Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория деформаций (геометрические основы)

Г Л а в а II ТЕОРИЯ ДЕФОРМАЦИЙ (ГЕОМЕТРИЧЕСКИЕ ОСНОВЫ)  [c.65]

Относительная простота уравнений (3.1)—(3.3), составляющих основу линейной теории деформаций, обусловлена принятыми допущениями о малости деформаций и плавности изменения соответствующих функций. Вместе с тем сейчас достаточно хорошо разработан и аппарат геометрически нелинейной теории деформаций.  [c.59]

Решение. Основные зависимости теории расчета тонкостенных стержней замкнутого профиля, в основу которой положены гипотезы о недеформируемо- сти контура и о возможности деформаций сдвига в срединной поверхности (в отличие от гипотезы об отсутствии сдвигов для тонкостенных стержней открытого профиля), приведены к виду, для которого записаны расчетные формулы, аналогичные применяемым в теории открытых тонкостенных стержней. Это удалось осуществить путем введения понятия обобщенной секториальной координаты ш, через которую выражаются все основные геометрические характеристики, необходимые для расчетов стержня при стесненном кручении.  [c.239]


Учебное пособие по курсу Сопротивление материалов предназначено для студентов заочной и вечерней форм обучения всех технических специальностей. В пособии более детально, нем в других источниках, описываются простые виды деформаций с приведением конечных формул с тем, чтобы студент-заочник легче их запомнил при усвоении основ курса и умело пользовался ими при подготовке к экзаменам и в дальнейшей самостоятельной практике инженерных расчетов. Подробно, с большим количеством решенных типовых задач, рассмотрены геометрические характеристики плоских сечений, растяжение, сжатие, сдвиг, смятие, основы напряженного и деформированного состояний, теории прочности, кручение, поперечный изгиб. Вышеназванные темы можно отнести к первой части курса.  [c.3]

Изгиб и устойчивость пологих сферических оболочек, ползучесть материала которых описана нелинейными соотношениями, рассмотрен в работе [76]. Теории ползучести сформулированы с использованием законов течения и старения. Исследования проводятся на основе вариационных уравнений, учитывающих геометрическую нелинейность, в которых варьированию, кроме напряжений и перемещений (или их скоростей), подлежат также их интенсивности. Соотношения ползучести для оболочки упрощаются за счет осреднения интенсивностей деформаций и напряжений по толщине. При исследовании устойчивости применяется следующий подход. Полагается, что под действием внешнего давления в процессе ползучести оболочка изменят свою форму и вы-  [c.9]

Оболочки двоякой кривизны — один из самых сложных объектов строительной механики. Это вызвано сложными геометрическими и физическими соотношениями для оболочек. Приведем векторы напряжений о и деформаций е, построенные на основе технической теории пологих оболочек. Вектор е состоит из шести компонентов  [c.43]

Уравнения геометрически нелинейной теории тонких оболочек служат основой для изучения деформирования, потери устойчивости и закритического поведения гибких тонкостенных конструкций. В отличие от классической линейной теории малых деформаций и перемещений нелинейная теория рассматривает нагружение оболочек, сопровождаемое конечными перемещениями и поворотами материальных элементов.  [c.134]

В настоящей главе рассматриваются основы теории и примеры моделирования механических процессов применительно к задачам статического нагружения объектов при упругих и малых упруго-пластических деформациях. Обсуждаются особенности подобия и моделирования механических систем с учетом геометрической нелинейности.  [c.83]


Книга состоит из 11 глав, Гл. 1 содержит сведения из геометрически нелинейной теории многослойных анизотропных оболочек типа Тимошенко построенной на основе независимых гипотез относительно характера распределения перемещений и поперечных касательных напряжений по толщине пакета. Путем использования смешанного вариационного принципа получены уравнения равновесия, граничные условия и интегральные соотношения упругости для поперечных касательных напряжений. В случае осесимметричной деформации многослойных анизотропных оболочек вращения выведена нормальная система десяти обыкновенных дифференциальных уравнений первого порядка, которая в дальнейшем решается численно на ЭВМ.  [c.4]

В главе последовательно выводятся все уравнения линейной теории упругих тонких оболочек на основе единого подхода, свя-ванного с пренебрежением слагаемыми порядка A/J o по сравнению с единицей, что соответствует (как было установлено в работах 1122,123]) погрешности исходных допущений — гипотез Кирхгофа (см. введение, допущения kw kk). При этом замечено, что геометрическое допущение (k) нуждается в некотором уточнении, а именно следует пренебрегать сдвигами е , не вообще (что в соответствии с законом Гука привело бы к пренебрежению перерезывающими силами Гщ, Tgn), а лишь при вычислении деформаций параллельной поверхности.  [c.15]

