Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка поверхностей тел вращения и их элементов

Деталь ограничена преимущественно поверхностями вращения, но отличается элементами, требующими не только токарной обработки (обточки, расточки), но и сверления, нарезания резьбы, фрезерования. С целью выявления формы и простановки размеров этих элементов на чертеже даны главное изображение с двумя местными разрезами и семь дополнительных изображений. Из них два вида и два выносных сечения (на свободное место и на продолжение следа текущей плоскости) выявляют форму шпоночных пазов, два сечения указывают количество и расположение сверленых отверстий для более ясного выявления формы и размеров кольцевых канавок даны выносные элементы / (проточка) и 11 (смазочная канавка).  [c.188]


Конструктивная связь в композиции должна соответствовать определенному материалу и технологии его обработки. Например, на рис. 3.5.2 представлена связь элементов формы, которая имеет токарный характер. Структура определяется осевой симметрией композиции и образована поверхностями вращения. Нарушение осесимметричной структуры приводит к нетектонической форме, неясности функционального сопряжения элементов.  [c.127]

Элементы вращательной пары могут состоять из любых поверхностей вращения, но практическое применение находят простые по форме и легко получаемые путем механической обработки частные виды этих поверхностей — плоскости, цилиндрические, конические и шаровые поверхности.  [c.425]

Тонким точением обрабатывают наружные и внутренние поверхности вращения. Наибольшее распространение в промышленности получило тонкое растачивание. Это объясняется тем, что литые детали из цветных сплавов и чугуна имеют сложную форму и для осуществления высокой скорости резания при их обработке легче вращать инструмент, чем деталь, особенно когда детали тяжелые и неуравновешенные. Для тонкого растачивания изготовляют специальные, преимущественно многошпиндельные, станки для вполне конкретных операций. Они отличаются высокой точностью, большими числами оборотов шпинделей — 2000—4000 об мин, мелкими подачами — от 0,02 до 0,2 мм oб, плавным гидравлическим регулированием и большой жесткостью всех элементов станка, исключающей появление вибраций.  [c.139]

В передачах трением сечения рабочих поверхностей, нормальные к оси вращения, представляют окружности. Изготовление таких поверхностей даже с высокой точностью не представляет особых трудностей. В передачах зацеплением детали снабжаются зубьями, которые и осуществляют передачу крутящего момента с ведущего колеса на ведомое. В процессе работы одни зубья выходят из зацепления, а другие входят. Даже небольшие неточности в форме зубьев и деформации элементов приводят к ускорениям, вызывающим шум и износ зубьев. Это — принципиальные недостатки передач зацеплением. Повышением точности изготовления зубчатых колес, применением зубьев специальной формы этот недостаток можно смягчить, но его нельзя устранить полностью. Поэтому, например, в станках для тонкой окончательной обработки поверхностей движение шпинделю передается, как правило, не зацеплением, а трением — с помощью ременной передачи.  [c.165]

Упрочняющее обкатывание и раскатывание. Этот способ может применяться для обработки наружных и внутренних поверхностей вращения, галтелей, плоскостей и различных фасонных поверхностей (рис. 12.9). В качестве инструмента применяют ролики или шарики, устанавливаемые в специальных приспособлениях с упругими элементами. Упругий элемент позволяет создать необходимое усилие при обработке детали. Точность обработки зависит не только от режимов обработки, но и от материала детали, ее конструкции, формы и качества поверхности, полученной на предыдущем переходе. Изменение размера поверхности для жестких деталей приведено в табл. 12.1. Шероховатость поверхности достигает значений Яа = 0,2... 0,8 мкм, при исходных значениях этого параметра-0,8... 6,3 мкм.  [c.142]


Базирование заготовок при обработке на станках. При любом способе установки вала для обработки наружных поверхностей вращения — центровыми гнездами на центрах, центральным отверстием на грибковых центрах, по наружной поверхности в патроне или в цанге — базирующим элементом является ось вращения заготовки. Этот же элемент является базирующим при обработке на шлицефрезерных и резьбофрезерных станках. При обработке шпоночных пазов, при предварительной обработке торцов черной заготовки и при зацентровке заготовки за базу принимаются наружные поверхности вращения, которыми заготовка устанавливается в призмы и ориентируется в осевом направлении одним из концов или торцом одной из ступеней.  [c.393]

Детали, полученные механической обработкой точением, фрезерование , строганием. Их изготовляют из прутков, круглых и фасонных заготовок. К таким деталям относятся валы, оси, втулки, болты, гайкн, штуцера (рис. 299). Детали этой группы ограничены поверхностью вращения с многогранными элементами. Как правило, они располагаются на чертеже горизонтально, что соответствует положению детали при ее обработке на станке.  [c.221]

