сближаются в первоначальное радиальное положение и по отсчетному устройству определяется отклонение измерительного наконечника от первоначальной настройки.  [c.186]


Смотреть страницы где упоминается термин Измерение погрешности зубчатых колес : [c.209]    [c.467]    [c.116]    [c.158]    [c.188]    [c.307]    [c.326]    [c.190]    [c.193]   
Смотреть главы в:

Делительные механизмы Справочное пособие  -> Измерение погрешности зубчатых колес



ПОИСК



1--зубчатых колес — Измерение — Схе

164, 165 — Погрешности измерени

Зубчатые Оси — Погрешности

Зубчатые колеса цилиндрические Базы технологические Измерение погрешности допускаемые предельные

Измерение Выбор методов Погрешности зубчатых колес цилиндрических Схема

Колеса зубчатые — Допускаемые погрешности измерени

Колеса зубчатые — Допускаемые погрешности измерени точности

Погрешность измерения



© 2025 Mash-xxl.info Реклама на сайте