Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разупрочнение деформационно

Сильное влияние на предельное значение касательного напряжения оказывают также явления деформационного упрочнения и разупрочнения. Деформационное упрочнение — процесс, в результате которого напряжение, требуемое для появления пластической деформации, увеличивается вследствие предварительного пластического деформирования. Материал становится тверже или прочнее в некотором смысле, при этом говорят, что произошел наклеп (или деформационное упрочнение). Разупрочнение — процесс, в результате которого напряжение, требуемое для пластического течения, уменьшается. Оба явления — и деформационное упрочнение, и разупрочнение — вполне объяснимы с помощью теории дислокаций.  [c.38]


При нагреве до Гтах ниже неравновесной Ас фазовые и структурные превращения происходят в том случае, если сталь перед сваркой находилась в метастабильном состоянии для этого диапазона температур. Метастабильны исходные состояния стали после холодной пластической деформации, закалки и низкого отпуска, закалки и старения. В холоднодеформированной стали развиваются процессы возврата и рекристаллизации обработки. Последний процесс приводит к разупрочнению соответствующей зоны сварного соединения. В низкоуглеродистой стали при нагреве свыше 470 К возможно деформационное старение, приводящее к снижению пластичности стали. В закаленных и низко-отпущенных сталях происходят процессы высокого отпуска, в результате чего сталь в этой зоне разупрочняется. В мартенсит-но-стареющих сталях при T zk выше их температур старения протекает процесс перестаривания, заключающийся в коагуляции интерметаллидов и приводящий к разупрочнению соответствующей зоны соединения.  [c.517]

Характерной особенностью деформирования в использованном диапазоне скоростей является слабая зависимость деформационных свойств от скорости в нулевом и первом полуциклах, т. е. при малых временах деформирования. Так, не отмечалось изменения диаграмм исходного деформирования ни при одной из исследованных температур (см. рис. 2.3.2), ширина петли в первом полуцикле, пропорциональная параметру циклического деформирования А, также практически не зависит от скорости (см. рис. 2.3.2). С другой стороны, интенсивность протекания процессов циклического упрочнения и разупрочнения может существенно зависеть от скорости деформирования.  [c.90]

Влияние повышенных температур не всегда приводит к уменьшению предела выносливости. У некоторых сталей, склонных к деформационному старению, наблюдается рост пределов выносливости с увеличением температуры в определенном интервале [25]. Важную роль при определении этого благоприятного интервала температур играет скорость деформационного старения, которая должна превышать скорость разупрочнения, протекающего при циклическом деформировании в условиях повышенной температуры значительно быстрее, чем при нормальной.  [c.106]

При изучении поведения слоистых металлических материалов в условиях циклического нагружения существенный интерес представляет исследование особенностей процессов деформационного и диффузионного взаимодействий, развивающихся в зоне сопряжения разнородных составляющих композиций. В данной работе исследование процессов упрочнения и разупрочнения переходных слоев биметалла при циклическом нагружении проводили методом измерения микротвердости рабочей части образца, разделенной на 50 участков протяженностью 100 мкм каждый, через определенное число циклов нагружения.  [c.79]


Склонность к упрочнению или разупрочнению конструкционных сплавов может выражаться и через другие параметры уравнения, описывающего диаграмму деформирования. Сплавы с большими значениями коэффициента деформационного упрочнения п упрочняются, малые — разупрочняются [29]. При 0,15 0,3 сплавы  [c.244]

С повышением температуры испытаний максимум на кривы) а—е смещается в область меньших значений деформаций, так как стадия деформационного упрочнения сокращается и динамическое разупрочнение начинается раньше.  [c.12]

Текущее значение сопротивления деформации, определяемое совместным влиянием процессов деформационного упрочнения и динамического разупрочнения, может быть представлено в самом общем виде как  [c.24]

Хотя в условиях горячей деформации процессы деформационного упрочнения и динамического разупрочнения проходят в сравнительно короткие промежутки времени, горячая деформация по реологическим признакам сходна с процессами ползучести металлов, поэтому хорошо описывается феноменологической теорией ползучести.  [c.29]

Очевидно, что коэффициент включает влияние скорости деформации как на величину деформационного упрочнения, так и на развитие процессов разупрочнения во времени. Следовательно,  [c.45]