Наружные поверхности вращения. Ступенчатые поверхности должны иметь минимальный перепад диаметров. При больших перепадах применяют высадку головок, фланцев или используют составные конструкции для уменьшения объема обработки резанием и расхода металла. Не рекомендуется делать кольцевые канавки на торцах, особенно со стороны стержня (рис. 63, а), так как они трудоемки в обработке, и выступы, не вписывающиеся в контур поперечного сечения детали (рис. 63, б). Элементы тел вращения унифицируют для использования одних и тех же многорезцовых наладок (рис. 63, в). Рекомендуется заменять переходные поверхности фасками (рис. 63, г). Сферические выпуклые поверхности делают со срезом перпендикулярно оси (рис. 63, д), в местах сопряжения точных поверхностей предусматривают выход инструмента (рис. 63, е).  [c.179]

В ряде случаев для правильной и однозначной оценки точности расположения отдельных элементов деталь должна быть ориентирована одновременно по двум или трем базам, образующим систему координат. Такая совокупность баз называется комплектом баз. Примером комплекта баз могут служить три взаимно перпендикулярные плоскости или ось поверхности вращения и перпендикулярная к ней плоскость. При назначении комплекта баз следует различать их последовательность в порядке убывания числа степеней свободы, отнимаемых ими у детали. Например, при трех взаимно перпендикулярных базовых плоскостях (рис. 2.2) первая А лишает деталь трех степеней свободы (установочная база) вторая В — двух (направляющая база), а третья С — одной степени свободы (опорная база) Базы или комплект баз и их последовательность должны назначаться конструктором с учетом условий базирования детали в сборочной единице. Конструкторские базы являются затем основанием для выбора технологических баз (при обработке) и измерительных баз (при измерении детали). При этом для повышения точности важно соблюдать принцип единства этих баз.  [c.360]

Базы различаются следующим образом. Конструкторская база (поверхность, ось или точка) определяет положение детали в готовом изделии. Конструкторская ось может быть не вещественным, а геометрическим понятием, например ось вращения или ось симметрии. Технологическая база (черновая, промежуточная и окончательная) определяет положение детали при обработке. Иногда технологическая база не совпадает с элементами конструкции типа поверхность , линия или точка , а совпадает с дополнительными элементами, имеющими вспомогательный характер для выполнения технологического процесса. Измерительная база — основа, относительно которой проводятся измерения. Сборочные базы определяют места сопряжения деталей в процессе сборки.  [c.191]

На рис. 65 показан однороликовый раскатник. Отличаясь простотой устройства, он позволяет получать поверхности 9—И-го класса шероховатости. Рабочим элементом в данном раскатнике является ролик 5, устанавливаемый под углом а к оси оправки / во втулке 2 или на игольчатых подшипниках. Штуцер 4 служит для подвода в зону обработки масла. Специальный винт (на рисунке не показан) удерживает ролик от осевого перемещения. Если оправке сообщить вращательное и поступательное движения, то ролик за счет трения его рабочих кромок об обрабатываемую поверхность начнет вращаться. То же самое будет наблюдаться, если вращение получит заготовка, а раскатник будет совершать только осевое перемещение. Диаметр и длина ролика выполняются строго определенными, чтобы обеспечить требуемый натяг. При этом учитываются радиус деформирующей кромки ролика, угол установки ролика относительно оси и диаметр отверстия.  [c.126]


При наличии языка геометрического описания обрабатываемой на АЛ детали появляется возможность автоматического формирования в памяти ЭВМ геометрической модели (ГМ) с обеспечением в дальнейшем разнообразной процессорной обработки. Затем по требованиям или конструктора или функциональной подсистемы САПР АЛ выдается соответствующая информация. Геометрическую модель обрабатываемой детали в памяти ЭВМ можно представить в виде структур данных. В основу структур данных ГМ входят таблицы наименований, включающие геометрические параметры основных элементов (поверхностей, линий, вершин), и таблицы операций по склеиванию элементов в фигуры и пространственные тела (типа прямоугольника, параллелепипеда, призмы, пирамиды, тела вращения, коробчатые конструкции и т. д.).  [c.107]

