Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптическая активность

Метод фотоупругих покрытий позволяет исследовать напряжения непосредственно на плоских поверхностях деталей. Поверхность покрывают тонкой пленкой оптически активного вещества (эпоксидные смолы) и нагружают. Под действием напряжений, возникающих в поверхностном  [c.157]

Оптический метод исследования напряжений заключается в том, что прозрачная модель из оптически активного материала (большей частью из специального органического стекла) в нагруженном состоянии просвечивается в поляризованном свете. Изображение модели на экране оказывается при этом покрыты м системой полос, форма и расположение которых определяются напряженным состоянием модели. Путем анализа, полученной картины имеется возможность найти величину возникающих напряжений.  [c.516]


ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ (ОПТИЧЕСКАЯ АКТИВНОСТЬ)  [c.294]

Вещества, способные вращать плоскость поляризации в отсутствие внешних воздействий, называются оптически активными. Оптическая активность, существующая в отсутствие какого-либо внешнего воздействия на вещество, называется естественной.  [c.295]

Определение угла вращения. Опыты с пластинками кварца разной толщины показали, что для данной длины волны величина угла поворота плоскости поляризации прямо пропорциональна длине пути луча в оптически активной среде, т. е.  [c.295]

Выразив ф р и ф, через время t и длину нуги ноли в оптически активной среде I, можно получить окончательное выражение для 1]з  [c.297]

В свою очередь, измерение кругового двулучепреломления имеет то преимущество, что позволяет исследовать оптическую активность веществ, ие имеющих полос поглощения в доступной для эксперимента области спектра.  [c.299]

Мерой оптической активности являются величины (/г., — я,,,,) для кругового двулучепреломления и (а,, — для кругового поглощения. Эти разности очень малы по сравнению с абсолютными  [c.299]

Классическая молекулярная теория оптической активности впервые была разработана М. Борном (1915 г.). Согласно теории Борна, оптическую активность можно объяснить, если предположить, что  [c.300]

Квантовомеханическая теория хотя и вносит существенные уточнения, но физическое содержание явления остается неизменным. Согласно квантовой теории, вычисление магнитной оптической активности вещества проводится обычно в три этапа  [c.305]

Опыты с аморфными веществами (сахар, камфора, патока, никотин и др-)- Опыт ставится так же, как и в предыдущем случае, но вместо кварца между поляризаторами вводят кювету с оптически активным веществом. Если обозначить длину кюветы через d, а концентрацию вещества — через с, то из опыта получается ф = a]d , где [а] — постоянная вращения для данного вещества, сильно зависящая от длины волны ([о] 1/Х ) и слабо — от температуры образца. Постоянная вращения [а] практически не зависит от агрегатного состояния вещества.  [c.154]

Френель предположил, что в оптически активном веществе скорость распространения волны с правым вращением отлична от скорости распространения волны с левым вращением, т.е. и и . В связи с этим все оптически активные вещества  [c.155]

Рассмотрим, что произойдет с линейно поляризованной волной, распространяющейся в оптически активной среде. Разложим исходную волну Е на две, поляризованные по правому и левому кругу, скорости распространения которых в данном веществе не равны. Очевидно, что время, необходимое каждой волне для прохождения одного и того же отрезка в исследуемой активной среде, окажется различным.  [c.155]


Итак, х-компоненту волны в оптически активной среде записывают в виде  [c.157]

Если попытаться ответить на этот вопрос с позиций молекулярной теории, то надо предположить, что вращение плоскости поляризации связано с асимметрией строения оптически активного вещества. В случае кристаллов главной причиной различия скоростей следует считать асимметрию внешней формы (отсутствие центра симметрии), Об этом говорит различие кристалла правого и левого кварца по внешнему виду. Для аморфных однородных тел нужно связать исследуемое явление со строением сложных молекул активной среды.  [c.158]

Вектор [Е, ft], как известно, перпендикулярен к и ft. Кроме того, множитель I говорит о сдвиге фазы второго члена в (149.6) относительно первого на /аЯ. Поэтому оказывается, что второй член в (149.6) приводит к различию фазовых скоростей (или показателей преломления) для волн с правой и левой круговой поляризациями, т. е. к естественной оптической активности (см. гл. XXX).  [c.524]

Оптическая активность 521, 607, 614 Оптический квантовый генератор — см. Лазер  [c.923]

Резонатор оптический активный 779 —, потерн 781  [c.924]

Вращение плоскости поляризации имеет важное практическое применение, например при измерении концентрации сахара в растворе. Оптическая активность служит ценным ме-  [c.71]

