Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элемент кинематической пары

Рис. 10. Схематическое изображение неподвижных элементов кинематических пар а) и б) — вращательная кинематическая пара, в) поступательная пара, г) высшая пара. Рис. 10. <a href="/info/286611">Схематическое изображение</a> неподвижных <a href="/info/243417">элементов кинематических</a> пар а) и б) — <a href="/info/4968">вращательная кинематическая пара</a>, в) <a href="/info/61692">поступательная пара</a>, г) высшая пара.

Рис. 12. Замена кинематической пары IV класса одним звеном, входящим в две кинематические пары V класса а) элементы кинематической пары — две кривые линии <ха и рр, б) элементы кинематической пары — прямая аа и кривая рр линии, в) элементы кинематической пары — точка а и кривая линия рр, г) элементы кинематической пары — точка а и прямая линия рр. 0 , Од — центры кривизны элементов кинематической пары IV класса, р , — радиусы кривизны этих элементов, k — помер заменяющего звена. Рис. 12. Замена <a href="/info/205">кинематической пары</a> IV класса одним звеном, входящим в две <a href="/info/205">кинематические пары</a> V класса а) элементы кинематической пары — две <a href="/info/285482">кривые линии</a> <ха и рр, б) элементы кинематической пары — прямая аа и кривая рр линии, в) элементы кинематической пары — точка а и <a href="/info/285482">кривая линия</a> рр, г) элементы кинематической пары — точка а и <a href="/info/169952">прямая линия</a> рр. 0 , Од — <a href="/info/9308">центры кривизны</a> элементов кинематической пары IV класса, р , — <a href="/info/9142">радиусы кривизны</a> этих элементов, k — помер заменяющего звена.
Выбирается масштаб чертежа и на чертеже наносятся неподвижные элементы кинематических пар механизма. По заданной обобщенной координате строится положение ведущего звена.  [c.37]

Отмечаем на чертеже положения неподвижных элементов кинематических пар шарнира А и направляющих Ау и Аг (рис. 21, б).  [c.38]

I , в относительном движении соприкасающихся элементов кинематических пар, при наличии прижимающей их силы, между этими элементами возникает трение, на преодоление которого затрачивается работа двигателя, приводящего в деи-жение механизм.  [c.96]

Кроме того, трение между элементами кинематических пар изменяет величину и положение реакции в этих парах. При скольжении элементов кинематических  [c.96]

И постановке задач настоящего параграфа в большинстве случаев не учитывается трение в кинематических парах механизма. Получающиеся от этого ошибки незначительны, так как обычно в механизмах элементы кинематических пар работают со смазкой и поэтому реакции, рассчитанные без учета трения, мало отличаются по величине и направлению от реакций, найденных с учетом трения. Трением нельзя пренебрегать при значительных величинах коэффициентов трения и при положениях механизма, в которых возможно заклинивание или самоторможение.  [c.103]

Для реакций, возникающих между элементами кинематических пар, приняты следующие обозначения реакция со стороны звена k на звено I обозначается Р/.1, реакция Hie со стороны звена I на звено k соответственно обозначается Очевидно, что  [c.104]


Определение полярных координат и О точек центрового профиля кулачка, находящегося в соприкосновении с элементом кинематической пары +V класса на толкателе. Начало координат принято совпадающим с точкой А. Ось, от которой отсчитываются углы, обозначим линией Ау , а поворот толкателя относительно кулачка — углом ф.  [c.222]

Совокупность поверхностей, линий и отдельных точек звена, по которым оно может соприкасаться с другим звеном, образуя кинематическую пару, называется элементом кинематической пары.  [c.20]

Примером низшей кинематической пары может служить пара, показанная на рис. 1.1. В этой паре звенья соприкасаются цилиндрическими поверхностями. Примеры высших пар приведе - ы на рис. 1.2 и 1.4. В паре, изображенной на рис, 1.2, звенья соприкасаются по линии. Для того чтобы элементы кинематических пар находились в постоянном соприкосновении, они должны быть замкнуты. Замыкание может быть либо геометрическим, либо силовым.  [c.27]