Погрешности сборки вызываются отклонениями размеров, формы и взаимного расположения поверхностей сопрягаемых деталей (эти отклонения влияют на зазоры и натяги, ухудшая заданные посадки, что приводит к радиальным и торцовым биениям узлов вращения и несоосности), некачественной обработкой сопрягаемых поверхностей, в результате чего возникает их неплотное прилегание, снижение контактной жесткости стыков и герметичности соединений, неточной установкой и фиксацией элементов машины в процессе ее сборки, нарушениями условий и режимов выполнения сборочных операций, геометрическими неточностями сборочного оборудования, приспособлений и инструментов, а также их недостаточной жесткостью, погрешностями настройки сборочного оборудования, температурными деформациями элементов технологической системы.  [c.176]

Формообразование ряда деталей, главным образом представляющих собой тела вращения (валы, оси, штоки, втулки и т. д,), осуществляется только в процессе механической обработки всех их поверхностей. Механическая обработка даже самого простейшего элемента детали неизбежно связана с затратой времени и средств. В индивидуальном производстве каждая операция может потребовать изменения взаимного положения обрабатываемой детали и инструмента, перемены инструмента, перевода детали на другой станок или иных мероприятий. Иногда это осуществляется достаточно просто, а в некоторых случаях приводит к значительной потере времени на переналадку. В массовом производстве, где темп работы требует минимальной затраты времени на вспомогательные операции и где переналадки нетерпимы, надобность в сверлении какого-либо отверстия может привести к необходимости установки в линию дополнительного станка специально для выполнения этой операции, либо усложнения агрегатного станка.  [c.109]

Лазерное оплавление напыленных покрытий - один из способов улучшения их свойств. Структура оплавленных лазером слоев характеризуется чрезвычайной дисперсностью, отсутствием оксидных включений и пор. Содержание легирующих элементов в оплавленных участках мало отличается от исходного. При лазерном оплавлении покрытий на оптимальном режиме, полученных напылением, можно добиться такого состояния поверхности, при котором последующая механическая обработка представляет собой отделку (например, шлифование). Поверхностное легирование - это введение в оплавленный слой практически любых легирующих элементов и даже карбидов. Продолжительность процесса измеряется секундами, в то время как при химико-термической обработке (ХТО) - часами. Регулируя мощность лазерного луча, продолжительность нагрева, скорость вращения изделия и шаг перемещения луча, можно достичь различной ширины оплавления 0,05...5 мм.  [c.315]

С целью получения компактного привода конструктивные элементы реечных домкратов ограничены размерами. Плечо 6 приводной рукоятки принимают не свыше 250 мм при высоте оси ее вращения от уровня опорной поверхности домкрата 600 мм. Передаточные числа для каждой пары зубчатых колес назначают не свыше I 4—6 количество зубьев для малых шестерен в пределах 4—5. Эти шестерни делают заодно с валами из стали марки Ст. 5, сталь 45 или сталь 50 как правило, зубчатые колеса передачи цементируют и закаливают. При такой обработке допускаемые напряжения на изгиб принимают в пределах [о ]из= = 2000—2500 кГ/см  [c.552]

Режущие и калибрующие элементы входят в число основных конструктивных элементов рабочей части резца и характеризуются рядом геометрических параметров. К таким параметрам относятся углы режущей части, радиусы закругления вершины резца и главной режущей кромки. Влияние каждого из этих параметров на процесс резания многосторонне и различно, зависит от обрабатываемого и инструментального материалов, их физико-механических свойств, размеров сечения срезаемого слоя, режимов резания, состояния системы СПИД. В каждом реальном случае обработки с целью получения нужного экономического эффекта параметры должны определяться индивидуально. Приводимые ниже значения параметров стандартных резцов рассчитаны на достаточно широкую область применения и могут быть использованы как ориентировочные значения для последующих корректировок при эксплуатации. Геометрические параметры резцов, рассматриваемые ниже, не являются углами резания, так как последние кроме геометрических параметров резца характеризуются взаимным расположением резца и обрабатываемого изделия (углы резания в статике) или траекторией взаимного перемещения резца и обрабатываемого изделия (кинематические углы резания). Значение геометрических угловых параметров резцов будут соответствовать углам резания в статике в случае, когда вершина резца рассматривается на высоте центра вращения, а корпус резца перпендикулярен обработанной поверхности. При несоблюдении этих условий углы резания будут отличаться от углов резца. Это нужно иметь в виду при рассмотрении особенностей конструкции резцов вне связи с положением относительно обрабатываемого изделия и использовать за счет корректировки положения резца относительно обрабатываемого изделия для получения более рациональных углов резания. Это одна из особенностей, присущих данной конструкции инструмента, — резцам, которая позволяет при эксплуатации стандартных резцов использовать два пути оптимизации углов резания — переточку рабочей части резца и выбор рационального положения резца относительно обрабатываемой поверхности.  [c.125]


