Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение физических векторов

Тогда в соответствии со структурными схемами (рис. 3.2, а, б) вектор-функция X(t) определяет решение уравнений динамики, вектор-функция Y(/)—правые части уравнений динамики, т. е. внешние силы, действующие на обобщенную модель, вектор Z — постоянные параметры, с помощью которых определяются коэффициенты уравнения динамики, а вектор К — конструктивное исполнение модели. Отметим, что X( f) и Y(i) имеют одинаковое количество знакопеременных составляющих, а составляющие Z, К — действительные положительные числа с целью сохранения физического смысла конструктивных данных и параметров.  [c.69]


Уравнение (4.2.10) называется уравнением волновых нормалей Френеля. Его решения дают главные значения показателей преломления, а выражение (4.2.11) определяет направления поляризации независимых волн, которые могут распространяться в кристалле. Уравнение (4.2.10) является квадратичным относительное . Поэтому каждому направлению распространения (из набора s , s , s ) соответствуют два решения для (задача 4.2). Для полного решения задачи мы должны подставить каждое из значений в выражение (4.2.11), что позволяет определить поляризации соответствующих независимых волн. Можно показать, что для непоглощающей среды эти независимые волны линейно поляризованы, поскольку в (4.2.11) все величины являются вещественными. Пусть Е, и Ej — векторы электрического поля, а D, и Dj — векторы электрического смещения линейно поляризованных независимых волн, соответствующих n и Из уравнения Максвелла V D = О следует, что D, и Dj ортогональны s. Поскольку Dj-Dj = О, три вектора D,, и s образуют взаимно ортогональную тройку векторов и могут быть выбраны в качестве системы координат при описании многих физических явлений, в том числе и оптической активности. Согласно уравнениям Максвелла, векторы D, Е и Н связаны между собой соотношениями  [c.84]

Уравнения (9.1.6) и (9.1.7), к которым добавляется уравнение физического состояния жидкости, связывающее давление и плотность, в качестве неизвестных содержат вектор у и скаляры р ир.  [c.231]

Используя (2-7.18) и формулируя другие возможные соотношения, подобные уравнениям (2-7.13) и (2-7.14), получаем полную систему возможных соотношений между физическими компонентами и другими тинами компонент векторов и тензоров  [c.80]

Периодическое винтовое течение [6] описывается в цилиндрической системе координат г, 9, z следующими уравнениями для физических компонент вектора скорости  [c.200]

Следует подчеркнуть, что никакой силы Главный вектор И), и главный момент М.щ сил инерции не имеют никакого физического содержания и в расчетных уравнениях (5.1) — (5.3) выполняют роль не более, чем чисто математических величин, посредством которых учитывается влияние ускоренного движения звеньев.  [c.181]

Так как вектор деф м ии Э связан с вектором напряжений ст физическим законом Э = Э[а, то при такой замене поверхность F(3)=0 преобразуется к уравнению поверхности нагружения  [c.257]


Рассмотрим сначала физический смысл одного из уравнений системы (11.19), например первого. Это уравнение имеет двойственный смысл. С одной стороны, оно дает выражение проекции вектора скорости у на ось Ох. С другой стороны, это уравнение определяет скорость движения проекции точки на ось Ох вдоль этой же оси.  [c.79]

Как известно, дифференциальные уравнения движения материальной системы содержат компоненты векторов механических сил. Ограничившись изучением лишь поля сил тяготения, А. Эйнштейн установил связь между геометрическими свойствами физического пространства, в котором движется материальная система, и силами тяготения, приложенными к материальным точкам системы.  [c.526]

Понятие о четырехмерном векторе, инвариантном относительно преобразования Лоренца, и соответствующая система обозначений весьма полезны в том смысле, что они позволяют нам, не задумываясь, писать уравнения, вид. которых не зависит от какой-либо конкретной инерциальной системы отсчета. Эти уравнения автоматически согласуются с постулатом теории относительности, что основные физические законы одинаково формулируются во всех инер-циальных системах отсчета. Для обычных векторов равенство а = Ь не зависит от системы координат. Выражая его через составляющие, мы получим а, = bi при i — 1. 2, 3. В другой системе координат, в которой составляю щими вектора а будут числа а , а составляющими вектора Ь — числа bi все-таки выполняется равенство  [c.370]