В соответствии с феноменологическим уравнением состояния [уравнение (1.13)] изменение сопротивления деформации в процессе нагружения определяется суммой двух слагаемых одно из них характеризует повышение сопротивления вследствие изменений в структуре материала, происходящих в результате совместного протекания процессов деформационного упрочнения и разупрочнения, второе — изменение вязкой составляющей сопротивления. Уравнение состояния в виде связи напряжения, пластической деформации и ее скорости Ф(ст, еп, еп) =0 48  [c.48]

Модуль упрочнения, характеризующий изменение сопротивления трения Ts с ростом деформации, определяется историей предшествующего нагружения. Как показано в параграфе 2 настоящей главы, при постоянной скорости деформации модуль упрочнения определяется взаимодействием процессов деформационного упрочнения и разупрочнения во времени и является функцией структурного состояния материала и скорости пластического деформирования  [c.59]

С ростом скорости деформации изменяются соотношение процессов деформационного упрочнения и разупрочнения и их модули, вследствие чего изменяется эффективный модуль упрочнения М.  [c.59]

Учитывая наличие процессов деформационного упрочнения и разупрочнения и изменение температуры при пластическом деформировании по реализуемому в процессе испытания закону, истинный модуль упрочнения  [c.88]

Установлено (рис. 35), что по деформационным изменениям на различных уровнях циклического нагружения усталостный процесс образцов из нормализованной среднеуглеродистой стали в воздухе можно условно разделить на три периода /-/// (см. рис. 35, кривая 2). Например, интенсивное разупрочнение при высоких уровнях циклических нагрузок образцов из стали с перлит-ферритной структурой в / деформационном периоде усталости связано с увеличением подвижности дислокаций в тонком поверхностном слое. В этом периоде интенсивно протекают сдвиговые про-  [c.78]

Таким образом, характер разупрочнения при отжиге, как н деформационного упрочнения при прокатке, монокристаллов молибдена является резко анизотропным. При одинаковой степени деформации и условиях обработки различно ориентированные монокристаллы молибдена могут разупрочняться либо в результате возврата и полигонизации, либо в результате рекристаллизации (при этом частично и полигонизации). Возникающая при отжиге полигональная структура весьма устойчива по отношению к термическому воздействию и сохраняется при длительных отжигах вблизи температуры плавления. Эта полигональная структура не является промежуточной стадией между структурами холодной деформации и рекристаллизации, а отвечает стабильному устойчивому состоянию. При этом наиболее важным является отсутствие высокоугловых границ зерен, с появлением которых связано рекристаллизационное охрупчивание материала и другие эффекты.  [c.99]


Исследования в области механики контактных взаимодействий, химических и диссипативных процессов в поверхностных и приповерхностных слоях трущихся материалов показывают, что материал в указанных зонах в процессе трения резко изменяет свое физическое состояние, меняя механизм контактного взаимодействия. Происходят существенные изменения в суб- и микроструктуре приповерхностных микрообъемов. Изучение кинетики структурных, фазовых и диффузионных превращений, прочностных и деформационных свойств активных микрообъемов поверхности, элементарных актов деформации и разрушения, поиск численных критериев оптимального структурного состояния, оценок качества поверхности должны быть фундаментальной основой в поисках материалов и сред износостойких сопряжений. В настоящее время исследованы закономерности распределения пластической деформации по глубине поверхностных слоев металлических материалов, кинетика формирования вторичной структуры, процессы упрочнения, разупрочнения, рекристаллизации, фазовые переходы, которые, в свою очередь, зависят от внешних механических воздействий, состава, свойств трущихся материалов и окружающей среды. Важное значение в физике поверхностной прочности имеет определение связи интенсивности поверхностного разрушения при трении и величины развивающейся пластической деформации. Сложность указанной проблемы заключается в двойственности природы носителей пластической деформации. Дислокации, дисклинации и другие дефекты структуры являются концентраторами напряжений, очагами микроразрушения. В то же время движение дефектов (релаксационная микропластичность) приводит к снижению уровня напряжений концентратора, следовательно, замедляет процесс разрушения. Условия деформации при трении поверхностных слоев будут определять преобладание одного из указанных механизмов, от которого будет зависеть интенсивность поверхностного разрушения. Межатомный масштаб связан с характерным сдвигом, производимым элементарными носителями пластической деформации (дислокациями). В легированных металлических системах величина межатомного расстоя-  [c.195]