Копиры являются элементами для разнообразных копировальных устройств и приспособлений, применяемых на металлорежущих станках при обработке фасонных поверхностей. На рис. 107 приведена схема механического устройства, применяемого для фрезерования фасонного профиля при вращении детали и копира вокруг общей оси О.  [c.148]

Описанные выше способы чистовой обработки давлением отличаются несложной кинематикой. Деформирующий элемент, обкатываясь по вращающейся заготовке, перемещается вдоль ее оси. В этих условиях деформирующий элемент пересекает выступы исходных неровностей поверхности (следы обработки) в одном направлении, которое зависит от соотношения частоты вращения заготовки и величины подачи инструмента. Обеспечиваемая при обкатывании опорная поверхность, хотя и значительно превосходит по величине опорную поверхность, получаемую, например, при точении, все же не является оптимальной для многих условий эксплуатации и не всегда приводит к заметному улучшению эксплуатационных свойств рабочих поверхностей деталей.  [c.11]

Шероховатости, получающиеся при обработке рабочих поверхностей цапфы и втулки, в процессе работы сглаживаются вследствие износа материала и, как принято говорить, цапфа прирабатывается к втулке, т. е. контакт между элементами кинематической пары становится более полным, чем в начале работы за счет уничтожения всевозможных выступов и впадин. Если считать, что материалы вала и подшипника однородны, то поверхности приработавшихся цапфы и подшипника по-прежнему остаются цилиндрическими и касание между ними происходит во всех точках в пределах дуги, опирающейся на угол охвата 2р (рис. 18.16, а). Износ цапфы и втулки в процессе работы неодинаков. При вращении вала различные точки цапфы последовательно проходят через зону контакта цапфы и вкладыша, поэтому износ материала цапфы в направлении радиуса, появившийся после некоторого времени работы, очевидно, будет одинаков. В результате износа материала втулки ось цилиндрической цапфы переместится в направлении линии действия силы Q па расстояние б на такое же расстояние переместится каждая из точек рабочей поверхности цапфы.  [c.418]

Одновременно вид основной обработки определяет технологический тип детали. Формы большинства внешних и внутренних элементов таких деталей характерны для данного технологического типа детали, также характерны для детали и изображения ее элементов. Примерами могут служить литые детали, имеющие литейные скругления и уклоны, детали типа тел вращения ( токарные детали), ограниченные преимущественно поверхностями вращения, и многие другие дегали.  [c.255]

Станок для динамической центровки определяет координаты главной центральной оси инерции ротора по главному вектору и моменту дисбаланса или их совокупности в двух плоскостях коррекции ротора. На станках для динамической центровки по найденным двум точкам на главной центральной оси инерции проводят центровку ротора. Относительно центров осуществляется дальнейшая обработка поверхностей ротора. Например, по центрам на заготовке коленчатого вала обтачивают шейки и другие элементы. Требующаяся точность совмещения осей (ГЦОИ и оси вращения) составляет микрометры и даже доли микрометров. Такой способ совмещения осей имеет высокую стоимость, сложный и применятся реже, чем обычная балансировка. Наиболее часто применяют центровку предварительно обработанной заготовки ротора для удержания начального дисбаланса в приемлимых пределах. Но существует тип роторов, конструкции которых не допускают установки корректирующих 1рузов или съема материала (например, некоторые типы вентиляторов и турбин). Для них балансировка посредством центровки является единственно возможным способом.  [c.533]

Таким образом, для операций 1-го класса, даже для наиболее простого типа наружных поверхностей обработки, каждый рабочий орган должен содержать большее число подвижных элементов и сообщающих им движение элементов привода, чем для обработки аналогичных поверхностей посредством операций 2-го класса. Рабочий орган ротора для обработки внутренних поверхностей вращения (конических, ступенчатых и т. п.) простым резцом будет содержать шпиндельную группу, аналогичную описанной, и аналогичный продольный суппорт с поперечной кареткой, взаимодействующей с неподвижными относительно суппорта плоским копиром и механизмом поперечного отвода и подвода резца или поперечной подачи со всеми необходимыми для их перемещений отдельными приводными элементами (осевыми ползунами или гидравлическими или пневматическими силовыми цилиндрами). Для обработки внутренних поверхностей, вследствие того что инструмент и суппорт занимают место заталкивателя для подачи заготовки в приспособление шпинделя, заталки-ватель должен быть либо смонтирован на поперечной каретке и иметь самостоятельное осевое движение, либо совершать осевое  [c.88]

