Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамические уравнения для поля

Динамические уравнения для поля. Будем исходить из уравнений Максвелла—Лоренца для пустого пространства при наличии заданных источников с плотностью тока  [c.80]

Итак, динамические уравнения для поля имеют вид  [c.81]

Все мы привыкли к тому, что основные разделы физики построены на принципах динамики. Все начинается с механики материальной точки и с законов Ньютона, которые вводят основные динамические понятия массу, скорость, импульс и силу. Теоретическая механика всего лишь оформляет элементарные законы механики в более пышные одежды дифференциальных уравнений и вариационных принципов. На базе простейших законов движения материальной точки строятся более сложные уравнения движения сплошных сред газов, жидкостей и упругих тел. Здесь впервые появляются непрерывные функции координат и времени, играющие роль полей, хотя собственно полями принято считать поля в вакууме, например электромагнитное поле. Уравнения для полей — это тоже уравнения динамики. Термодинамика только на первый взгляд кажется феноменологической наукой, а в действительности она может быть построена на базе статистической физики, представляющей собой лишь специфическую разновидность динамики. Тот факт, что физика строится на принципах динамики, проявляется и в основных физических единицах измерения (например, сантиметр, грамм, секунда), которые изначально вводятся в механике материальной точки, а затем переносятся в другие, более сложные разделы физики.  [c.15]


Перейдем теперь к выводу основных динамических уравнений для корреляционных функций изотропной турбулентности. За исключением 20 настоящей главы, мы всюду будем предполагать, что речь идет о турбулентности в несжимаемой жидкости, движение которой описывается уравнениями Навье — Стокса (1.6) (без внешних сил Xi) и уравнением неразрывности (1.5). Ограничимся пока случаем пространственных корреляционных функций, относящихся к определенному моменту времени t, и начнем с рассмотрения функций, содержащих лишь значения поля скорости (дс, )= и,(дс, t), и х, t), из(дс,.. ) .  [c.106]

Перейдем теперь к выводу динамического уравнения для характеристического функционала, вытекающего из того, что поле скорости удовлетворяет уравнениям Навье — Стокса. При этом разница между пространственным и пространственно-временным характеристическими функционалами уже будет существенной в настоящем пункте мы рассмотрим лишь случай пространственного характеристического функционала Ф[6(л ), Ь. Продифференцируем формулу (28.2 ) по  [c.618]

Выведем теперь динамическое уравнение для 2. вытекающее из того, что поля компонент скорости в(х. 1) удовлетворяют уравне-  [c.634]

В работах [16—18] теоретически исследовался нестационарный режим работы ПГС и вычислялось время нарастания колебаний в импульсных ПГС в приближении заданного поля накачки для плоских волн. В статье [19] выведены простые динамические уравнения для нестационарной параметрической генерации. В работе [20] приводятся результаты расчета на ЭВМ этих уравнений для случая накачки с гауссовым распределением интенсивности по поперечному сечению пучка. Результаты экспериментов по исследованию характеристик выходного излуче-ния импульсных ПГС содержатся в работах [21—23].  [c.253]

Теоретический анализ задачи о росте парового пузыря, учитывающий инерционные динамические эффекты (при сохранении вполне допустимых для технических задач допущений о пренебрежимо малой роли вязкости жидкости и эффектов молекулярной кинетики испарения), должен включать в себя уравнение (6.1а) для поля скорости в жидкости, уравнение Рэлея (6.7), определяющее давление пара в пузырьке р" в процессе его роста, и уравнение энергии в окружающей пузырек жидкости (6.25). При этом в последнем из перечисленных уравнений температура = Т - Т", т.е. отсчитывается от температуры пара, изменяющейся в процессе роста пузырька.  [c.259]


Наибольшие возможности и точность обеспечиваются электрическими (и электронными) моделями, позволяющими решать линейные, плоские и трехмерные статические и динамические задачи. Если написана система уравнений для этих задач, то может быть построена соответствующая модель [13], [15]. Электрическая модель выполняется со сплошным полем, воспроизводящем дифференциальные зависимости, или в виде сетки с расположенными между узлами сосредоточенными элементами (сопротивления, емкости, индуктивности), на которой воспроизводятся зависимости, записанные уравнениями в конечных разностях. Основной частью работы на модели является удовлетворение заданных граничных и начальных условий.  [c.600]