Четырехмерные векторы должны входить в формулировки физических законов, если мы хотим, чтобы эти законы оставались инвариантными относительно преобразования Лоренца. В следующем параграфе будет показано, как эта идея реализуется при релятивистском обобщении основного уравнения динамики материальной точки.  [c.462]

Уравнения равновесия стержня в проекциях на связанные оси. В большинстве задач исследование равновесия стержней более удобно проводить, используя уравнения в проекциях на связанные оси. Кроме того, в связанных осях компоненты Q,- и Mi векторов Q и М имеют четкий физический смысл (Qi — осевая сила Q2 и Q3 —перерезывающие силы Mi — крутящий момент М2, Мз — изгибающие моменты). В проекциях на связанные оси из уравнений (1.57) — (1.Р с учетом (1.62) и (1.63) получаем  [c.34]

Одно из следствий научно-технической революции заключается в резком повышении требований к точности расчетов, что, в свою очередь, требует более полного учета всех физических особенностей рассматриваемых задач. Как правило, прикладные задачи, связанные с исследованием колебаний стержней, требуют знания статического напряженно-деформированного состояния. Это существенно осложняет решение уравнений движения, так как требует решения уравнений равновесия — определения вектора состояния в статике, компоненты которого входят в качестве коэффициентов в уравнения малых колебаний. В консервативных задачах статическое напряженно-деформированное состояние влияет в основном только на спектр частот, изменяя их числовые значения. В неконсервативных задачах, например в задачах взаимодействия стержней с потоком воздуха или жидкости, статическое напряженно-деформированное состояние влияет не только на спектр частот (на мнимые части комплексных собственных значений), но и на критические состояния стержня (на действительные значения комплексных собственных значений), что, конечно, необходимо учитывать при расчетах. Во второй части книги, так же как и в первой, основные теоретические положения и методы решения иллюстрируются конкретными примерами, способствующими более глубокому пониманию излагаемого материала.  [c.3]

В декартовых осях в отличие от связанных осей компоненты векторов Ох и Мх (Qлy и Мх ) не имеют четкого физического смысла, как, например, компоненты Qj и М/ в связанных осях. Однако, решив уравнения движения, всегда можно определить компоненты векторов в любой системе координат, воспользовавшись матрицей преобразования соответствующих базисов. Например, чтобы получить векторы О и М в связанных осях, следует воспользоваться матрицей (где — матрица преобразования базиса / к базису е ), т. е.  [c.37]


Исходная система уравнений содержит два физических (4.123), (4.124) и два геометрических (4.125), (4.126) уравнения, размерность которых различна, поэтому первые шесть компонент вектора L(L, , /=1, 2......6) имеют размерность рас-  [c.109]

В декартовой прямоугольной системе координат, благодаря тому, что символы Кристоффеля обращаются в нуль и ковариантные компоненты вектора и тензора напряжений совпадают с физическими компонентами, уравнения движения (2.19) и равновесия  [c.40]

Уравнения равновесия определяются по формуле 6.18). Предварительно пользуясь формулами (2 .83) и (2 .84), найдем соотношения между контравариантными и физическими компонентами вектора массовой силы, а также тензора напряжений  [c.127]

Уравнения равновесия получим по формуле (6.18), определив соотношения между контравариантными и физическими компонентами вектора массовой силы и для тензора напряжений 1(2 .83) и (2 .84)  [c.130]

Для описания физических явлений в пьезоэлектрических телах необходимо, прежде всего, иметь уравнения состояния, т. е. зависимости, устанавливающие связь между напряжениями, деформациями и электрическим полем. При адиабатических условиях уравнения состояния для анизотропных тел с учетом пьезоэлектрического эффекта можно получить на основе термодинамических соображений с использованием, например, термодинамического потенциала (электрическая энтальпия), зависящего от деформаций е,/, и электрического поля . Компоненты напряжений ац вектора электрической индукции Д,- определяются из соотношений  [c.236]

В предыдущей главе были получены основные дифференциальные уравнения, описывающие поведение упругих сред при деформировании, а также найдены выражения для краевых значений вектора напряжений посредством компонент тензора напряжений или смещений. Для рещения конкретных физических задач необходимо теперь перейти к корректной математической постановке краевых и начальных задач теории упругости.  [c.242]