Профильное (фасонное) фрезерование представляет собой усложненное цилиндрическое фрезерование,- Цд1Линдрическое фрезерование при прямолинейном движении подачи позволяет получать тольйо,плоские поверхности обработки, так как образующая цилиндрическая поверхность вращения (прямая или кривая) располагается на поверхности цилиндра. При профильном фрезеровании образующая поверхность вращения фрезы — многообразная кривая или сочетание прямых линий. Точки этих образующих располагаются на разных расстояниях от оси вращения фрезы. Профильные (фасонные) фрезы при прямолинейном движении подачи позволяют получать неплоские поверхности с постоянной формой сечения, нормального к движению подачи. Они применяются для образования различных продольных пазов, гребней и шипов, являющихся присоединительными элементами при сбор се деталей в изделие.  [c.170]

Выдерживание принципа постоянства баз способствует повышению точности взаимного положения поверхностей детали. Высокая степень концентричности поверхностей вращения обеспечивается, в частности, при использовании одной и той же установочной базы. Соблюдение данного принципа повышает однотипность приспособлений и схем установки, что важно при автоматизации технологического процесса. Стремление более полно выдержать этот принцип приводит к созданию на детали искусственных (вспомогательных) баз бобышек, платиков, центровых гнезд, устаноючных поясков и других элементов, а также к выполнению всей обработки за один установ на базе черных поверхностей исходной заготовки Последний случай имеет место при обработке деталей из прутка на автоматах, на многопозиционных и агрегатных станках, а также при использовании приспособлений-спутников на автоматических линиях.  [c.313]

Рабочие аоверхности последних образованы как поверхность вращения дуги окружности вокруг этой оси. Благодаря этому сопряженные поверхности ролика и чашки работают приблизительно так, как поверхности пары фрикционных конусов с общей вершиной, т. е. линейные скорости во всех точках соприкосновения поверхностей ролика и чашки зцесь разнятся незначительно. Этим обусловлен наблюдаемый в эксплуатащш малый износ фрикционных поверхностей, что является большим достоинством вариатора Светозарова. Другие достоинства его — автоматическое прижатие рабочих элементов с использованием сил инерции при резких колебаниях нагрузки, компенсация погрешностей изготовления или износа самоустановкой деталей, простота и удобство регулирования передаточного отношения в покое н на ходу, наконец, простота обработки фрикционных поверхностей.  [c.340]


КТЭ - совокупности смежных поверхностей, принадлежащих одной из сторон детали, с "привязанньас" к ней набором переходов, однородных по виду обработки (токарной, сверлильно-расточной, фрезерной и т.п.). КТЭ состоят из элементов формы, которые делятся на основные и дополнительные. К числу основных элементов формы относятся ступени отверстий и наружных поверхностей вращения различных типов, колодцы, карманы и т.п.  [c.348]

Зубохонингование применяют для чистовой отделки зубьев закаленных цилиндрических колес внешнего и внутреннего зацепления. Хонингование зубьев осуществляют на специальных станках. Закаленное обрабатываемое колесо вращается в плотном зацеплении с абразивным зубчатым хоном при угле скрещивания осей 10—15°. Поджим детали,к хону осуществляется пружиной с силой 150 — 450 Н. Зубчатое колесо, кроме вращения, совершает возвратно-поступательное движение вдоль оси. Направление вращения инструмента меняется при каждом ходе стола. Хонингование позволяет уменьшить параметр шероховатости поверхности до Яа = 0,32 мкм, удалить забоины и заусенцы размером до 0,25 мм, снизить уровень звукового давления на 2 — 4 дБ и повысить долговечность зубчатой передачи. В процессе хонингования погрешности в элементах зацепления устраняются незначительно при съеме металла порядка 0,01—0,03 мм на толщину зуба. Припуск под хонингование не оставляют. Частота вращения хона 180 — 200 об/мин, подача стола 180 — 210 мм/мин, число ходов стола четыре — шесть. Время хонингования зубчатого колеса автомобиля 30 — 60 с. Срок службы монокорундовых хонов при обработке зубчатых колес коробки передач автомобиля — 1500 — 3000 деталей. Зубчатые колеса, имеющие забоины и заусенцы перед хонингованием, целесообразно обкатывать на специальном станке или приспособлении между тремя накатниками под нагрузкой для устранения погрешностей профиля зубьев. Забоины и заусенцы на зубьях обрабатываемого колеса сокращают срок службы и вызывают преждевременную поломку зубьев хона.  [c.353]