Для расчета влияния колебаний внешнего потока на осредненный по времени тепловой пограничный слой при больших значениях частоты и амплитуды колебаний может быть использован метод, применяемый для анализа динамического пограничного слоя. Пренебрегая в пульсационном уравнении нелинейными членами, получим уравнение для высокочастотных колебаний температурного поля  [c.113]

Рассмотрены ламинарные течения вязкой несжимаемой жидкости и теплообмен в каналах при произвольном малом отклонении их поверхности от цилиндрической. Приведена линейная система уравнений и граничных условий для возмущенных динамических и тепловых полей, полученная путем линеаризации полной системы уравнений Навье-Стокса около решения для развитых течений в цилиндрических трубах произвольного сечения. Для практически важного случая, когда возмущения поверхности каналов сосредоточены на участке конечной длины, показано, что интегральные динамические и тепловые характеристики каналов находятся без решения трехмерных уравнений путем перехода к эффективным двумерным краевым задачам, сложность решения которых не выше, чем для развитых течений. Дано обобщение развитой теории на течения с силовыми источниками малой эффективности. Рассмотрены приложения к плоским каналам и круглым трубам с возмущенными поверхностями.  [c.374]

Проведем линеаризацию полной системы уравнений Навье-Стокса, описывающей течение в каналах (1.1), относительно решения для развитых динамического и теплового полей. Представив V, Т и р в виде  [c.376]

Решение связанных задач динамической термоупругости для пластин сопряжено с большими математическими трудностями, ибо используются системы дифференциальных уравнений в частных производных. Поэтому полученные аналитические решения относятся к простейшим задачам с рядом упрощающих предпосылок. Численные результаты, оценивающие термоупругий эффект при колебаниях пластин в тепловом поле с условиями конвективного теплообмена на поверхностях z= hj2 отсутствуют.  [c.133]

Состояние вопроса. В настоящее время можно считать, что физические основы лазеров на динамических решетках развиты достаточно хорошо. Установлены основные закономерности и построена теория стационарной генерации для различных нелинейных сред и различных резонаторов. В большинстве случаев на основании строгого решения укороченных уравнений для комплексных амплитуд взаимодействующих волн (без использования приближения заданного поля) получены соотношения, свя-  [c.38]

Для исследования свойств обобщенных восприимчивостей в пределе а О удобно ввести матричные обозначения. Будем представлять базисные динамические переменные, внешние поля и параметры отклика в виде векторов-столбцов Р = .... .. , h uj) = ... hm uj)... и F uj) = ... Fm uj)... . Тогда восприимчивости образуют матрицы х ) = [ХтЛ )] и = [Хтп] Заменяя в уравнениях (5.1.18) динамические переменные Bj на базисные Рп и исключая с помощью (5.1.35) корреляционные функции с Рт получим матричное соотношение  [c.352]

В настоящей главе с помощью термодинамики необратимых процессов вы водятся соотношения и уравнения взаимосвязанной динамической задачи термоупругости тел с прямолинейной анизотропией, физико-механические характеристики которых —функции прямоугольных декартовых координат. Полученная взаимосвязанная система дифференциальных уравнений описывает деформацию тела, возникающую при нестационарных механических и тепловых воздействиях, а также обратный эффект — изменение его температурного поля, обусловленное деформацией. Из этой системы вытекают соответствующие уравнения несвязанных динамической и квазистатической задач термоупругости неоднородных тел, обладающих прямолинейной анизотропией, и изотропных тел, отнесенных к прямоугольной декартовой системе координат. Далее приводятся уравнения несвязанной динамической задачи термоупругости для тел, физико-механические характеристики которых —функции цилиндрических или сферических координат. Наконец, выводятся уравнения несвязанной динамической задачи термоупругости тонких неоднородных пластин, обладающих прямолинейной или цилиндрической анизотропией, и соответствующие уравнения для тонких изотропных пластин.  [c.13]