В каждом конкретном случае мы получаем ту или иную схему нагружения и можем определить истинные нагрузки на элементы кинематических пар с целью их расчета на прочность.  [c.275]

Кинематический анализ механизма ведется в следующем порядке сначала исследуется движение начальных звеньев, а затем выполняется кинематический анализ отдельных структурных групп в порядке их присоединения при образовании механизма. В этом случае в каждой структурной группе будут известны положения, скорости и ускорения тех элементов кинематических пар, к которым присоединяется данная группа. Кинематический анализ каждой группы Ассура должен начинаться с определения кинематических параметров внутренних пар группы. Затем определяются  [c.81]

Наносим на чертеже неподвижные элементы кинематических пар А, D и направляющую XX. Затем радиусом АВ проводим окружность — траекторию точки  [c.95]

Порядок структурной группы соответствует числу свободных геометрических элементов кинематических пар, с помощью которых  [c.28]

Элементы кинематической пары определяют условия взаимодействия звеньев между собой их относительную подвижность и ограничения, которые не позволяют точкам звеньев занимать произвольные положения в пространстве и иметь произвольные скорости.  [c.41]

Конструкция элементов кинематических пар в реальных механизмах самая разнообразная. Так, например, одноподвижная поступательная кинематическая пара, соединяющая звенья / и 2 и изо-  [c.41]

Из приведенных примеров следует, что контактирующие поверхности, линии и точки звеньев / и 2, являющиеся элементами кинематической пары, могут образовывать простые (рис.  [c.42]

Если помимо необходимых элементов кинематической пары, обусловленных требуемыми геометрическими связями, при конструировании используются дополнительные элементы, то в такой сложной кинематической паре могут появиться и з-  [c.42]

Чтобы конструкции кинематической пары были работоспособными и надежными в эксплуатации, предъявляют определенные требования к размерам, форме и относительному положению ее элементов. Обычно указывают пределы отклонений от заданных или требуемых геометрических форм и расположения поверхностей, осей или точек. Например, для плоских элементов кинематической пары (рис. 2.18, б) нормируют отклонения от плоскостности и прямолинейности отклонения от прямолинейности в плоскости, отклонения от прямолинейности линии в пространстве и отклонения от прямолинейности линии в заданном направлении. Частные виды отклонений от прямолинейности и плоскостности — выпуклость и вогнутость.  [c.43]

При разработке конструкций дополнительные элементы кинематических пар вводят для того, чтобы уменьшить давление и износ контактируемых поверхностей за счет перераспределения реактивных сил и увеличения размеров элементов кинематических пар (например, рис. 2.18,г). Особое внимание уделяется уменьшению деформаций под действием заданных сил путем установки дополнительных подшипников.  [c.44]

Это можно проиллюстрировать на примере вала /, образующего со стойкой 2 вращательную пару (рис. 2.19). Если вместо простой вращательной пары (рис. 2.19, а) вал установить на двух опорах, вводя в конструкцию дополнительные элементы (рис. 2.19,6), то прогиб вала в точке С под действием силы F может быть уменьшен. Например, для вала по схеме, изображенной на рис. 2.19,в, прогиб в точке С (при а = Ь) уменьшается в 8 раз по сравнению с консольной установкой вала (рис. 2.19,а). Число избыточных локальных связей в кинематической паре, способствуя уменьшению податливости конструкции, может оказаться вредным в случае изменения температурного режима работы, при деформации стойки, при отклонениях размеров, формы и расположения поверхностей элементов кинематической пары. В статически неопределимых системах избыточные локальные связи могут вызывать дополнительные усилия и перемещения. Поэтому число избыточных локальных связей приходится уменьшать. Так, если для вала правый подшипник выполнить сферическим плавающим, то число связей будет уменьшено (рис. 2.19,в).  [c.44]


При структурном анализе подобных конструкций необходимо выявлять эти дополнительные связи, учитывать их при составлении расчетной схемы механизма и разработке технологии изготовления деталей. Технологическое обеспечение требуемой точности изготовления разобщенных поверхностей элементов кинематической пары хотя и связано с большими затратами средств, но эти затраты окупаются за счет снижения эксплуатационных расходов и увеличения ресурса работы машин.  [c.47]

