Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрический вектор

Как следует из (2.31), (2.32), (2.54), колебание электрического вектора в данном случае будет происходить по следующему закону  [c.37]

Эти формулы называются формулами Френеля. Впервые они были выведены Френелем в 1823 г. на основе его теории, согласно которой свет представляет собой колебание упругой среды — эфира. Свободный от противоречий вывод формулы Френеля, как мы видели выше, основан на электромагнитной теории света, где световые колебания отождествляются с колебаниями электрического вектора. Если обратить внимание на тот факт, что действия света в основном обусловлены электрическим (световым) вектором, то подобное отождествление можно считать законным.  [c.49]


Как следует из (3.14), при ф + я1з = л/2, т. е. при tg (ф -f- г[0 = = оо, ° р = О, Е° Р = 0. Это означает, что если лучи, отраженный и преломленный, взаимно перпендикулярны, то в отраженной волне колебание электрического вектора происходит только в одном направлении — в направлении, перпендикулярном плоскости падения. Такой луч, как мы уже знаем, называется линейно- или плоскополяризованным. Угол падения естественного света, при котором отраженный луч плоскополяризован, называется углом Брюстера (более подробно об этом речь пойдет в гл. IX).  [c.49]

Изменение фазы электрического вектора на я приводит к тому, что его узлы совпадают в стоячей волне с пучностями магнитного вектора и наоборот, т. е. узлы и пучности электрического вектора сдвинуты на четверть длины волны по  [c.97]

Таким образом, направляя поляризованный свет на толстый слой фотоэмульсии с зеркальной подложкой и анализируя после проявления фотопластинки картину распределения узлов и пучностей или же их отсутствие, можно определить направление колебаний электрического вектора.  [c.229]

Эти опыты позволили определить направление колебания электрического вектора для различных конкретных случаев поляризации света. Было установлено, что в случае поляризации кристаллом турмалина электрический вектор направлен параллельно оптической оси турмалина. В случае отражения и преломления на границе двух диэлектриков направление преимущественного колебания электрического вектора соответственно совпадает с нормалью к плоскости падения и лежит в плоскости падения.  [c.229]

Чтобы убедиться в этом, направим на кристалл линейно-поляризованный свет с амплитудой Е. Угол между плоскостью колебания в падающем свете и главным сечением кристалла обозначим через а. Очевидно, что электрические векторы необыкновенного и обыкновенного лучей образуют соответственно углы а и 90 —сс с плоскостью колебания падающего линейно-поляризованного света. Тогда амплитуды колебания электрического вектора для обыкновенного ( ). и необыкновенного [Ее) лучей соответственно будут  [c.231]

Получение эллиптически-поляризованного света. Рассмотрим взаимодействие двух когерентных волн со взаимно перпендикулярными электрическими векторами, распространяющихся вдоль одной прямой. Практически такой случай можно реализовать на следующей установке (рис. 9.15) естественный свет, исходящий из точечного источника S, проходя через призму Николя, превращается в линейно-поляризованный. Пластинка П толщиной d, вырезанная из одноосного кристалла параллельно оптической оси 00, располагается так, чтобы линейно-поляризованный свет падал на нее пер-  [c.234]


В данном случае имеет место, следовательно, круговая, или циркулярная, поляризация. Направление поляризации, т. е. вращение по или против часовой стрелки электрического вектора волны, зависит от знака разности фаз Дер.  [c.236]

Различное поведение обыкновенного и необыкновенного лучей обусловлено различной ориентацией электрического вектора относительно оптической оси кристалла. Электрический вектор обыкновенного луча колеблется перпендикулярно оптической оси. Поэтому при любом направлении распространения обыкновенного луча взаимная ориентация электрического вектора и оптической оси остается неизменной, что приводит к независимости скорости распространения обыкновенного луча от направления Vx = Vy = Vq).  [c.260]