Для тепловых труб, работающих в нулевом гравитационном поле, в которых течение пара ламинарно и несжимаемо и динамическое давление пренебрежимо мало, выведенное уравнение для капиллярных ограничений (2.59) будет иметь вид  [c.67]

Получены универсальные алгебраические выражения для коэффициентов турбулентной вязкости и температуропроводности смеси в вертикальном направлении, зависящие от локальных значений таких параметров среды, как кинетическая энергия турбулентных пульсаций, динамические числа Ричардсона и Колмогорова, а также от внешнего масштаба турбулентности. Выведено алгебраическое уравнение для турбулентного числа Прандтля. Использование величины турбулентной энергии в качестве аргумента в выражениях для коэффициентов турбулентного обмена позволяет (при решении дополнительного дифференциального уравнения) приближенно учитывать неравновесность турбулентности по отношению к полям средних скоростей и температур, которая имеет место в свободных течениях в слоях с поперечным сдвигом скорости.  [c.273]

Обратная картина реализуется в случае лазеров на газах низкого давления, например Не—Ые-лазере. В этом случае обратная ширина полосы люминесценции отдельного атома близка к времени жизни фотонов в резонаторе. При этом следует использовать полную систему уравнений для матрицы плотности. Однако большинство таких лазеров работает в стационарных режимах генерации, когда автоматически выполняется условие слежения поляризации активной среды за полем. Переходные же режимы в таких лазерах кратковременны и не представляют интереса. Использование кинетических уравнений для стационарного режима в такого рода лазерах оправдано, если не интересоваться тонкими эффектами взаимодействия мод, вышедших в генерацию. Поэтому в дальнейшем остановимся на динамических процессах, протекающих лишь в твердотельных лазерах, поскольку, с одной стороны, эти процессы определяют основные характеристики такого рода лазеров, а с другой стороны, именно нестационарные режимы генерации этих лазеров позволяют получать рекордные по мощности и длительности оптические импульсы.  [c.150]

Как известно, динамическая проблема в квантовой механике не может быть сформулирована без некоторого произвольного выбора той части системы, которая подлежит рассмотрению. Полный гамильтониан системы должен быть разбит на две составляющие одна из них описывает те части физической системы, переходы в которых являются предметом рассмотрения, тогда как другая описывает их взаимодействие. Часто используемое так называемое приближение заданных внешних сил [111], когда электромагнитное поле можно считать заданной функцией и вместо совокупности описывающих его величин подставлять их средние значения, обретает в методе исключения бозонных операторов точный характер и позволяет самосогласованным образом учесть влияние поля, явно исключив полевые операторы из уравнений для величин атомной подсистемы. Таким образом, в данном подходе вывод уравнений необходимо делать для меньшего числа динамических переменных и вся процедура сводится, главным образом, к вычислению коммутаторов.  [c.69]

Операторное уравнение движения (4.86) позволяет вывести уравнения для средних значений динамических переменных поля. Уравне-  [c.163]

Идея о том, что теоретико-вероятностные моменты гидродинамических полей (1.1) должны быть признаны основными характеристиками турбулентного движения, т. е. фактически формулировка проблемы турбулент-вости в терминах моментов, была высказана впервые советскими учеными А. А. Фридманом и Л. В. Келлером. В их совместном докладе на Первом междунардном конгрессе по прикладной механике в Делфте (Л. В. Келлер и А. А. Фридман, 1924 см. также более подробное изложение в статье Л. В. Келлера, 1925) была предложена обширная программа объединения статистических и динамических методов исследования турбулентных течений, опирающегося на рассмотрение динамических эволюцяошных) уравнений для моментов (1.1). Эти динамические уравнения получаются, если составить производную по времени от момента (1.1) и подставить в нее выражения для производных по времени от отдельных гидродинамических величин, вытекающие из уравнений гидромеханики. Фридман и Келлер ограничились лишь уравнениями для вторых двухточечных моментов В и (Mi, М2), но при этом они рассмотрели сразу общий случай сжимаемой жидкости. В частном же случае вязкой несжимаемой жидкости динамические уравнения для и-точечного момента п-го порядка поля скорости ( 1 -7 М ) = Б . . . (Xi, 1,. . Хп, i ) (где теперь уже индексы /й пробегают лишь три значения 1,2 и 3, отвечающих трем компонентам скорости) при различных точках х , Хп ш различных моментах времени 1,. . ., имеют вид  [c.464]