В.И. Трефилов), в которых рассматриваются начальные участки кривых деформирования на основе учета процессов скорости движения и размножения дислокаций [76-77]. Однако и эти представления требуют дальнейшего уточнения [77] и не могут объяснить всех экспериментальных данных по проявлению физического предела текучести у металлов и сплавов с различными кристаллическими решетками [69,72]. Так, наличие физического предела текучести у ГЦК-металлов связывают с различными причинами геометрическим разупрочнением, деформационным разупрочнением, упрочнением поверхностного слоя, атмосферами Сузуки и др. [67]. В работе [63] отмечается, что теория Гильмана-Джонсона-Хана не учитывает гетерогенной природы поликристаллических тел и стадию микротекучести, а также не объясняет снижение предела текучести с увеличением размера зерна. Кроме того, она не предсказывает нижний предел текучести и величину деформации Людерса-Чернова [79]. Со своей стороны добавим, что эта теория не рассматривает преимущественное течение приповерхностных слоев металла на начальных стадиях деформирования и эффект динамического деформационного старения у железа и низкоуглеродистых сталей [13],  [c.171]

Особенностью напряженно-деформированного состояния твердых прослоек является реализация в них эффекта контактного разупрочнения, заключаюш,егося в возникновении благоприятной мягкой схемы напряженного состояний и приводящей к улучшению деформационных характеристик сварного соединения (удлинения, сужения, трещиностойко-сти и др.). На основе установленных закономерностей изменения касательных напряжений на контактной плоскости твердой прослойки, при которой ее металл полностью перейдет в пластическое состояние, получены уточненные формулы.  [c.97]

При растяжении в образце одновременно происходят процессы упрочнения (деформационное) и разупрочнения (уменьшение площади поперечного сечения). Переход с равномерного характера деформирования на локализованный связан с явлением неустойчивости пластической деформации (шейкообразование). До образования шейки превалируют процессы деформационного упрочнения. Локализованная деформация характеризуется интенсивным снижением поперечного сечения и усилия деформации.  [c.283]

Склонность к циклическому разупрочнению свойственна сталям в метастабильном, в частности, низкоотпу-щенном после закалки или наклепанном (нагартованном) состояниях при Ев = к (Vb 0,54vi/k, т.е. малая протяженность стадии деформационного упрочнения). Наконец, циклически стабильные материалы характеризуются соотношением уа 0,5v[/k. При больших нагрузках, сокращающих долговечность до 10 циклов, практически все материалы ведут себя как разупрочняющиеся.  [c.388]

Эти стадии хорошо выявляются в условиях нагружения с постоянной общей (упругой и пластической) амплитудой деформации за цикл. В случае испытаггий только с постоянной амплитудой пластической деформации за цикл металлических материалов, не имеющих физического предела текучести, период зарождения усталостных трещин может сразу начинаться со стадии деформационного упрочнения или разупрочнения. Кроме того, для выяв-  [c.19]

Стадия циклического деформационного упрочнения (разупрочнения) завершается достижением линии необратимых циклических повреждений. Одним из самых ранних методов необратимой степени повреждаемости при усталости является метод построения линии, предложенной X. Френчем (1933г.), заключающийся в тренировке образца выше предела выносливости и последующем циклическом деформировании при напряжении, равном пределу выносливости (рис. 28). Если образец при перегрузке разрушается на пределе выносливости (до достижения базового числа циклов), значит он пoJ/y-чил необратимое повреждение. Если после перегрузки на уровень предела выносливости образец простоял базовое число циклов, то он не поврежден и на нем ставится стрелка вверх. Границей необратимо поврежденных образцов и образцов, которые после перегрузки достигают базы испытания, и является линия необратимых повреждений.  [c.48]


По Коттреллу и Стоксу, если кристалл алюминия, достаточно сильно продеформированный на стадии II при низкой температуре (например, 90 К), повторно деформировать при значительно более высокой температуре (например, 293 К), то наступает частичное снятие низкотемпературного упрочнения с появлением резкого предела текучести. Это явление названо деформационным разупрочнением. Показано, что в этом случае дислокации, блокированные препятствиями в первичных плоскостях.  [c.197]

Разупрочнение деформйрдваннбго сЛОй при нагреве. Устойчивость деформационного упрочнения изучали, измеряя микротвердость по глубине деформированного поверхностного слоя (на поверхности косых срезов) после изотермических нагревов в образцах из жаропрочных сплавов.  [c.158]