В необыкновенном луче электрический вектор расположен в главном сечении (плоскости, проходящей через оптическую ось кристалла и падающий луч). В результате этого в зависимости от направления распространения необыкновенной волны угол между электрическим вектором и оптической осью меняется от О до 90 , что приводит к изменению скорости распространения необыкновенного луча = Vg от некоторого максимального или минимального (в зависимости от знака кристалла) значения скорости Ve до значения скорости обыкновенного луча t o- Соответственно показатель преломления для необыкновенного луча в зависимости от направления распространения в кристалле принимает значения между и п . Например, для исландского шпата (отрицательный кристалл) По — 1,658 п, = 1,486.  [c.260]

Случай 4. Луч света падает нормально к поверхности кристалла, оптическая ось (на рис. 10.16 показана точкой внутри кружка) параллельна преломляющей грани и перпендикулярна плоскости падения. Так как эллипсоид и сфера должны соприкасаться вдоль оптической оси, то их сечения плоскостью чертежа представляют собой концентрические окружности разных радиусов. И в этом случае оба луча распространяются по направлению падающего луча с разными скоростями. Электрический вектор обыкновенного луча (изображен стрелкой) расположен в плоскости чертежа, в то время как электрический вектор необыкновенного луча направлен перпендикулярно плоскости чертежа (изображен точкой).  [c.263]

Принципиального изменения не произойдет, если первоначально падающий свет не является естественным, а линейно-поляризован. Единственное отличие в этом случае заключается в том, что если электрический вектор в падающем линейно-поляризованном свете колеблется в направлении наблюдения (вдоль оси у), то, поскольку оно вызывает колебание изотропной молекулы в том же направлении, а распространение вторичного излучения (рассеянный свет) вдоль оси у не станет возможным, в прибор наблюдателя вообще свет не попадает.  [c.316]

Ввиду того что согласно классической теории интенсивность света прямо пропорциональна квадрату электрического вектора, число вырванных электронов растет с увеличением интенсивности света.  [c.343]

Рассмотрим случай нормального падения плоской монохроматической и линейно-поляризованной волны на хорошо отражающую поверхность с относительным показателем преломления п> 1. Поглощением света при распространении пренебрежем. Отра)кен-ная световая волна, когерентная с падающей, будет распространяться в противоположном паправленгпг. В результате произо11дет интерференция двух когерентных волн—. падающей и отраженной. Считая, что в световых явлениях основную роль играет электрический вектор, запишем уравнение падающей световой волны, распространяющейся в положительном направлении оси х, в виде  [c.96]

Опыт Винера со стоячими световыми волнами. Первый опыт со стоячими световыми волнами был выполнен в 1890 г. Винером. Схема установки Винера представлена иа рис. 5.4. Плоское металлическое (покрытое серебряным слоем) зеркало освещалось нормально падающим параллельным пучком монохроматического света. Плоская тонкая стеклянная пластинка П, поверхность которой покрыта тонким слоем (толщиной, меньшей V20 полуволны падающего света) прозрачной фотографической эмульсии, расположена на металлическом зеркале под небольшим углом ф к его поверхности. Отраженный от зеркала 3 лучок интерферирует с падаюидим в результате получается система стоячих световых волн. Согласно теории отражения света от металлической поверхности, первый ближайший к зеркалу узел электрического вектора расположится на поверхности зеркала, так как при таком отражении именно электрический вектор меняет свою фазу на противоположную. Следовательно, первый узел магнитного вектора расположится на расстоянии в четверть длины световой волны от зеркала. Таким образом, перед зеркалом будет наблюдаться система узлов (и пуч-  [c.97]


Под действием света происходит разложение бромистого серебра, входящего в состав фотоэмульсии на пластинке П. Если действие света связано с влиянием электрического вектора, то вблизи поверхности зеркала (где располагается узел электрического вектора) почернения быть не должно и периый черный слой должен образоваться на пластинке на расстоянии в четверть длины световой волны от поверхности зеркала (в пучности электрического вектора). В дальнейшем черные (а также светлые) слои будут расположены друг от друга на расстоянии Я/2.  [c.98]