Формулировка проблемы турбулентности для несжимаемой жидкости как задачи об определении характеристического функционала поля скорости и (х, t) принадлежит Э. Хопфу (J. Rational Me h. and Anal., 1952, 1 1, 87—123), в работе которого из уравнений Навье — Стокса было выведено динамическое уравнение для пространственного характеристического функционала Ф [0 (х)] i], имеющее вид  [c.467]

Промежуточный между заданием всех моментов (1.1) и заданием характеристического функционала (1.6) способ формулировки проблемы турбулентности, т. е. полного статистического описания случайного поля скорости и М), заключается в задании всех конечномерных распределений вероятностей для значений = и (М ) этого поля на всевозможных конечных,наборах точек М ,. . ., Мп- Такие распределения уже можно характеризовать соответствующими плотностями вероятности Рм1...м Ых,. . ., Пп)- В случае поля скорости и (х, ) в несжимаемой жидкости динамические уравнения для указанных плотностей вероятности, вытекающие из уравнений Навье — Стокса, имеют вид (А. С. Монин, 1967)  [c.468]


Советскими учеными выполнен также ряд исследований изотропной турбулентности в сжимаемой жидкости. Как уже отмечалось выше, общий случай турбулентности в сжимаемой среде впервые рассматривался еще в работах Л. В. Келлера и А. А. Фридмана (1924) и Л. В. Келлера (1925). Далее следует отметить работу И, А. Кибеля (1945), рассмотревшего случай такой турбулентности в сжимаемой жидкости, при которой распределения вероятностей пульсаций инвариантны относительно произвольных сдвигов в горизонтальном направлении и вращений или отражений относительно вертикальной оси Дс целью применения полученных результатов к турбулентности в атмосфере вблизи Земли). В этой работе были выведены динамические уравнения для вторых моментов гидродинамических полей рассматриваемой турбулентности (в предположении о пренебрежимой малости третьих моментов). Попутно здесь же были выведены общие формулы, описывающие спектральное разложение корреляционных функций произвольной турбулентности, изотропной лишь в горизонтальных плоскостях (более общие формулы того же типа, применимые при наличии более или менее произвольных условий симметрии турбулент- ности, позже рассматривались А. М. Ягломом, 1962, 1963).  [c.488]

Формула (4.11) выражает закон двух третей А, М. Обухова для температурного поля (его спектральный аналог — закон пяти третей для спектра температуры, имеющий вид равенства (к) = A Ne 3 к 1 , был позже указан С. Коренным, J. Appl. Phys., 1951, 22 4, 469—473). A. М. Яглом (1949) с помощью уравнения теплопроводности (или диффузии) получил динамическое уравнение для структурной функции (г) поля температуры (или концентрации произвольной пассивной примеси)  [c.496]

При построении гидродинамической теории локально изотропной турбулентности прежде всего надо преобразовать динамические уравнения для моментов основных гидродинамических полей к виду, содержащему лишь локальные характеристики. Сделать это совсем нелегко вследствие громоздкости общих уравнений для момгнтов. Поэтому на первых порах целесообразно прибегнуть к следующему эвристическому приему. Воспользуемся тем, что статистический режим мелкомасштабных компонент турбулентности при больших Re не зависит от особенностей макроструктуры потока, сказывающейся лишь на величине параметра е. Отсюда вытекает, что и динамические уравнения для характеристик локально изотропной турбулентности не могут зависеть от характера крупномасштабных турбулентных движений. Таким образом, нам достаточно вывести эти уравнения хотя бы для одного турбулентного течения с достаточно большим Ре, и, следовательно, мы вполне можем ограничиться рассмотрением лишь простейшего случая изотропной турбулентности в безграничном пространстве. Найдя для этого случая связи между локальными характеристиками и учтя, что в силу гипотез подобия Колмогорова указанные характеристики должны быть одинаковыми во всех турбулентных течениях с достаточно большими Ре и одинаковыми значениями е и V, мы сможем считать найденные зависимости универсальными, т. е. одними и теми же для любой локально изотропной турбулентности. После этого, разумеется, будет интересно попытаться вывести полученные соотношения сразу для общего случая (т. е. без предположения об изотропности турбулентности) такой более общий вывод мы рассмотрим в конце настоящего пункта.  [c.363]