В зависимости от соотношения влияния этих процессов в данных условиях испытания возможно как упрочнение, так и разупрочнение предварительно деформированного металла. При повышении температуры и продолжительности испытания роль и значение процессов разупрочнения возрастает по сравнению со значением деформационного упрочнения, что в случае наклепа приводит к понижению характеристик усталости и жаропрочности сталей и сплавов по сравнению с ненаклепанным состоянием. На характер зависимостей длительной прочности, ползучести и сопротивления усталости от предварительного наклепа влияет субструктура, возникающая в зернах в результате предварительной деформации металла и отжига.  [c.200]

Аустенитные нержавеюШие стали, имеющие пониженное отношение предела текучести 0 2 к пределу прочности (в пределах 0,4-0,5), не склонны к циклическому разупрочнению и одностороннему накоплению пластических деформаций. В связи с наличием в их составе повышенного содержания легирующих элементов (особенно никеля) эти стали не обладают склонностью к переходу в хрупкое состояние. Вместе с тем при длительном высокотемпературном нагружении в связи с протеканием деформационного старения у этих сталей наблюдается некоторое снижение пластичности.  [c.26]

Установлено, что при идентичных напряжениях выше циклического предела пропорциональности меньшую долговечность имеют образцы в 3 %-ном растворе Na I, хотя в дистиллированной воде неупругая составляющая деформирования больше (см. рис. 35). Это связано с тем, что первоначально адсорбция среды на поверхности металла, а также растворение анодных участков облегчают движение и разрядку дислокаций, интенсифицируя тем самым процесс разупрочнения. Однако в деформационном периоде // происходит развитие относительно большого количества трещин из коррозионно-усталостных язв, что увеличивает гетерогенность пластического течения, локализирующегося в вершинах трещин. Различие в скорости коррозии стали в соляном растворе и дистиллате (см. рис. 39) приводит к созданию на поверхности геометрически неэквивалентных и заметно отличающихся по количеству коррозионно-усталостных язв, инициирующих возникновение трещин, что в неодинаковой степени уменьшает концентрацию напряжений на магистральной трещине, а также влияет на процесс неупругого деформирования в целом. При испытании стали в растворе хлорида натрия, по сравнению с дистиллатом, трещин больше и возникают они раньше.  [c.83]

Жидкие среды заметно влипют на интенсивность упруго пластического деформирования армко-железа. По сравнению с периодом / в воздухе, в коррозионных средах он характеризуется более продолжительной стабилизацией величины прогиба образцов. В деформационном периоде // происходит заметное замедление процесса разупрочнения. При этом усталостная долговечность образцов в коррозионно-активных средах ниже, чем в воздухе во всем диапазоне исследуемь1х амплитуд напряжений. Предел выносливости образцов армко-железа в воздухе, дистиллированной воде и 3 %-ном растворе Na I составлял 190 160 и 70 МПа.  [c.85]

Для долговечности более 1 ч термоциклирование приводит к разупрочнению сплава по сравнению с испытаниями в изотермических условиях, причем степень этого разупрочнения существенно зависит от характера температурного цикла и длительности испытаний и значительно возрастает с увеличением числа ступеней в температурном цикле и термоциклических нагружений. При температуре, превышающей рекристаллиза-дионную, пластичность тугоплавких сплавов значительно повышается, и в деформационных процессах превалирующую роль  [c.71]

При высоких рабочих температурах ЭГК ТЭП вследствие термически активируемых и диффузионных процессов устраняется структурная метастабильность деформированных монокристаллов и осуществляется переход их к стабильному состоянию. Устранение следов пластической деформации при отжиге, (разупрочнение) происходит вследствие процессов возврата, полигонизации и рекристаллизации [31]. Однако ориентационная зависимость деформационного упрочнения, условия пластической обработки, а также примеси, энергия дефектов упаковки и т. д. существенно влияют на характер процессов разупрочнения, на взаимосвязь полигонизации и рекристаллизации [10, 24, 37, 38, 41, 42, 48, 70, 71, 74—76, 101, 121, 126, 135, 1361. При этом устранение упрочненного состояния монокристаллов вследствие рекристаллизации (т. е. образования высокоугловых границ)—крайне нежелательное явление, так как означает превращение монокристалла -в поликристаллический материал с присущими ему недостатками (см. предыдущий раздел) уменьшение работы выхода электронов, появление эффектов пропотевания жидкого металла через границы зерен и т. д. [10, 71, 126].  [c.96]