Знак минус в уравнении (2.4) отражает противоположность направлений векторов плотности теплового потока и температурного градиента. Множитель пропорциональности X является физическим параметром вещества и называется коэффициентом теплопроводности. В единицах СИ он выражается в ваттах на метр-кельвин [Вт/(м - К)].  [c.151]

Следует отметить, что феноменологический критерий разрушения формулируется для того, чтобы описать процесс разрушения в терминах независимых переменных (напряжений в уравнении (3)). Очевидно, он не может ни объяснить, ни предсказать физическую картину процесса разрушения таким образом, феноменологический критерий разрушения следует оценивать, основываясь на его способности описывать разрушение и его применимости к расчету конструкций. Как было показано в работе [76], тензорный полином неравенства (3) удовлетворяет всем этим основным требованиям. Его применение к расчету конструкций изображено на рис. 2. Для любого анизотропного композита вектор напряжений 0 в произвольной точке тела может быть определен через параметры внешнего нагружения при помощи континуального анализа (рис. 2, а). При заданном направлении вектора напряжений <5 вектор прочности можно вычислить, используя равенство в уравнении (3) (рис. 2, б). Если в какой-то точке тела вектор напряжений <5 превосходит вектор прочности т. е. нарушено неравенство в критерии разрушения (1), то может произойти разрушение.  [c.213]

Уравнения (4.76) представляют систему трех однородных уравнений относительно составляющих X, У, Z собственного вектора R. Поэтому они определяют эти составляющие лишь с точностью до их отношений. Физический смысл этого состоит в том, что однозначно определенным является только направление собственного вектора, а не его величина, так как при умножении собственного вектора на любую постоянную получается опять собственный вектор. Во всяком случае, будучи однородными, уравнения (4.76) могут иметь нетривиальное решение только тогда, когда детерминант, составленный из их коэффициентов, равен нулю. Таким образом, мы получаем уравнение  [c.137]

Здесь следует явно выделить, кроме физических параметров гироскопа А, С, Р, 2q, также и характеристические параметры прецессии, которые определяются, кроме угловых скоростей [а и v, еще и постоянным углом 6 нутации оси гироскопа. Для этой цели достаточно заметить, что на основании уравнения (72) проекция г вектора (й на направление k определяется равенством  [c.134]

Для последующих целей представляется соблазнительным связать найденную функцию с физическими понятиями, назвав Н гамильтонианом, а у у — вектором импульса — энергии, ради краткости можно называть у просто импульсом, если нет опасности какой-либо путаницы. Так как для простейших систем гамильтониан равен энергии, то удобнее назвать (67.2) уравнением энергии, ибо оно эквивалентно уравнению (67.8) ).  [c.221]

Как только установлен закон (11.5) и заданы Г(х, т), р(х, т) уравнения (11.2) становятся замкнутыми. Действительно, внося значения в (11.2), получим одно векторное уравнение для вектора дс(х, t) или три скалярных уравнения для его трех компоненг х или иК в общем случае это функциональные уравнения, и их структура полностью определяется структурой физического закона  [c.159]

Из физических соображений ясно, что в этом случае добавление и отбрасывагте векторного нуля правомерно. В самом деле, две силы, ириложенные к твердому телу и образующие векторный нуль, лишь растягивают либо сжимают тело. Они могли бы вызвать деформацию тела (если бы не предполагалось, что оно абсолютно твердо), но заведомо не влияют на его движение. Действительно, с одной стороны, движение центра инерции тела зависит лишь от главного вектора внешних сил, а с другой стороны, в уравнения Эйлера, описывающие движение тела относительно центра инерции, входят главные моменты всех внешних сил. Добавление или отбрасывание двух сил, образующих векторный нуль, не меняет ни главного вектора, ни главного момента системы сил и, следовательно, не отражается на движении тела. Поэтому множество векторов, изображающих любую совокупность сил, приложенных к твердому телу, является системой скользящих векторов, и теоремы, установленные в предыдущем параграфе, могут быть применены к системе сил, приложенных к твердому телу.  [c.360]