Приведенный вывод уравнения (2 2), принадлежащий в основных чертах Монину (1959а), просто переносится и на случай уравнения (22.9) для структурной функции поля температуры. Этот вывод может быть также использован и для получения некоторых дальнейших динамических уравнений для структурных функций. Так, например, нетрудно проверить, что для тензора Е>и,ь(г, r ) = vl r)vf r)v r ) с помощью уравнения (22.14) может быть получено уравнение  [c.370]

Динамические уравнения для Ву могут быть получены из (22.31) с помощью обычного метода Фридмана — Келлера, а для Оу — с помощью осреднения уравнений (22.34), (22.35). В этих динамических уравнениях Крейчнан переходит прежде всего к приближению прямых взаимодействий . Для этого (1) вводятся нулевые приближения еЩ, 0 1, — решения динамических уравнений, линеаризованных путем отбрасывания нелинейных членов, при начальном поле скорости, имеющем гауссовское распределение вероят ностей (2) все функции в динамических уравнениях разлагаются в функ-  [c.379]

Динамические уравнения для Bij и G j в приближении прямых взаимодействий содержат нелинейные члены (происходящие от нелинейных членов уравнений гидродинамики). Они представляют собой интегралы по времени т (и по пространственным координатам) от двойных и тройных произведений неизвестных функций. При этом т встречается как после вертикальной черточки (тогда оно является временем измерения скорости жидкой частицы и соответствует интегрированию вдоль ее траектории), так и перед вертикальной черточкой (тогда оно является временем маркировки жидкой частицы , и интегрирование по т учитывает корреляцию во времени эйлеровых полей скорости). Но наличие в приближенных динамических уравнениях эйлеровых времен корреляции, зависящих от скорости переноса неоднородностей мимо фиксированных точек пространства, нарушает ту инвариантность относительно случайных галилеевских преобразований пространства-вре-мени. которой обладают точные динамические уравнения.  [c.380]

Общий метод усреднения динамических уравнений был развит в работах Фолди [81], Лэкса [82, 83] и Келлера [84]. Применение этого метода в теории упругости сред с трещинами посвящены работы Хадсона [85-87]. Суть этого метода заключается в переходе от дифференциального уравнения (41) к интегральному уравнению для поля деформаций  [c.20]

Необходимо обсудить роль динамического уравнения по отношению как к а, так ъкр. Предположим, что поле скорости определено и известно реологическое уравнение состояния для данной жидкости. Если это реологическое уравнение принадлежит к тину уравнений с девиаторным тензором напряжений, то т вычисляется на основании известной кинематики и далее из динамического уравнения (уравнение (1-7.13)) определяется Vp. Следовательно, поле давлений вычисляется с точностью до произвольной аддитивной постоянной. Если же, как это бывает наиболее часто, реологическое уравнение состояния принадлежит к типу уравнений, содержащих недевиаторные избыточные напряжения, то тензор т определяется по вычисленному т из уравнения (1-8.4), а Vp — из уравнения (1-7.13), как и ранее.  [c.47]