Удобнее и точнее исследование в монохроматическом свете, при котором на изображении возникают темные полосы пзохро.м (название в данио.м случае условное) и изоклин. Последние можно исключить, применяя круговую поляризацию. Для этого перед и за моделью устанавливают пластинки из оптически активного материала (чаще всего слюды), толщину которых выбирают так, чтобы вызвать в проходящем  [c.156]

Оптически активным материал при наличии напряжений становится анизотропным и скорость света и Су при прохождении по плоскостям Ох п Оу оказывается различной. Поэтому различными будут и времена, в течение которых свет про11дет через пластинку тол-1П,ипой й  [c.518]

При однородном растяжении пластины, изготовленной из оптически активного материала, мы никаких полос вообще не увидим. Будет происходить лишь периодическое затемнение или просветление изображения, когда возникающая деформация проходит через определепиое значение. В муаровом методе такое просветление следом за затемнением будет происходить тогда, когда задана не деформация, а перемещение одной сетки относительно другой ка]с  [c.523]

Для оценки временных сварочных напряжений используют методы оптического моделирования. Образцы изготавливают из оптически активного материала (поликарбонат или эпоксидная смола) и нагревают. В процессе нагрева регистрируют (визуально или фотокиносъемкой) характерные картины светлых и темных полос, возникающих на поверхности пластины при облучении монохроматическим источником света. По этим картинам  [c.419]

Прежде чем перейти к более подробному рассмотрению вращения плоскости поляризации иод действием магнитного поля, необходимо иодробио остановится на явлении так называемой естественной оптической активности, имеющем непосредственное отношение к нему.  [c.294]

Оптическая активность. Параллельный пучок естественного света направляется на систему, изображенную на рис. 12.6. Между скреигенныли николями и расположены светофильтр Ф (для монохроматизации света) и пластинка из кристаллического кварца К, оптическая ось которой совпадает с направлением луча. Так как вдоль оптической оси не происходит двойного лучепреломления, то при скрещенном положении николей свет не должен проходить  [c.294]

Существует лшожество кристаллов и аморфных тел, обладающих оптической активностью. В качестве примера оптически активных  [c.295]

Оптическая активность среды проявляется двояким образом в круговом двулучепреломлеиии, т. е. в разной скорости распространения света в веществе, поляризоваиного по кругу вправо и влево, и в круговом дихроизме, т. е. в разных коэффициентах поглощения для света правой и левой круговой поляризации. Оба явления отражают один и тот же физический процесс взаимодействия световой волны с веществом, поэтому, естественно, зная одну из величин, можно найти другую, На практике часто необходимо измерять оба  [c.298]


Имеющиеся в настоящее время лучшие рефрактометрические методы позволяют измерять изменение показателя преломления порядка Следовательно, их чувствительность недостаточна для измерения кругового двулучепреломления по разности показателей преломления для света, поляризованного по кругу вправо и влево. Поэтому для измерения оптической активности веществ применяют другую методику и аппаратуру — спектрополяриметр для измерения величины угла вращения плоскости поляризации и дихрограф в виде приставки к сиектрополяриметру или самостоятельного прибора для измерения кругового дихроизма.  [c.299]

Вещества, обладающие способностью вращать плоскость по- яяризации, называют оптически активными. Этот эффект наб-,г1Юдается у ряда кристаллических и аморфных тел. Начнем наше рассмотрение с анализа экспериментального материала.  [c.153]

Подобные опьггы лежат в основе метода определения концентрации оптически активного вещества при измерении угла вра-П1 ения плоскости поляризации. Метод имеет многочисленные приложения. В частности, им пользуются для нахождения концентрации сахара в производственных растворах и биологи ческих объектах (кровь, моча). Конечно, такие измерения должны проводиться в стандартных условиях опыта к = onst, t =  [c.154]

На чем базируется мсэдельное представление о природе оптической активности Дайте качественное описание пространственной дисперсии.  [c.455]

В 142 от.мечалось, что кубические кристаллы, в силу высокой степени их симметрии, должны быть оптически изотропными. Сравнительно недавно была обнаружена, однако, зависимость поглощения от поляризации света в кубическом кристалле закиси меди СиаО (Е. Ф. Гросс и А. А. Каплянскнй, 1960 г.) и анизотропия показателя преломления в кубическом кристалле кремния (Пастернак и Ведам, 1971 г.). Известны и другие явления, для описания которых обычная связь между электрической индукцией О и электрической напряженностью Е, введенная в 142, оказывается недостаточной. Наиболее важным примером этих эффектов может служить естественная оптическая активность (гиротропия) кристаллов, сравнительно легко наблюдаемая и описанная в гл. XXX.  [c.521]