Примерно до середины нашего века термин теория упругости практически совпадал с термином линейная теория упругости . Это н означает, что нелинейной теории тогда не существовало. Всегда было ясно, что все формулы теории упругости, строго говоря, нелинейны. Более того, уже в начале века были заложены основы современной нелинейной теории. Однако практический интерес к ней возник лишь лет сорок назад, и поддерживало его вначале все большее внедрение гибких элементов, способных работать в закритической области при упругих деформациях. Так пошла в дело геометрически нелинейная теория упругости, справедливая при малых деформациях, но допускающая большие повороты. Параллельно с ней развивалась и физически нелинейная (но геометрически линейная) теория, в которой рассматривались проблемы, где источником нелинейности являлись механические свойства материалов. Задачи теории упругости, и геометрически и физически нелинейные, до поры до времени приходилось обходить, так как отвечающие им уравнения из-за своей сложности не позволяли получать даже грубые решения.  [c.3]

Если уравнения совместности деформаций, имеющие чисто геометрический характер, могут быть составлены с любой степенью точности чисто аналитически, минуя эксперимент, а уравнения равновесия, опирающиеся на общие для всех тел и хорошо известные давно установленные экспериментальные факты, не нуждаются в опытной проверке, то последняя система — система определяющих уравнений — может быть составлена лишь на основании эксперимента, выясняющего характер сопротивления каждого тела внешним воздействиям. Поэтому мера достоверности теории полностью зависит от идейной полноценности и точности эксперимента, положенного в ее основу, и от адекватного отображения результатов этого эксперимента в математическом аппарате теории через определяющие уравнения. Отмеченным фактом обусловлено фундаментальное значение для всей механики твердого деформируемого тела тех экспериментов, которым посвящена настоящая книга.  [c.8]

Бабешко с соавторами [19, 20] на основе соотношений теории простых процессов нагружения рассмотрел неизотермические процессы повторного нагружения слоистых оболочек вращения нагрузками как того же знака, что и первоначальное, так и обратного знака с учетом вторичных пластических деформаций. Предполагалось, что при активных процесс 1х и разгрузке элементы оболочки деформируются по одним и тем же прямолинейным траекториям, материалы оболочки обладают идеальным эффектом Баушингера, а деформации ползучести пренебрежимо малы по сравнению с мгновенными упругопластическими деформациями. Исследование проводилось в рамках гипотез Кирхгофа Лява для геометрически линейной и квазистатической постановки. В качестве примера исследовано неупругое поведение сферической оболочки в процессе ее охлаждения и действия внутреннего давления. Зависимость параметров упругости от температуры не учитывалась.  [c.10]


На этой основе в предложенной теории удается учесть эво ЛЮЦИЮ поверхностей текучести и в ограниченной степени влияние деформаций на условия равновесия. Вышеупомянутая кусочно-линейная аппроксимация первых и использование линеаризованных уравнений равновесия (эффекты второго по-рядка ) для учета влияния последних представляются гипотезами, которые, несмотря нй свою ограниченность, не лишают достигнутые результаты прикладного значения. Естественно, что теоретический коэффициент запаса s (по разрушению вследствие неограниченного пластического течения) во многих случаях может оказываться бесконечным вследствие упрочнения или стабилизирующих геометрических эффектов. Следовательно, реалистическая оценка безопасности должна основываться (как это часто делается при конечных значениях s и в классической постановке) на определении в условиях приспособляемости тех значений (или хотя бы порядка величии), которые принимают локальные характеристики прежде всего наиболее существенные перемещения и пластические деформации в определяющих областях объекта. Однако эти значения зависят от истории нагружения, которая, как правило, неизвестна, за исключением лишь интервалов изменения нагрузок, Поэтому обращение к оценкам сверху представляется важным и часто неизбежным. В данной работе приведены некоторые процедуры получения верхних оценок, но их практическая ценность и относительные достоинства должны еще быть определены из опыта вычислений. Эта задача, как и дальнейшее развитие теории, подлежит рассмотрению в будущем. Связь с предшествовавшими трудами отмечается в тексте чаще всего тогда, когда из полученных новых результатов определяются частные случаи.  [c.76]