Для того чтобы полностью определить закон движения твердого тела, системы динамических уравнений Эйлера недостаточно. Эту систему следует допо.пнить кинематическими соотношениями ( 6.2). В целом получается система дифференциальных уравнений, исследование свойств решения которой часто сопряжено со значительными трудностями. Ниже будут рассмотрены три случая, когда для этой системы аналитически может быть построено общее решение. Это — случай Эйлера, когда момент внешних сил отсутствует, а также случаи Лагранжа-Пуассона и Ковалевской, когда движение вокруг неподвижной точки происходит под действием параллельного поля силы тяжести.  [c.466]


Базан и др. [25] разработали метод несингулярных конечных элементов, использующий сетку, движущуюся вместе с вершиной трещины. Уравнения этого метода были получены на основе принципа виртуальной работы при этом принимались во внимание конвективные члены в ускорении. Динамические коэффициенты интенсивности напряжений определялись путем сравнения перемещений на смежных узлах с аналитическим решением, полученным для поля перемещений вблизи вершины трещины [см. v в (2.7Ь)]. Этот подход, однако, имеет два серьезных ограничения (1) он применим к бесконечным телам, поверхности которых, а также граница раздела между материалами оказываются параллельными направлению роста трещины (2) он что более важно, не может быть применен к телам, имеющим конечный размер в направлении движения трещины.  [c.283]

Не всякое произвольно заданное поле скоростей удовлетворяет уравнениям гидродинамики, — другими словами, не всякое поле скоростей дает возможность определить по нему, пользуясь уравнениями гидродинамики, давление и удельный объем (или плотность) как функции координат и времени. Фридман вы-эажает этот факт следуюгцими словами не всякое кинематическое движение есть движение динамически возможное. Для того чтобы последнее имело место, между кинематическими элементами движения должны сугцествовать некоторые соотногаения. Например, в случае несжимаемой жидкости в качестве условий динамической возможности движения мы получаем известные соотногаения, нриводягцие к двум основным теоремам Гельмгольца о вихрях Обгций метод для вывода необходимых условий динамической возможности движения, указанный Фридманом, заключается в исключении давлений и удельного объема из уравнений гидромеханики, после чего и получаются нужные соотногаения между кинематическими элементами. Необходимое условие динамической возможности движения в случае сжимаемой жидкости требует ортогональности динамического градиента —  [c.144]

Трудности построения общей теории турбулентности повлекли изучение в первую очередь простейшего и, вообще говоря, очень узкого класса турбулентных движений — изотропной турбулентности. Начало исследованиям в этой области было положено Дж. Тейлором который сразу же и с успехом подверг некоторые выводы теории изотропной турбулентности экспериментальной проверке в потоке за решеткой а.эродинамической трубы. Т. Карман 299 дал затем соотношение между корреляционными функциями (вторыми моментами) изотропного поля скоростей (также подтвержденное экспериментально Тейлором) и, совместно с Л. Хоуартом, вывел основное динамическое уравнение, связывающее вторые и третьи моменты . Уравнение Кармана — Хоуарта послужило основой последующих исследований изотропной турбулентности и было также подтверждено (в 50-х годах) экспериментально. Однако это уравнение содержит две неизвестные функции и, как и все прочие уравнения турбулентного движения, требует для своего замыкания дополнительных гипотез. Такие гипотезы вводились, например, с помощью приближенных формул для спектрального переноса энергии (В. Гейзенберг,  [c.299]

Выражение (5.1.16) для статистического оператора содержит не только поля hj t), но и параметры отклика Fn t) сопряженные базисным динамическим переменным Р . Так как нас интересуют соотношения между неравновесными поправками к наблюдаемым 6 АУ и внешними полями, нужно исключить параметры отклика. С этой целью вычислим среднее значение АРш со статистическим оператором (5.1.16). Величины Тг АРт g t) и Тг АРт Qq t) сокращаются благодаря условиям самосогласо-вания (5.1.5) и мы приходим к системе уравнений для параметров отклика  [c.342]