В настоящее время установлено, что все вещества, активные в аморфном состоянии (расплавленные или растворенные), активны и в виде кристаллов, хотя постоянная вращения для кристаллических форм может сильно отличаться от ее величины для аморфных наоборот, существует ряд веществ, неактивных в аморфном виде и вращающих в кристаллическом состоянии. Таким образом, оптическая активность может определяться как строением молекулы, так и расположением молекул в кристаллической решетке. Действительно, исследование соответствующих кристаллов (кварц, хлорноватистокислый натрий) при помощи рентгеновских лучей показывает особенности структуры, позволяющие истолковать. их оптическую активность.  [c.614]

Первоначальные попытки молекулярного толкования оптической активности имели, по существу, формальный характер и сводились к предположению, что связи, существующие в асимметричной молекуле, обусловливают винтообразные траектории электронов, смещаемых под действием световой волны. Борн (1915 г.) показал, то, исходя из более общей модели молекулы, пригодной для истолкования явлений молекулярной анизотропии вообще, можно объяснить и вращение плоскости поляризации асимметричными молекулами, т. е. молекулами, не имеющими ни центра симметрии, ни плоскости симметрии. При этом оказалось, как мы уже упоминали в начале главы, что при решении задачи о взаимодействии световой волны и молекулы в данном случае нельзя пренебрегать эффектами, зависящими от отношения с(/А,, где с1 — размер молекулы, а X — длина волны. В. Р. Бурсиан и А. В. Тиморева существенно дополнили теорию, показав, что необходимо принять во внимание не только электрический, но и магнитный момент, возбуждаемый в асимметричной молекуле полем световой волны.  [c.618]

Среди разнообразных явлений, возникающих при взаимодействии света н вещества, важное место занимает вращение плоскости по-ляризации. Это явление наблюдается у многих веществ, получивших название естественно оптически активных. К их числу принадлежат кристаллы (кварц и др.), чистые жидкости (скипидар и др.), растворы (водный раствор сахара и др.). Особенно много оптически активных веществ среди органических соединений. Вещества, вращающие плоскость поляри-  [c.70]


Смотреть страницы где упоминается термин Оптическая активность : [c.200]    [c.156]    [c.420]    [c.296]    [c.296]    [c.296]    [c.297]    [c.298]    [c.299]    [c.300]    [c.428]    [c.156]    [c.618]    [c.70]    [c.71]   
Смотреть главы в:

Физические величины. Справочник  -> Оптическая активность

Оптические волны в кристаллах  -> Оптическая активность

Таблицы физических величин  -> Оптическая активность

Прикладная нелинейная оптика  -> Оптическая активность


Оптика (1976) -- [ c.521 , c.607 , c.614 ]

Электронные спектры и строение многоатомных молекул (1969) -- [ c.136 ]

Волны (0) -- [ c.381 , c.401 ]

Прикладная нелинейная оптика (1976) -- [ c.38 ]



ПОИСК



Амплитуда собственных дифракционных процессов в кубическом ФРК с сильной оптической активностью

Бакелит оптически активный

Вещества оптически активные

Висхомлит оптически-активный - Производство

Вращение плоскости поляризации (оптическая активность)

Временная и пространственная дисперсия. Теория естественной оптической активности

Выжигание стабильного провала при оптически активном фотопродукте. Антипровалы

Гиротропия или естественная оптическая активность

Дисперсия оптической активности

Естественная оптическая активность

Желатин оптически активный - Характеристика

Измерения дисперсии оптической активности

Комбинационное рассеяние активно иа длинноволновых оптических

Контролируемое формирование спектрального контура оптического резонанса в когерешгной активной спектроскопии

Материал оптически активный

Метод прозрачных оптически активных слоев

Модели оптически-активные плоские - Установка

Модели оптически-активные- Производство

Модели, полностью воспроизводящие конструкцию модели из оптически активного материала

Напряжения фенолформальдегидные оптически активные

Нормальные моды распространения оптически активная

Определения напряжений с помощью хрупких и оптически активных покрытий (Е. Н. Андреева)

Оптическая активная среда

Оптически активные материалы - Оптический

Оптически активные материалы - Оптический краевой эффект - Влияние времени

Оптические искажения активных элементов и термооптические характеристики лазерных сред

Оптические искажения в активных элементах и термооптические характеристики неодимовых стекол

Оптические неоднородности активных элементов АИГ

Приборы для измерения концентрации растворов оптически активных веществ

Принципы активной оптической термометрии

Проблема оптической накачки газовых активных сред

Прозрачные оптически-активные материалы

Резонатор оптический активный

Резонатор оптический активный предметный указател

Свойства оптической активности

Температурные искажения оптического пути в активных элементах твердотельных лазеров

Теория Френеля оптической активност

Термометрия активная оптическая - Методы

Фенолит оптически активный

Целлулоид оптически активный



© 2025 Mash-xxl.info Реклама на сайте