Применение конструкций с дополнительными связями между элементами кинематической пары возможно при достаточной жесткости звеньев и особенно стойки (корпуса, станины и рамы). Деформация звеньев при воздействии нагрузок не должна приводить к заклиниванию элементов кинематических пар или их повышенному изнашиванию. Механизмы, которые удовлетворяют требованиям приспособляемости к деформации звеньев, надежности, долговечности и технологичности конструкции, обладают оптимальной структурой.  [c.47]

Оптимальная схема расположения элементов кинематической пары — понятие относительное конструкция оптимальная для  [c.47]

Основное правило проектирования структурной схемы механизмов без избыточных контурных связей можно сформулировать в форме условия сборки замкнутых кинематических цепей (контуров) механизма кинематическая цепь, образующая замкнутый контур (или контуры) механизма, должна собираться без натягов даже при наличии отклонений размеров звеньев и отклонений расположения поверхностей и осей элементов кинематических пар.  [c.50]

Соотношение (2.14) является условием сборки бс < натягов присоединяемой структурной группы звеньев (непринужденная сборка) при отсутствии ограничений на относительное расположение элементов кинематических пар.  [c.54]

Вычертить схему механизма. Начинать ее надо с нанесения на чертеж й шодвижных элементов кинематических пар, т, е, элементов, принадлежащих  [c.15]

Следует иметь в виду, что определяемые излагаемыми методами реакции в ки 1ематических парах являются результирующими распределенных нагрузок. кото] ые реально возникают между элементами кинематических пар механизма. Характер распределения этих нагрузок на элементах кинематических пар зависит от конструктивного оформления этих элементов, их размеров, упругих свойств и т. 11. Это обстоятельство всегда надо иметь в виду при расчете на прочность элем(нтов кинематических пар, а также при учете работы или мощности, затрачи-ваем( й на преодоление трения в этих парах.  [c.103]

В тех задачах, где надо определить мощность, затрачиваемую на преодоление трения в кинематических парах механизма, следует поступать так 1) Вначале определить реакции в кинематических нарах, не учитывая трение между элементами кинематических пар. 2) Далее по найденным реакциям подсчитать силы или нометты трения, возникающие в этих парах, и, наконец, по определенным силам или NOMeHTaM трения подсчитать мощность, затрачиваемую на преодоление трения в кинематических парах механизма.  [c.103]

Таким образом, задача о построении планов положений звеньев механизма 11 класса сводится к последовательному пахождениво положений звеньев двухповодковых групп, у которых известными являются положения крайних элементов кинематических пар. Рассмотрим эту задачу для группы каждого вида п отдельности.  [c.76]

Между валом 1 и подшипником 2 имеется радиальный зазор. Тогда при вращении вала в направлении, указанном стрелкой, при наличии трения между валом и подшипником его цапфа будет как бы взбегать на подшипник. Предположим, что вследствие взбегания цапфы на подшипник касание элементов кинематической пары оказывается в точке Л, где реакция F параллельна силе F. На основании ранее установленных положений полная реакция F должна быть отклонена  [c.227]

Эвольпеита круга 428, 432, 433 Эвольвенты радиус кривизны 433 Эволюта 433 Эйлера формула 238 Элемент кинематической пары 20 Энергия кинематическая звоиа с переменной массой 369  [c.639]

Реальные поверхности могут иметь отклонения от цилиндричности, отклонения от круглости (овальность, огранка), отклонения профиля продольного сечения (коиусообразность, боч-кообразность, седлообраз-ность). Видами отклонений от расположения поверхностей и осей элементов кинематических пар являются отклонения от параллельно-  [c.43]