В конструкции раскатки деформирующий элемент — шар / свободно лежит на двух шариковых подшипниках 2 и удерживается от выпадания латунной скобой 3, выполняющей роль сепараторов. Подпружинные колодки 4 обеспечивают необходимую подвижность и давление шаров на обрабатываемую поверхность. Такая конструкция раскатника позволяет обрабатывать как сквозные, так и глухие отверстия. В последнем случае необработанной остается часть отверстия (или выход в канавку) шириной до 10 мм. Для обработки раскатка вводится в отверстие детали до самого конца, затем детали придается вращение и самоходом станка раскатка выводится из отверстия, производя обработку.  [c.278]

Нажимные (устройства фрикционных передач И 13/10-13/14 элементы муфт сцепления D 13/70-13/71) F 16 Нака-ливаше (зажигание с использованием накаливания F 23 Q сетки калильные и их производство F 2 Н 1/00, 3/00) Накатка <В 23 (при изготовлении напильников или рашпилей D 73/08 инструменты токарных или расточных станков, выполняющие операцию накатки В lljlA, использование для обработки металлических поверхностей давлением Р 9/02), В 21 Н (изделий винтовой формы 3/00-3/12 резьбы 3/02, 3/08 специальных изделий 7/00-7/18 тел вращения 1/00-1/20)) Накипь (предотвращение образования в трубах или соединениях труб F 16 L 58/00-58/18 удаление В 08 В) Накладки (для рельсовых стыковых соединений Е 01 В 11/04-11/18 фрикционные для тормозов F 16 D 69/00-69/04) Наклон (клапаны или вентили, реагирующие на наклон F 16 К 17/36-17/38 приборы для измерения G 01 С 9/00 регулирование наклона приборов G 12 В 5/00) Наклонные (колосниковые решетки F 23 Н 7/00-7/18 судоподъемники Е 02 С 3/00 шайбы в передачах F 16 И 23/00-23/10) Наковальни <В 21 J (13/06 кузнечные 19/04) для переносных инструментов ударного действия В 25 D 17/06) Наконечники [В 65 D ((выпускные в затворах для 47106-47j H для выдачи содержимого небольшими дозами  [c.117]

Дробеструйная обработка применяется для увеличения усталостной прочности сложных элементов деталей (шатунов, деталей сварных соединений). В качестве оборудования для обработки дробью используют механические или пневматические дробеметы. В механических устройствах дробь выбрасывается со скоростью 60... 100 м/с за счет центробежной силы вращения барабана с лопатками. В пневматических устройствах дробь переносится струей сжатого воздуха под давлением 0,4...0,6 МПа. Применяют стальную или чугунную дробь диаметром 0,4...2 мм. Время наклепа 3... 10 мин, а его глубина < 1 мм. Распространение получили механические установки, которые обеспечивают более высокую производительность при меньшем расходе энергии и позволяют регулировать скорость полета дроби. Основной недостаток обработки дробью заштючается в опасности перенаклепа. Процесс состоит в разрыхлении поверхностного слоя, его шелушении, появлении трещин и отслаивания при превышении установленного времени обработки. Увеличение частоты вращения ротора, диаметра дроби и продолжительности дробеструйной обработки ухудшает шероховатость поверхности.  [c.540]

Сборочные чертежи должны содержать изображение предмета, размеры, обозначения чистоты поверхности и другие параметры элементов, которые обрабатываются или контролируются в процессе сборки, указания по обработке деталей в процессе сборки, выноски с указанием на них номеров позиций составных частей изделия, требования к готовому изделию и углову о спецификацию. Кроме того, на сборочном чертеже допускается помещать условное изображение посадок и ответственных сопряжений, стрелки, указывающие направление вращения валов, модули и числа зубьев зубчатых колес, контуры пограничных узлов, расстояния между осями валов и конструктивными базами.  [c.321]