Если световое действие было бы обусловлено магнитным вектором, то наблюдалась бы противоположная картина, т. е. первый черный слой лежал бы у самой поверхности зеркала. Как показал опыт Винера (на рис. 5.4 пунктиром обозначены пучности электрического вектора), первый черный слой расположен не у поверхности зеркала, а па расстоятж Xl-i от пего. Это является экспериментальным доказательством того, что спетовое действие обусловлено именно электрическим, а не магнитным вектором.  [c.98]

Положим, что на поверхность стекла падает монохроматический свет длиной скажем красный. Отраженный от поверхности ртутного зеркала свет образует с падающим стоячие световые волны. В пучностях электрического вектора происходит максимальное разложение бромистого серебра (почернение) так, что в толще эмульсии образуются эквидистантные полупрозрачные слои серебра, расположенные друг от друга на расстояипн Хх/2. Если на обрабо-  [c.98]

В обоих случаях отраженное и падающее излучения взаимнокогерентны. Однако в первом случае при отражении света электрический вектор сохраняет неизменным свое направление, в результате чего возникает соответствующая интерференционная картина, получающаяся в результате сложения падающей и отраженной волн с последующим выделением серебра в соответствующих участках  [c.229]

Выражение (9.7) является уравнением эллипса, ориентированного произвольно относительно осей 00 и АА. Следовательно, в рассмотренном намислучае сложения двух взаимно перпендикулярных световых колебаний, распространяющихся вдоль одной прямой, получается световая волна, у которой проекция конца электрического вектора на плоскость, перпендикулярную направлению  [c.235]

Интерференция поляризованного света. До сих пор мы рассматривали взаимодействие двух световых лучей с колебаниями, происходящими во взаимно перпендикулярных направлениях, распространяющихся вдоль одной линии. Возникает естественный вопрос будет ли наблюдаться отличное от рассмотренного выи.1е явление, если оба луча являются взаимно когерентными и электрические векторы в них колеблются вдоль одной прямой Практически такой случай можно реализовать на установке (рнс. 9.21), где между двумя НИКОЛЯМИ Л/i и N-, расположена кристаллическая пластинка Я, вырезанная из одноосного кристалла параллелыю оптической оси. Параллельный пучок естестветюго спета, паправлеиный на николь Л/х, превращаясь в лине11н0- поляризованный, падает на пластинку П перпендикулярно ее поверхности. При нормальном падении пучка лучей на пластинку из одноосного кристалла, оптическая ось в которой параллельна преломляющей поверхности, возникающие  [c.240]

Пусть электрический вектор в падающем свете колеблется вдоль ОР. Разложим его на два колебания ОВ и 0D, распространяющихся с разными скоростями и, следовательно, приобретающими разность фаз. Как это нам уже известно из предыдущей главы, сложение двух взаимно перпендикулярных колебаний приводит к эллиптической поляризации, форма и направление вращения которой определяются разностью фаз слагаемых колебаний. Следовательно, разложение колебания вдоль ОР на взаимно перпендикулярные составляющие вдоль 0D п ОВ приводит к прс1зращению плоского колебания вдоль ОР в эллиптическое с нарастающей по мере прохождения в среде разностью ф аз между соответствующими составляющими (рис. 10.6, II и ///).  [c.254]

Нахождеш1е величии лучевых скоростей производится подобно скоростям по нормали. В частности, если центральное сечение эллипсоида (10.25), перпендикулярное направлению луча S, является эллипсом, то направления его главных осей указывают на два допустимых направления электрического вектора и Ё , а длины полуосей равны лучевым скоростям ws и ys.  [c.255]

Поляризация рассеянного света. Пусть имеем изотропную молекулу. Направим на нее естественный свет. Свяжем с ее центром декартову систему координат так, чтобы ось х совпала с первоначальным направлением падения света. Наблюдение будем производить на плоскости ху (рис. 13,4). Разложим электрический вектор падающего естественного света на две взаимно перпендикулярные составляющие но осям Z W у. Очевидно, что при наблюдении вдоль оси у, т. е. при величине угла рассеяния гр = 90", ввиду того что электрический вектор светового поля всегда колеблется перпендикулярно направлению наблюдения (из-за понеречности световых волн), до нас (до наблюдателя, смотрящего под углом ср = 90 ") дойдет лищь световой сигнал, обусловлегщый колебанием электрического вектора только в направлении вдоль оси 2. Колебание электрического вектора вдоль оси у не может вызвать распространение света в том же направлении (вдоль оси у).  [c.315]