На преобразователь подается с электрической стороны переменное напряжение такой частоты, что длина волны механических колебаний кристалла на этой частоте сравнима с длиной стержня (размер /1) или меньше ее, но много больше двух других размеров. Естественно ожидать появления механических волн сжатия—растяжения в пьезоэлектрическом стержне вдоль ребра /1 на этой частоте и, следовательно, появления инерционных напряжений в кристалле. В этом случае для определения смещений поперечных сечений стержня 2, /з придется к местным ур-ниям (3.101а) присоединить еще динамические уравнения движения стержня. Задача упрощена благодаря тому, что ребра /2 и 4 настолько малы, что в направлении их все рассматриваемые величины Л ( , а, не меняются. Так как, кроме тою, все размеры стержня (в том числе и 1 ) столь малы, что выравнивание электрического потенциала вдоль обкладок можно считать происходящим мгновенно, то напряженность поля ( не зависит от кооодинаты л , отсчитываемой вдоль ребра /1. Остальные величины будут функциями координат х 0 = 0(х), о=о(х), 1 = 1(х).  [c.80]

Это позлоляет для поля, учитывающего динамическую поляризацию плазмы, записать следующее уравнение  [c.269]

Если ось динамической симметрии перпендикулярна направлению поля тяжести, то os0 = О и написанное уравнение для нахождения скорости прецессии и имеет единственное решение  [c.91]

Во второй главе рассматриваются основные уравнения задачи термоупругости в квазистатической постановке, когда не учитываются связывающий член в уравнении теплопроводности и инерционные члены в уравнениях равновесия. Рассмотрение этого вопроса в специальной главе оправдывается тем, что квазистатическая задача термоупругости имеет наибольшее практическое значение в обычных условиях теплообмена тепловые потоки, образующиеся вследствие деформации, и динамические эффекты, обусловленные нестационарным нагревом, настолько невелики, что соответствующие члены в уравнениях могут быть отброшены и система уравнений распадается на обычное уравнение нестационарной теплопроводности и уравнения, описывающие статическую задачу о термоупругих напряжениях при заданном температурном поле, вызванном внешними источниками тепла. Здесь при изложении постановки квазистатической задачи термоупругости в перемещениях представление общего решения выбрано в форме, полученной П. Ф. Папкови-чем в 1932—1937 гг. В этой форме решение однородного уравнения для вектора перемещения содержит произвольные гармонические вектор и скаляр, а частное решение соответствующего неоднородного уравнения, отвечающего заданному температурному полю, определяется через скалярную функцию, получившую название термоупругого потенциала перемещений, которая удовлетворяет уравнению Пуассона.  [c.7]

Ковариантная теория возмущений в классической электродинамике. Существенную часть курсов классической электродинамики составляют разделы, посвященные вычислению радиационных процессов, к которым относятся излучение частиц, движущихся во внешних полях, рассеяние частиц и рассеяние электромагнитных волн. Можно заметить, что все расчеты основываются на использовании потенциала Лиенара-Вихерта, представляющего собой решение уравнения для 4-потенциала в приближении заданного 4-тока [12, 38, 153, 247, 248]. Поэтому отсутствует анализ индуцированных процессов и эффектов высших порядков. С другой стороны, гамильтонов формализм позволяет получить решение уравнений на основе теории канонических преобразований, не обращаясь непосредственно к уравнениям. В частности, в рамках канонической теории возмущений, изложенной в лекции 28, можно вычислить любую экспериментально измеряемую динамическую характеристику процесса в релятивистской ковариантной форме. Кроме упрощения всех вычислений, теория является универсальной в том смысле, что эволюция динамических переменных, обусловленная взаимодействием частиц и поля, определяется единым образом в терминах запаздывающих функций Грина. Результат вычислений, как и в фейнмановской теории возмущений в квантовой электродинамики, имеет форму ряда по степеням е , каждый член которого связан с соответствующим спонтанным или индуцированным процессом [6].  [c.380]


Смотреть страницы где упоминается термин Динамические уравнения для поля : [c.462]    [c.487]    [c.253]    [c.20]    [c.235]    [c.326]    [c.51]    [c.607]   
Смотреть главы в:

Фотоны и нелинейная оптика  -> Динамические уравнения для поля



ПОИСК



Уравнение Ван-дер-Поля

Уравнение динамическое



© 2025 Mash-xxl.info Реклама на сайте