Если установка вала на подшипниках со сферическими поверхностями неприемлема, то соблюдают требуемый уровень точности путем назначения соответствую-Ш.ИХ допусков на форму и расположение поверхностей деталей. Например, на рис. 2.22 приведен чертеж двухопорного вала, на котором для шеек А и В указаны не только предельные отклонения ротора, но и допуски цилиндричности (поз. /, 5), перпендикулярности (поз. 3, 4) и соосности (поз. 2, 6). Избыточные локальные связи возникают при установке валов и осей на несколько опор (рис. 2.23, а). Сборка и эксплуатация гаких конструкций возможна, если обеспечить расположение осей подшипников А, А, А" (рис. 2.23, б) на одной прямой. Компенсация возможных отклонений от прямолинейности происходит за счет наличия зазоров между поверхностями элементов кинематической пары деформации звеньев или элементов кинематических пар (например, резиновых или резинометаллических деталей) изнашивания элементов кинематических пар при сборке, обкатке или эксплуатации. В реальных конструкциях пар происходят явления, обусловленные сочетанием этих факторов.  [c.46]


При синтезе механизма с оптимальной структурой учитывают, что стойка, которая обычно рассматривается как жесткое неподвижное звено, в реальных машинах под действием приложенных нагрузок испытывает деформации. Эти деформации могут оказывать влияние на относительное положение элементов кинематических пар не только в пределах одной кинематической пары, как это было рассмотрено в 2.6, но и в пределах замкнутых кинематических цепей механизма. При неправильном выборе структурной схемы (например, в предположении движения звеньев по схеме плоского механизма) в процессе эксплуатации возможны заклинивание ( заш,емление ) некоторых элементов кинематических пар, появление значительных дополнительных нагрузок из-за перекоса, изгиба, растяжения звеньев, чрезмерного изнашивания элементов кинематических пар, низкая надежность и частые отказы конструкции. Подобные явления могут иметь место, например, в тяжелонагруженных механизмах технологического оборудования (прессы, прокатные станы, литейные машины и т. п.), в сельскохозяйственных и транспортных машинах.  [c.50]

Если звенья механизма образуют замкнутый контур, то для сборки замыкающей кинематической пары (которой может быть теоретически лкзбая пара, а практически — та, где сборка является наиболее технологичной операцией) и получения заданного числа степеней свободы W необходимо обеспечить сближение элементов кинематических пар вдоль трех координатных осей и угловой поворот вокруг тех же трех осей. Следовательно, для замкнутого контура, не содержащего избыточных связей, условие сборки кинематических пар можно записать в виде равенства суммы подвижностей  [c.50]

При анализе реальных конструкций и их кинематических схем выявляются либо дополнительные подвижности И/ , либо избыточные структурные связи q относительно основной схемы механизма с заданным числом степеней свободы U/.i. Из дополнительных подвижностей выделяют местные подвижности звена и местные подвижности группы звеньев W,. Местную подвижность имеют [1лавающие оси, втулки и пальцы, кольца некоторых типов подшипников, блоки, шкивы, ролики в кулачковых механизмах и т. п. Особенность местной подвижности звена заключается в том (см. рис. 2.11, а), что реализация ее не вызывает перемешения остальных звеньев механизма. Местная подвижность звена имеет определенное функциональное назначение, ибо она позволяет, например, уменьшать износ элементов кинематической пары, улучшить условия смазки, повысить коэффициент полезного действия (к.п.д.), надежность, долговечность узлов машин. Общее число местных подвижностей звеньев в кинематической цепи следует выявлять на первоначальной стадии структурного анализа и синтеза механизма.  [c.53]


Смотреть страницы где упоминается термин Элемент кинематической пары : [c.8]    [c.528]    [c.569]    [c.636]    [c.94]    [c.52]    [c.123]    [c.132]    [c.245]    [c.247]    [c.243]    [c.251]   
Теория машин и механизмов (1988) -- [ c.20 ]



ПОИСК



Кинематическая «ара (пара) класс 124, — Элемент

Кинематическая пара (пара)

Кулачковые механизмы (параметры проектирование элементов высшей кинематической пары)

Определение параметров элементов высшей кинематической пары кулачковых механизмов

Пара кинематическая вращательная цилиндрическая с бочкообразными элементами

Пары кинематические

Синтез элементов плоской высшей кинематической паФормообразование элементов высшей кинематической пары реальных звеньев

Элемент кинематический

Элементы геометрические зубчатого колеса пары кинематической



© 2025 Mash-xxl.info Реклама на сайте