При температуре испытания 650° С, так же как и при 450° С, вид нагружения определяет характер изменения деформационных циклических характеристик (рис. 2.15). В условиях моногармо-нического нагружения при малых временах нагружения (больших уровнях напряжений) разупрочняющее влияние температуры, несмотря на большую величину деформации, проявляется в большей мере, и, наоборот, при меньших уровнях нагрузки (деформации), обусловливающих и большее время нагружения, процессы структурных изменений материала оказывают большее влияние. В результате при меньших напряжениях более интенсивно и более длительное время может наблюдаться уменьшение ширины петли гистерезиса (см. рис. 2.15). При больших амплитудах напряжений упрочнение быстро сменяется разупрочнением При этом для малых уровней нагрузки (разрушающее число циклов )> 10 ) накопление деформаций невелико и ограничивается, как правило, величиной деформации, накопленной в первом цикле, а на стадии окончательного разрушения, когда материал с ильно поврежден, в отдельных случаях проявляется склонность к накоплению деформации в сторону сжатия. Однако это накопление незначительно (см. рис. 2.15).  [c.38]

При дальнейшем повышении температуры испытаний до 650 С сопротивление деформированию стали Х18Н10Т при малоцикловом нагружении существенно изменяется по сравнению с температурами 20 и 450° С. Это, в основном, связано с проявлением температурно-временных эффектов, к которым в первую очередь относятся процессы ползучести и деформационного старения, существенно интенсифицирующиеся в данных условиях. При мягком режиме нагружения с треугольной формой циклов относительное время деформирования, в течение которого происходит первоначальное упрочнение материала, увеличивается (рис. 4.9, а) по сравнению с нагружением при 450° С, а интенсивность этого упрочнения зависит от уровня действующих напряжений. При этом наибольшее упрочнение достигается на меньших амплитудах напряжений (Оа = 24 кгс/мм ). с увеличением последних (Од = = 30,5 ч- 34,4 кгс/мм ) стадия разупрочнения начинается сразу же после первых циклов нагружения. Характер накопления односторонней деформации в этих условиях показан на рис. 4.9, б, из которого видно, что она проявляет тенденцию к увеличению при значительных амплитудах напряжений (Од > 28 кгс/мм ) и сохраняется на уровне исходного накопления (в первом цикле) при их меньших значениях.  [c.76]


Таким образом, анализируя рассмотренные выше экспериментальные данные по малоцикловому деформированию при мягком режиме нагружения с временными выдержками на экстремумах нагрузки (см. рис. 4.8—4.10), можно видеть, что как температура испытаний, так и форма цикла накладывают свои особенности на кинетику деформаций в этих условиях. В общем случае для комнатной и умеренных температур кинетика ширины петли пластического гистерезиса и односторонне накопленной в циклах деформации ё > описывается зависимостями (2.10) и (2.18). Причем для циклически упрочняющихся материалов в двойных логарифмических координатах, что соответствует степенному виду кинетической функции, они представляют собой прямые ниспадающие линии (рис. 2.3, в), а для циклически разупрочняющихся материалов в полулогарифмических координатах — прямые восходящие линии (рис. 2.3, а), отвечающие экспоненциальному виду этих зависимостей. Как показывают приведенные выше экспериментальные данные для высоких температур и сложной формы цикла нагружения, в этих условиях наблюдается более сложный характер поведения деформационных характеристик. Так, уже при 450 С сталь Х18Н10Т обнаруживает в исходных циклах некоторое упрочнение, переходящее затем на основной стадии процесса деформирования в циклическое разупрочнение, причем это характерно как для нагружения с треугольной, так и с трапецеидальной формами цикла. Если при t = 450° С степень разупрочнения еще невелика, то с повышением температуры до 650° С, когда начинается интенсивное проявление в материале температурно-временных эффектов, кинетика деформаций становится ярко выраженной и в существенной степени зависящей от времени, формы цикла и уровня нагружения. Указанные обстоятельства не учитываются зависимостями (2.10), (2.18) и для их описания было предложено [13] связать параметры этих уравнений с механическими свойствами материалов, а последние рассматривать зависящими от температуры и времени нагружения.  [c.79]


Смотреть страницы где упоминается термин Разупрочнение деформационно : [c.580]    [c.14]    [c.19]    [c.27]    [c.70]    [c.93]    [c.98]    [c.89]    [c.148]    [c.11]    [c.81]    [c.51]    [c.26]    [c.146]    [c.147]    [c.252]    [c.14]   
Физические основы пластической деформации (1982) -- [ c.197 ]



ПОИСК



Деформационные швы

Равновесные процессы структурного разрушения как причина деформационного разупрочнения

Разупрочнени



© 2025 Mash-xxl.info Реклама на сайте