Советская промышленность уже в 1975 году освоила серийный выпуск лазеров различных типов, серий ГОС и ГОР, серии ЛГ и др. Они демонстрировались на iMho-гих международных выставках, и вызывали всеобщий интерес [4, 5, 6]. Ускоренными темпами развивалась лазерная техника и в США, Франции, Англии, Италии, ФРГ. В новое научное направление вовлекалось все больше ученых и исследователей. Они принесли новые идеи, часть из которых оказалась давно забытыми старыми. Так, например, использование схемы эксперимента А. Майкельсона, который он приводил еще в npomJioM веке, привело к созданию лазерного гироскопа, а точнее, датчика угловой скорости вращения (ДУС), который отличается от роторного более высокой точностью, широким диапазоном измеряемых скоростей, практически мгновенным включением в работу (не нужно время на раскрутку ротора), малой чувствительностью к перегрузкам [7, 8]. Эти приборы стали использовать в системах навигации и стабилизации. Для решения ряда научных проблем были построены различные локаторы и дально-. меры с лазером в качестве источника излучения. Например, при проведении локации Луны локатор был размещен в Крымской обсерватории и им осуществлялось зондирование поверхности Луны. С тем, чтобы получить отраженный сигнал значительной мощности, на Луну был доставлен зеркальный отражатель, изготовленный французскими учеными и техниками [9, 10]. О высокой точности лазерной локации говорит такой эксперимент.. Он был выполнен сотрудниками обсерватории Мишель де Прованс по американскому спутнику Эксплорер-22 . Этот спутник был также оснащен зеркальной панелью, состоящей из 360 оптических элементов. В локаторе в качестве источника излучения использовался рубиновый лазер. После обработки результатов локации выяснилось, что в момент измерений наклонная дальность от локатора до спутника составляла 1571 км 992 м. Причем это Расстояние было измерено с ошибкой всего 8 м. Такой эксперимент дает ученым возможность составить более правильное представление о форме Земли и о распределении поля тяготения. И если раньше считалось, что поле тяготения имеет сферическую форму, затем стали говорить об эллиптической форме, то теперь о поле тяго-  [c.6]

На рис. 112, б приведена схема наладки цилиндра среднего давления под черновую обработку полости со стороны присоединения к выхлопной части на токарно-карусельном станке. Для базирования и закрепления применен универсальный унифицированный набор, иоиолненньп до-полните.иьными элементами оснастки. Так, совмещение сопряженных плоскостей горизонтального разъема с осью вращения шпинделя станка обеспечивается специальным устано-вом 1, базирующая цилиндрическая поверхность которого помещена в центральную полость планшайбы. Перемещение при установке цилинд-  [c.498]

Хонингование позволяет уменьшить шероховатость поверхности до Ra 0,32, удалить забоины и заусенцы размером до 0,25 мм, снизить уровень звукового давления на 2 - 4 дБ и повысить долговечность зубчатой передачи. В процессе хонингования погрешности в элементах зацепления устраняются незначительно при съеме металла порядка 0,01 - 0,03 мм на толщину зуба. Припуск под хонингование не оставляют. Частота вращения хона 180 -200 об/мин, подача стола 180 - 210 мм/мин, число ходов стола четыре - шесть. Время хонингования зубчатого колеса автомобиля 30 -60 с. Срок службы монокорундовых хонов при обработке зубчатых колес коробки передач автомобиля - 1500 - 3000 деталей.  [c.669]


Условия обработки. Твердость поверхностного слоя, глубина наклепа и шероховатость поверхности зависят от силы удара и числа ударов, приходящихся на 1 мм2 поверхносги. Эти параметры, в свою очередь, зависят от окружной скорости диска, нагяга h, размера элементов, их числа в диске, частоты вращения, величины подачи на один оборот детали и числа проходов.  [c.413]

Тонкое (алмазное) точение используют при обработке наружных цилиндрических и конических поверхностей, а также торцов заготовок. При этом достигается параметр шероховатости поверхности Ra = 0,32 -н 1,25 мкм, а точность размеров обработанных деталей соответствует 2-му классу. Тонкое точение проводят с малой подачей (0,02—0,05 мм/об), малой глубиной резания (0,05— 0,15 мм) и высокой скоростью (300—3000 м/мин). Резание с малыми сечениями стружки, а следовательно, и с малыми силами резания позволяет обтачивать заготовки с высокой точностью. Высокая точность обработки и высокие скорости резания предъявляют повышенные требования к станкам для тонкого точения главные из них высокая частота вращения шпинделя (2000—6000 об/мин) малые подачи (0,02—0,05 мм/об) высокая точность вращения шпинделя (радиальное биение не более 0,005 мм) высокая точность и большая жесткость всех элементов станка отсутствие колебания (вибраций) при большой частоте вращения шпинделя, что достигается наличием ременных передач. Обычные токарные станки не обеспечивают выполнения вышеуказанных требований, в связи с чем для тонкого точения, как правило, применяют специальные токарные станки. В качестве режущего инструмента для тонкого точения применяют резцы, оснащенные пластинами из твердых сплавов Т30К4, для обработки заготовок из стали, и пластинами из твердых сплавов ВК2 и ВКЗ — для заготовок из чугуна. Для заготовок из высокопрочных металлов используют резцы, оснащенные режущими элементами из эльбора.  [c.121]