Деполяризация рассеянного света. Иной результат получается в том случае, когда молекула рассеивающей среды анизотропная. Если в первом случае было безразлично, как орнеитирована молекула по отношению к направлению электрического вектора падающего света, то во втором случае оно имеет существенное значение. В зависимости от ориентации молекулы по отношению к возбуждающему полю направление индуцированного колеблющегося диполя может совпадать с направлением электрического поля света (возбуждающего поля). В качестве примера рассмотрим предельный случай — полную анизотропию, т. е. модели так называемой жесткой налочки где поляризуемость во всех направлениях, кроме одного, совпадающего с осью палочки , равна нулю (а = а,  [c.316]

Пусть на такую молекулу, поляризуемость котолой отлична от нуля, только вдоль АВ (рис. 13.5) падает линейно-поляризованный свет, причем так, что электрический вектор падающего света, колеблющийся вдоль оси Z, составляет некоторый угол -ф с осью молекулы АВ. Положим, что АВ расположена в плоскости XZ. Из-за полной анизотропии молекулы возбуждение диполя под действием светового поля возможно только вдоль АВ, другими словами, вынужденное колебание будет вызываться вектором — составляющей вектора Ё вдоль АВ. Ввиду того что составляет отличный от 90" угол с направлениями ОХ и 0Z, вдоль оси (под углом 90° к первоначальному направлению падения света) распространяются световые волны с колебаниями электрического вектора как вдоль оси Z, так и вдоль оси X, т. е. происходит деполяризация рассеяшюго под углом 90° света. Линейная поляризация рассеянного света имела бы место, если бы рассеянный свет был обусловлен только колебанием электрического вектора вдоль оси 2, т. е. Ф О, Е- у. = 0. Поэтому в качестве количественной характеристики степени деполяризации удобно пользоваться отношением интенсивности рассеянного света /(. с колебанием электрического вектора вдоль оси X к интенсивности рассеянного света с колебанием электрического вектора  [c.316]


Соответствуюший опыт для исследования действия света на фотографическую эмульсию был выполнен Винером (1890 г.). Идею Винера легко понять, вообразив следующий опыт. Представим себе слой фотографической эмульсии, налитой на зеркальную металлическую поверхность. Падающий нормально на зеркало сквозь эмульсию монохроматический (приблизительно) свет отражается от металлического зеркала и дает систему стоячих волн, причем ближайший к зеркалу (первый) узел электрического вектора расположится на поверхности зеркала, ибо в случае отражения от металла меняет фазу именно электрический вектор первый узел магнитного вектора расположится на расстоянии в четверть световой волны от нее. В толще фотографической эмульсии поле световой волны будет представлено системой узлов и пучностей напряженностей электрического и магнитного полей с соответствующими переходами от узлов к пучностям.  [c.116]

Фотографическое действие связано с воздействием электромагнитных сил на бромистое серебро, представляющее собой светочувствительную компоненту фотографической эмульсии. В соответствии со слоистым распределением в пространстве амплитуд напряженностей электрического и магнитного полей и разложение бромистого серебра должно произойти слоями максимум разложения (почернения пластинки) должен приходиться на слои, соответствующие максимальным значениям этих амплитуд. Если фотографическое действие вызывается электрическим вектором, то, очевидно, на поверхности зеркала разложения бромистого серебра не должно быть и первый черный слой должен образоваться на расстоянии четверти волны от поверхности зеркала и далее через каждые полволны. Если же определяющую роль играет магнитный вектор, то первый слой выделившегося серебра должен лежать в области первой его пучности, т. е. на поверхности зеркала.  [c.116]