Если имеют место уравнения несовместности (IV. 186), то поле вектора смещений нельзя определить по полю тензора деформаций, так как условиями интегрируемости равенств (IV. 69) относительно компонент вектора смещений является выполнение условий совместности. Это физически объясняется также тем, что инородная материя, характеризуемая тензором г),й, определяет дополнительное поле некоторого тензора деформаций. В этом случае увеличивается количество функциональных степенен свободы сплошной среды. Вместо трех степеней, определяемых компонентами вектора смещений, среда получает шесть степеней свободы, определяемых кохмпонентами тензора деформаций в трехмерном пространстве. Введение четвертого измерения также подлежит отдельному рассмотрению.  [c.535]

Книга состоит из десяти глав. По охватываемому материалу I Vi главы соответствуют в целом традиционным курсам механики. Задачи остальных четырех глав связаны с тематикой спецкурса Методы интегрирования канонических систем . В отличие от лагранжева формализма гамильтонов подход позволяет в принципе найти решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. В этом аспекте канонический формализм является мощным рабочим методом, позволяющим получить приближенное решение широкого круга физических и математических задач [1]. Рассмотрены проблемы, относящиеся к интегр ированию нелинейных уравнений, преобразованиям Дарбу и Фрелиха, ВКБ-приближению, определению собственных векторов и собственных значений, гамильтоновой теории специальных функций. Дополнительные преимущества дает метод удвоения переменных, позволяющий использовать канонический формализм для решения нового класса задач алгебраических и трансцендентных уравнений, сингулярио-возму-щенных уравнений, построению Паде-аппроксимантов, обращению интегралов и т. д. Широта диапазона рассматриваемых проблем обусловлена возможностью приведения к гамильтоновой форме нелинейных систем общего вида и универсальностью используемых методов интегрирования.  [c.3]

Более общий подход к изучению законов отражения и преломления электромагнитной волны может быть осуществлен на основе уравнений Максвелла (см. 2.1). Однако уравнения Максвелла были выведены для областей пространства, в которых физические свойства среды (характеризующиеся величинами е и р) непрерывны. В оптике же часто встречаются случаи, когда эти свойства резко меняются на одной или нескольких поверхностях, поэтому необходимо вводить граничные условия. Выше мы отмечали (см. 2.1), что при отсутствии поверхностных токов и свободных поверхностных зарядов на границе раздела уравнения Максвелла должны удовлетворять гранич[1ым условиям, т. е. равенству тангенциальных составляющих векторов Е и Н. Отношение нормальных составляющих обратно пропорционально соответствующим значениям е или р, т. е. г Ет = г2Е2п, р Ящ = ргГ/гп- Так как в оптике обычно Р1 = Ц2=Г то нор.мальные составляющие вектора Н равны Я]т =//2)2.  [c.11]

Векторные уравнения равновесия стержня в декартовой системе координат. Нелинейные уравнения равновесия стержня в связанных осях удобны при решении многих конкретных задач и особенно, когда стержень нагружен следящими силами, проекции которых известны именно в связанной системе координат. В том случае, когда проекции внешних сил известны в декартовой системе координат, можно воспользоваться уравнениями равновесия в декартовых осях. Конечно, всегда можно силы, заданные в одной системе координат, записать в любой другой. Связанные оси являются более эффективными при исследовании равновесия стержня, так как физическое уравнение (1.9), устанавливающее связь между внутренним моментом и приращением вектора у., при упругих деформациях стержип в базисе е, имеет  [c.39]

Уравнение (4.3) называют уравнением Лапласа. Как видно, нестационарные процессы распространения тепла описываются уравнением теплопроводности, стационарные — уравнением Лапласа или Пуассона. Огметим, что уравнения (4.1). .. (4.3) описывают и многие другие физические процессы, а не только связанные с переносом тепла (например, диффузию). Любые функции класса т. е. непрерывные вместе с производными до второго порядка включительно, удовлетворяющие уравнению Лапласа, называются гармоническими функциями. Задачи, связанные с отысканием решений уравнения Лапласа, называют гармоническими задачами. При постановке и решении гармонических задач важное значение имеет следующее свойство гармонических функций интеграл по замкнутой поверхности от нормальной производной гармонической функции равен нулю. Пусть функция и (М) (D). Воспользуемся формулой Остроградского—Гаусса применительно к вектору grad и  [c.120]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]