В так называемой классической теории упругости ограничиваются в соответствии с большинством практических приложений малыми (бесконечно малыми) деформациями и кладут в основу линейно-упругое поведение материалов согласно идеализированному закону Гука. Преимущество такого подхода состоит прежде всего в том, что математическое описание существенно упрощается благодаря геометрической линейности. Характерным для линейной теории упругости является линейность всех уравнений относительно искомых величин и их производных.  [c.9]

В технической теории расчета тонкостенных стержней принимается, что в процессе деформации контур поперечного сечения остается неизменным. Гипотеза о неизменяемости контура поперечного сечения, лежащая в основе теории расчета, позволяет определять геометрические характеристики сечения по отношению к размерам сечения до деформации. Указанная гипотеза, вообще говоря, не соответствует действительности, так как в процессе деформации стержня контур поперечного сечения претерпевает некоторое изменение. Однако исследование напряженно-деформированного состояния с учетом изменения контура сечения связано с большими трудностями. Кроме того, путем постановки поперечных диафрагм жесткости удается достигнуть практически почти полной неизменяемости контура поперечного сечения. Поэтому введение упрощающей расчет гипотезы о неизменяемости контура сечения вполне оправдано указанными соображениями и тем обстоятельством, что результаты расчетов на основе данной гипотезы удовлетворительно согласуются с опытными данными.  [c.321]

Если не опираться на теоретические основы процесса резания металлов, то невозможно ни спроектировать научно обоснованный технологический процесс, ни дать оценку его эффективности. Производительность и себестоимость технологического процесса определяются временем, которое затрачивается на выполнение отдельных операций, и зависит от установленных на них режимов резания. Сознательное назначение режима резания невозможно без знания основных законов производительного резания, базирующихся на процессах, происходящих в зоне деформации и на контактных поверхностях инструмента. Качество выпускаемых деталей определяется точностью их геометрических форм и шероховатостью обработанной поверхности. При определенной жесткости детали макрогеометрические погрешности формы зависят от величины и направления сил, действующих в процессе обработки. Таким образом, при точностных расчетах, базирующихся на жесткости технологической системы СПИД (станок — приспособление — инструмент — деталь), нужно уметь определять силы резания и знать, от чего зависят их величины и направления действия. Погрешности формы детали, вызванные разогреванием детали и инструмента, можно рассчитать, зная температуру детали и инструмента, для чего необходимо иметь сведения о тепловых явлениях, сопутствующих превращению срезаемого слоя в стружку. Надежность функционирования технологического процесса определяется возможными отказами по точности обработки и стойкости инструмента. Анализ возникновения отказов и установление путей их устранения возможны на основании изучения характера изнашивания инструментов и статистической теории их стойкости.  [c.4]

Приведенные выше решения задач о трещине, полученные на основе линейной теории упругости, указывают на неограниченные деформации в окрестности края трещины. Этот вывод, как было показано в предыдущем параграфе, справедлив и в тех случаях, когда линейная теория трактуется как некоторая геометрически точная, причем независимо от того, в лагранжевых или в эйлеровых переменных записываются (одни и те же по форме) линейные соотношения.  [c.82]

Так же как и для упругого колеса в контакте с твердым основанием, для пневматической шины характерно продольное проскальзывание, если окружные деформации в области контакта отличны от тех, которые имели место в ненагруженном состоянии. Согласно мембранной теории, центральная линия движущейся поверхности укорачивается в области контакта на разницу между хордой АВ и дугой АВ. На основе геометрических  [c.319]


В данной работе изложены основы теории и методы расчета муфт с упругими элементами из высокоэластичных материалов. Все прикладные вопросы прочности и жесткости муфт решены на базе современных методов теории упругости и вязкоупругости. Использован один из наиболее эффективных расчетных методов — метод конечных элементов, который дает возможность решать широкий круг задач при самых общих предположениях относительно конструктивных и реологических особенностей исследуемых изделий. Вариационная постановка задач теории упругости и сведение их к проблеме минимизации некоторых специальных функционалов потенциальной энергии деформации позволили получить достаточно точные решения при сравнительно больших деформациях, в том числе и в случае геометрически нелинейных задач.  [c.4]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