Опыт Винера, позволивший впервые получить стоячие световые волны, показал также, что фотографическое действие световой волны связано с ее электрическим вектором. Позднее Друде и Пернет (1892 г.) повторили опыт Винера, заменив фотографический слой тонкой пленкой флуоресцирующего вещества, и также обнаружили, что максимум действия лежит в областях пучностей электрического вектора. Аналогичный опыт с фотоэлектрическим слоем был осуществлен Айвсом (1933 г.) и в этом случае, как и следовало ожидать, эффект вызывался электрическим вектором.  [c.117]

В соответствии с изложенным электрический вектор электромагнитной волны нередко называют световым вектором. Когда говорят, что световая волна потеряла при отражении полволны, то имеют в виду именно потерю полуволны световым (электрическим) вектором. Такая потеря имеет, например, место при отражении света, падающего нормально на границу воздух — стекло. Наоборот, на границе стекло — воздух световой (электрический) вектор не испытывает потери полуволны, и стоячие волны образуются вследствие потери полуволны магнитным вектором.  [c.118]

Полное объяснение наблюдаемым явлениям можно дать, если сделать следующие гипотезы. Во-первых, предположим, что световые волны поперечны, но в свете, исходящем из источника, нет преимущественного направления колебаний, т. е. все направления колебаний, перпендикулярные к направлению волны, представлены в падающем свете. Этим объясняется первый опыт, несмотря на допущение поперечности световых волн. Во-вторых, примем, что турмалин пропускает лишь волны, один из поперечных векторов которых, например, электрический, имеет слагающую, параллельную оси кристалла. Именно поэтому первая пластинка турмалина ослабляет исходный световой пучок в два раза. При прохождении световой волны через такой кристалл будет пропущена только часть световой энергии, соответствующая этой слагающей. Когда на кристалл падают электромагнитные световые волны со всевозможными ориентациями электрического вектора, то сквозь него пройдет лишь часть света (половина), так что за кристаллом окажутся волны, направление электрического вектора которых параллельно оси кристалла. Кристалл, таким образом, выделяет из света со всевозможными ориентациями Е ту часть, которая соответствует одному определенному направлению Е. Мы будем в дальнейшем называть свет со всевозможными ориентациями вектора Е (и, следовательно, Н) естественным светом, а свет, в котором Е (а, следовательно, и И) имеет одно-единственпое направление, — плоско-поляризованным, или линейно-поляризованным. Таким образом, турмалин превращает естественный свет в линейно-поляризованный, задерживая половину его, соответствующую той слагающей электрического вектора, которая перпендикулярна к оси кристалла.  [c.373]

Теперь становятся понятными второй опыт и роль второго кристалла турмалина. До него доходит уже поляризованный свет. В зависимости от ориентации второго турмалина из этого поляризованного света пропускается большая или меньшая часть, а именно та часть, которая соответствует компоненте электрического вектора, параллельной оси второго кристалла. Так как электрический вектор волны, прошедшей первый турмалин, имеет по предположению направление, параллельное оси первого кристалла, то амплитуда света, пропущенного вторым турмалином, будет пропорциональна osa (а — угол между осями обеих пластинок), а интенсивность пропорциональна os а, что и наблюдается на опыте.  [c.373]


Смотреть страницы где упоминается термин Электрический вектор : [c.46]    [c.48]    [c.48]    [c.204]    [c.229]    [c.229]    [c.229]    [c.235]    [c.241]    [c.241]    [c.262]    [c.288]    [c.297]    [c.308]    [c.114]    [c.117]    [c.118]   
Оптический метод исследования напряжений (1936) -- [ c.13 ]



ПОИСК



Вектор излучения магнитны электрический

Вектор напряженности электрического пол

Вектор электрического поля

Вектор электрической индукции

Вращение плоскости колебаний электрического вектора

Комплексный вектор амплитуды электрического поля

Напряженности электрического поля вектор

Ориентация электрического вектора r поляризованном свете

Поток вектора индукции электрического

Циркуляция вектора магнитной напряженности электрического поля

Циркуляция вектора напряженности электрического поля

Электрический вектор в кристалле

Электрический вектор перпендикулярный магнитному век

Электрический и магнитный векторы Герца



© 2025 Mash-xxl.info Реклама на сайте