Система дифференциальных уравнений (14.3) — (14.6) совместно с условиями однозначности (14.7) — (14.9) представляет собой формулировку краевой задачи конвективного теплообмена. Следует отметить, что вследствие больщих математических трудностей общее решение системы дифференциальных уравнений конвективного теплообмена получить не удается. Поэтому с целью поиска возможных путей решения поставленной задачи проанализируем структуру предполагаемой функциональной зависимости для температурного поля. На основе постановки краевой задачи можно утверждать, что поле скорости и поле давления есть результат решения уравнений гидродинамики — уравнений (14.4) — (14.6), ибо рассматривается несжимаемая жидкость, физические свойства которой не зависят от температуры. Например, значение вектора скорости в какой-либо точке рассматриваемой области определяется координатами этой точки, коэффициентами дифференциальных уравнений и параметрами, входящими в граничные условия  [c.319]

Начальные деформации Если начальное состояние реально осуществимо, то можно ввести перемещения от начального состояния к актуальному. Компоненты тензора деформаций в этом случае выражаются через компоненты вектора гс и удовлетворяют уравнениям совместности. Если же начальное состояние не может быть осуществлено в реальном физическом пространстве, то Егу не удовлетворяют уравнениям совместности. В этом случае иногда вводят некоторое промежуточное характерное состояние (начальное состояние без кавычек) с метрическим тензором так, что перемещения от состояния к состоянияю " можно ввести. Тогда  [c.310]

Преобразование Лоренца можно рассматривать как ортогональное преобразование в пространстве Минковского. В этом четырехмерном пространстве можно говорить о скалярах, векторах и тензорах любого ранга, обобщая на них (очевидным образом) те преобразования, которые мы имели для аналогичных величин в трехмерном пространстве. Так, например, мы будем говорить о четырехмерных векторах или короче о 4-векторах и т. п. Инвариантность физического закона относительно преобразований Лоренца можно сделать тогда очевидной, если выразить этот закон в ковариантной четырехмерной форме-, все члены уравнения, выражающего этот закон, должны быть при этом тензорами одного ранга. Если же закон не удовлетворяет требованиям принципа эквивалентности, то ему нельзя будет придать ковариантную форму. Следовательно, характер преобразования (в четырехмерпом пространстве) членов равенства, выражающего физический закон, дает нам критерий для решения вопроса о релятивистской правильности этого закона.  [c.219]

Расписав подробно эти четыре уравнения, мы увидим, что они полностью совпадают с уравнениями (9.4.58), задающими бесконечно малое преобразсвпние Лоренца. При этом электрический вектор Е играет роль а, а магнитный вектор Н — роль Ь. Следовательно, движение вектора скорости электрона во внешнем электромагнитном поле можно рассматривать как непрерывную последовательность бесконечно малых првобразеваний Лоренца, причем компоненты этого преобразования задаются электромагнитным тензором Интересным предельным случаем является движение электрона в поле плоской волны. Здесь Е=Н и Е Н. Мы имеем здесь физическую реализацию того частного четырехпараметрического класса преобразований Лоренца, который разбирался раньше [см. (9.4.47—9.4.55)], когда все четыре собственных значения совпадали и три главные оси сливались в одну, лежаш,ую на нуль-конусе.  [c.369]

Сделаем еще пару замечаний. Геометрически уравнение (1.7.2) показывает, что вирт.уальное перемещение лежит в плоскости, перпендикулярной к вектору (а, Ь, с), тогда как из уравнения (1.7.6) следует, что реакция связи направлена вдоль этого вектора. Физический смысл множителя тоже ясен он пропорционален величине реакции связи. Реакция связи равна %Уа + Ь" + с2.  [c.31]


Смотреть страницы где упоминается термин Уравнение физических векторов : [c.349]    [c.47]    [c.136]    [c.25]    [c.136]    [c.193]    [c.97]    [c.233]    [c.139]    [c.166]    [c.219]    [c.862]    [c.25]   
Динамическая оптимизация обтекания (2002) -- [ c.23 ]



ПОИСК



ВЕКТОРЫ Уравнения

Вектор физический

Уравнение физического



© 2025 Mash-xxl.info Реклама на сайте