Анализ закритического поведения аэроуп-ругих систем важен, так как во многих случаях превышение критической скорости флаттера не вызывает мгновенного разрушения конструкции, а приводит к установившимся колебаниям. Характеристики этих колебаний (амплитуды, и частоты) используют для оценки времени функционирования конструкции до разрушения. Необходимо рассматривать конечные деформации и геометрическую нелинейность. Наряду с геометрическими нелинейностями для расчета критических параметров потери устойчивости и поведения конструкции при флаттере в ряде случаев важен учет неупругих свойств материалов и аэродинамических нелинейностей. Учет нелинейных факторов позволяет, в частности, обнаружить статические и динамические формы потери устойчивости при немалых возмущениях, которые могут реализоваться при меньших значениях сжимающих нагрузок и скоростей потока, чем те, которые получаются на основе линейной теории. В тонкостенных конструкциях конечные прогибы вызывают растягивающие усилия в срединной плоскости. Так, рассматривая в качестве модели обшивки бесконечно длинную пластину, лежащую на упругом основании и обтекаемую газом, приходим к уравнению  [c.523]

В 1934 г. Доннелл [7.23] обратил внимание на важность учета нелинейных членов в геометрических соотношениях. Основы геометрически нелинейной теории были заложены работой Маргерра [3.10] (1938), хотя идейные вопросы этой теории были обсуждены еше раньше в работах Навье (1833), С. П. Тимошенко (1925) и Бицено (1935) [5.1] по прощелкиванию стержней и сферического купола. Позднее Карман и Цзян [7.35]. на основе уравнений Маргерра установили, что в закри-тической стадии нагрузка с ростом деформации падает. Такой результат был весьма неожиданным и противоречил известным фактам, полученным о решениях аналогичных задач для стержней и пластин, где нагрузка с ростом деформации непрерывно возрастала.  [c.9]

В теории тонких оболочек кинематические краевые условия характеризуют деформацию боковой поверхности тела, которая полностью определяется деформацией контура срединной поверхности и связанных с ним поперечных волокон. Характеристики деформации этой линии и связалных с ней поперечных волокон можно принимать за кинематические краевые величины. В линейной теории оболочек они получены в [46, 75, 76, 85]. При малых деформациях и произвольных поворотах деформационные краевые величины для тонких оболочек выведены из начала Кастильяно в [9]. Однако их геометрический смысл в [9] не устанавливается, что вызывает определенные трудности в приложениях. Основу данного параграфа составляет работа [51].  [c.319]

В работе [67] развивается приближенный подход, который может рассматриваться как некоторое обобщение теории приспособляемости упругоидеальнопластических тел (с пределом текучести, зависящим от температуры в продолжительности ее действия) на геометрически нелинейные задачи. Принимается, что пластические деформации, возникающие в процессе приспособляемости, малы и могут не учитываться в условиях равновесия. Последние отражают лишь изменения геометрии при упругом деформировании. Ис.ходя из этого, на основе соответственно сформулированных статической и кинематической теорем определяются условия приспособляемости. Как и в задаче об учете температурной зависимости модуля упругости (см. п. 4), самоуравновешенные напряжения в те чение цикла не остаются постоянными в условиях приспособляемости именно в этом и состоит основное отличие указанных теорэм от классических.  [c.30]


В.И. Трефилов), в которых рассматриваются начальные участки кривых деформирования на основе учета процессов скорости движения и размножения дислокаций [76-77]. Однако и эти представления требуют дальнейшего уточнения [77] и не могут объяснить всех экспериментальных данных по проявлению физического предела текучести у металлов и сплавов с различными кристаллическими решетками [69,72]. Так, наличие физического предела текучести у ГЦК-металлов связывают с различными причинами геометрическим разупрочнением, деформационным разупрочнением, упрочнением поверхностного слоя, атмосферами Сузуки и др. [67]. В работе [63] отмечается, что теория Гильмана-Джонсона-Хана не учитывает гетерогенной природы поликристаллических тел и стадию микротекучести, а также не объясняет снижение предела текучести с увеличением размера зерна. Кроме того, она не предсказывает нижний предел текучести и величину деформации Людерса-Чернова [79]. Со своей стороны добавим, что эта теория не рассматривает преимущественное течение приповерхностных слоев металла на начальных стадиях деформирования и эффект динамического деформационного старения у железа и низкоуглеродистых сталей [13],  [c.171]