Шлифование профиля зубьев долбяка производится методом обкатки на специальном прецизионном зубошлифовальном станке, принципиальная схема которого приведена на фиг. 135. Долбяк 3 устанавливается на оправку 2, на которой жестко закреплен эвольвентный копир. 5. При вращении оправки копир, опираясь на неподвижный упор 6, будет по направляющим передвигать центр долбяка. В результате относительно торца шлифовального круга 4 долбяк будет совершать движение обкатки (на фиг. 135 ползун — / и груз —7). Торец шлифовального круга, подобно боковой поверхности зуба рейки, будет занимать относительно загбтовки ряд последовательных положений, огибающая которых и будет эвольвентным профилем зуба долбяка. Шлифование профиля зубьев долбяка может производиться также с помощью червячного шлифовального круга. Принцип обработки основан на зацеплении эвольвентного червяка и обрабатываемого долбяка и подобен фрезерованию зубьев долбяка червячными фрезами. Этот способ нашел применение в основном при обработке мелкомодульных долбяков. Контроль долбяков производится по следующим элементам по профилю боковых поверхностей зубьев, по окружному шагу и накопленной ошибке шага, по биению основной окружности, по отклонению высоты головки зубьев от теоретического размера, соответствующего данной толщине.  [c.249]

НОСТИ на токарных станках протачивают в тех случаях, когда на этих же станках выполняют другие операции, например протачивание наружных и внутренних цилиндрических, коническ х и других поверхностей тел вращения. Поэтому неизбе.жно перед обработкой или в соответствии с технологическим процессом приходится выполнять подрезку торцов, уступов плоскости разъема корпусов, фланцевые элементы деталей, торцовые поверхности деталей и т. д.  [c.85]

Для уменьшения погрешностей, связанных с износом губок, скоба имеет две позиции измерения. В первой позиции происходит измерение величины припуска по грубой поверхности изделия и губки касаются изделия точками 12. В процессе обработки изделия скоба занимает второе положение и с изделием контактируют точки 13 твердосплавных наконечников измерительных губок. Останов скобы в первом положении обеспечивается подвижным упором 21. После измерения начального размера упор убирается с помощью электромагнита 20 и скоба перемещается до жесткого упора поршня 23 в торец гидроцилиндра 19. В приборе применены пневмо-сильфонные шкальные датчики БВ, модернизированные МАМИ и соединенные по схеме с противодавлением. Воздух от пневмосети после прохождения через отстойник, силикагельный фильтр, вторичный фильтр и стабилизатор поступает к входным соплам датчиков 26. Давление в одном из сильфопов 27 каждого датчика зависит от зазора между измерительным соплом и рычагом, во втором — является постоянным и зависит от положения винта 28 регулировки противодавления. Наружные торцы сильфонов соединены тягами 29 и подвешены на пружинном параллелограмме к корпусу датчика. Внутренние торцы закреплены неподвижно. Разность давлений в сильфонах, зависящая от изменения измеряемого размера, вызывает перемещение их наружных торцов и тяги, которая несет поводок, приводящий рычажную систему стрелки 30. К узлу сильфонов прикреплены пластинчатые пружины с контактами 31, против которых в стенке датчика закреплены неподвижные регулируемые контакты 11. Первый датчик рассчитан на двенадцать контактов, второй —на три контакта. Импульсы, возникающие при замыкании контактов датчиков, через электронное реле, включенное в электросхему 5, и пульт управления 4 дают команды на соответствующие элементы автоматического цикла, управляя гидроцилиндром 14 быстрого подвода бабки 7 шлифовального круга с помощью электромагнита 18 и золотника /7 гидроцилиндром 23 подвода прибора переключением скоростей вращения электродвигателя постоянного тока 8, приводящего в движение механизм подачи 9 механизмом, определяющим точку останова быстрого подвода 10 с помощью золотника /7 и клапанов  [c.45]


Смотреть страницы где упоминается термин Обработка поверхностей тел вращения и их элементов : [c.63]    [c.32]    [c.263]    [c.608]    [c.167]    [c.193]    [c.145]    [c.247]    [c.34]   
Смотреть главы в:

Технология производства металлорежущих инструментов Издание 2  -> Обработка поверхностей тел вращения и их элементов



ПОИСК



Вращения поверхность

Обработка поверхности

Обработка тел вращения

Элемент вращения



© 2025 Mash-xxl.info Реклама на сайте