Применение уравнений трехмерной теории упругости к исследованию устойчивости упругих тел с учетом изменения их граничных поверхностей было предложено А.Ю. Ишлинским и Л.С. Лейбензоном [5, 6]. В трехмерной линеаризованной постановке в работах А. П. Гузя и его учеников [2, 7, 8, 9] были получены решения задач устойчивости анизотропных элементов конструкций, которые послужили основой для оценки точности различных прикладных теорий, использующихся в расчетной практике. Оказалось, что теория оболочек, в которой деформации поперечного сдвига учитываются в соответствии с гипотезой Тимошенко, позволяет находить критические нагрузки с незначительной погрешностью. Эта оценка относится и к таким интегральным характеристикам, как низшие частоты свободных колебаний оболочки из КМ. В то же время решение уравнений теории оболочек типа Тимошенко менее трудоемко, чем уравнений теории упругости, особенно в случае оболочек сложной геометрии. Такими, в частности, являются цилиндрические оболочки с волнообразной срединной поверхностью, которые при большом количестве волн принято называть гофрированными. Устойчивость последних рассматривалась в работах [10, 11] путем замены их эквивалентными ортотропными. Хотя экспериментальные данные обнаруживали более высокую эффективность гофрированных оболочек [10], приближенное дискретное решение не подтвердило возможности увеличения критических нагрузок за счет придания профилю поперечного сечения волнообразного характера. Недостатков приближенного подхода удалось избежать в работах [12-14], где устойчивость гофрированных оболочек рассматривалась с учетом изменяемости геометрических параметров по направляющей. Из проведенных авторами этих работ исследований вытекает, что при равновозможности общей и локальной форм потери  [c.105]

Первые крупные исследования по общей теории упругих оболочек созревают к началу сороковых годов. Освоению и анализу теории оболочек способствовало применение ведущими учеными страны тензорной символики для записи основных соотношений теории. Уравнения совместности деформации впервые вывел А, Л. Гольденвейзер (1939) А, И. Лурье (1940) и А. Л. Гольденвейзер (1940) ввели в теорию оболочек функции напряжения, через которые определяются усилия и моменты, тождественно удовлетворяющие уравнениям равновесия. А, Н. Кильчевский (1940) указал способы построения теории оболочек и решения ее задач на основе теоремы о взаимности. Уравнения в перемещениях геометрически нелинейной теории были опубликованы X. М. Муштари (1939) — изложенный им вариант теории является обобщением упрощенной нелинейной теории пластинок Кармана на оболочки произвольного очертания.  [c.229]

В процессе проектирования широко используются математические методы всесторонней оценки качества и работоспособности лопаток. Наряду с традиционными упрощенными методами предварительных расчетов применяются аналитические методы проектирования. Так, например, в последние годы развиваются и все шире применяются методы проектирования ступеней на основе объемных моделей течения воздуха в каналах рабочего колеса, благодаря чему появились широкоходные виды лопаток, существенно отличающиеся по форме и аэродинамическим характеристикам от существующих видов. В связи со сложностью геометрической формы пера и множества различных факторов, влияющих на его прочность, окончательная оценка прочности, деформации и вибраций лопатки производится с помощью весьма совершенных моделей метода конечных элементов. Для высокотемпературных лопаток турбин работоспособность и долговечность оцениваются на основе теории малоцикловой термической прочности с учетом ползучести материала.  [c.233]

Упругость и пластичность. Понятия напряженного и деформированного состояний, введенные в предыдущих -параграфах, носят первое — чисто статический характер, второе — геометрический, и еще ничем ие связаны с реальными свойстваш тела. Напряжения и деформации могут существовать не только в твердом теле, но и в жидкости, в газе и вообще в любой сплошной среде. В реальных твердых телах напряжения и деформации оказываются связанными между собой определенными зависимостями, которые могут быть установлены лишь из опыта. Н ежное установление этих зависимостей является основной задачей при построении теории сопротивления материалов. Различные материалы обладают различными свойствами, зависимости между напряжением и деформацией оказываются для них различными. Поэтому прн пользовании темн или иными формулами сопротивления материалов необходимо следить за тем, чтобы свойства тех тел, к которым эти формулы применяются, соответствовали основным предпосылкам, положенным в основу при их выводе.  [c.25]


Смотреть страницы где упоминается термин Теория деформаций (геометрические основы) : [c.545]    [c.464]    [c.263]    [c.149]    [c.4]    [c.68]    [c.21]   
Смотреть главы в:

Теория пластичности  -> Теория деформаций (геометрические основы)



ПОИСК



Геометрическая теория деформаций

Основы теории

Теория геометрическая

Теория деформаций



© 2025 Mash-xxl.info Реклама на сайте