Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дислокация Размножение

Согласно современным представлениям в обычных чистых металлах плотность дислокаций, т. е. количество дислокаций, приходящееся на единицу поверхности, равняется 10 —10 см . Механические свойства металлов зависят от количества дислокаций и особенно от способности их к перемещению и размножению, о чем будет сказано дальше.  [c.30]

Рассмо фим прежде всего внешнее сходство волн в реакции Белоусова-Жаботинского (см. главу 1), показанных на рисунке 4.9, а с волнами, возникающими при размножении дислокаций по механизму Франка-Рида. Схема  [c.254]


Один из возможных механизмов размножения дислокаций был предложен Ф. Франком и В. Ридом. Действие источника Франка-Рида схематически показано на рис. 3.28. Линия АВ представляет собой краевую дислокацию с закрепленными концами. Хотя дислокационная линия не может оборваться внутри кристалла, она может окончиться в некоторой плоскости, повернув в другом направлении или соединившись в узле с другими дислокациями, проходящими через данную плоскость. Такая ситуация изображена на рис. 3.29. Узлы А и В являются точками закрепления дислокации. Закрепление может также произойти на атомах примеси.  [c.110]

На примере единичного сдвига мы видели, что дислокация в результате перемещения по плоскости скольжения покидает криС талл. Опыт же показывает, что при больших напряжениях кристаллы претерпевают значительные деформации. Для объяснения этого факта необходимо предположить, что в кристалле имеются источники, которые генерируют дислокации при напряжениях, меньших чем 10 G. Такими источниками, как мы видели в разделе о дислокациях, являются, например, источники Франка — Рида, которые начинают действовать при скалывающих напряжениях Gb/l, где / — длина источника, Ь — модуль вектора Бюргер-са. В реальных кристаллах источники Франка — Рида — это только один из возможных механизмов размножения дислокаций. Рождение новых дислокаций в процессе пластической деформации и их перемещение приводят к макроскопическому сдвигу вдоль плоскости скольжения.  [c.134]

РАЗМНОЖЕНИЕ ДИСЛОКАЦИЙ. Как следует из вывода 3 см. с. 48), собственная энергия дислокаций велика 30—50 эВ при длине дислокации L = 10b. Поэтому термодинамически равновесные дислокации в кристалле должны отсутствовать. Следовательно, появление дислокаций и их размножение должны объясняться другими причинами условиями роста и охлаждения кристалла и в еще большей мере его пластической деформации, так как установлено, что в недеформированном кристалле плотность дислокаций составляет Ю" —10 , а в деформированном 10 °—-10 2 см .  [c.65]

Здесь был описан наиболее простой случай размножения дислокаций в процессе пластической деформации. Однако есть и более сложные случаи, например размножение дислокаций путем множественного поперечного скольжения встречаются пространственные и спиральные источники Франка — Рида (см. гл. III).  [c.67]

Так как возможность возникновения вокруг новых (размноженных при деформации) дислокаций атмосфер определяется соотношением скоростей движения дислокаций и диффузией межузельных атомов, то повышение плотности дислокаций зависит от температуры и скорости деформации. При 0>0с дислокации становятся более подвижными из-за высокой диффузионной подвижности атомов внедрения. Поэтому при 0>0о наблюдается резкое падение сопротивления деформации (см. рис. 247). С повышением скорости деформации диффузионной подвижности внедренных атомов недостаточно для закрепления вновь образовавшихся при деформации дислокаций, которые двигаются уже с большей скоростью. Поэтому с повышением скорости деформации пик деформационного старения может или смещаться в область высоких температур, или вовсе исчезать (см. рис. 247).  [c.465]


Для развития пластической деформации необходимо увеличить число дислокаций, что наблюдается при пластическом течении (рис. 57). Механизм размножения дислокаций предложен Франком и Ридом. При увеличении напряжения исходный дислокационный сегмент (рис. 57, а) закреплен в точках АВ. При увеличении напряжения сегмент будет выгибаться (рис. 57, б) и принимать последовательно формы, приведенные на рис. 57, (I—д. При сближении выступов сегмент приобретает свою исходную конфигурацию, образуя при этом расширяющуюся дислокационную петлю (рис. 57, е). При продолжающемся действии напряжения дислокационный источник может генерировать новые дислокационные контуры. Скопление вакансий и границы зерен  [c.79]

Поскольку закономерности процесса деформационного упрочнения, согласно современным представлениям [66, 233, 254], сводятся к закономерностям процесса размножения и взаимодействия дислокаций, то и преобладание винтовых дислокаций в структуре ОЦК-металлов требует учета особенностей размножения винтовых дислокаций. Для винтовых дислокаций вместо дискретных источников рассматривают обычно двойное поперечное скольжение. Авторы [254] отмечают, что при этом элементом, контролирующим процесс упрочнения, является не отдельная дислокация, а линия скольжения, а сам подход требует подробного теоретического и экспериментального исследования геометрии двойного поперечного скольжения и его роли в эволюции дислокационной структуры и механизмах упрочнения ОЦК-металлов.  [c.104]

Поскольку JV представляет собой объем тела, растворяющийся с единицы поверхности за единицу времени, а коэффициент а = ]/и где V — активационный объем дислокаций при пла-. стическом течении, по существу численно может быть охарактеризован как максимально возможная динамическая плотность дислокаций (т. е. плотность их в момент течения), то выражение (211) формально можно интерпретировать следующим образом. Дополнительный поток дислокаций при хемомеханическом эффекте образуется в результате насыщения дислокациями поверхностного слоя до максимально возможной динамической плотности, а затем стравливания этого слоя со скоростью химического растворения. Насыщение дислокациями растворяющегося слоя возможно ввиду несравнимых величин скоростей размножения и движения дислокаций, с одной стороны, и растворения тела с другой стороны. Так, при обычных значениях скоростей коррозии стравливание одного моноатомного слоя занимает секунды и более секунды, а дислокационные процессы совершаются с околозвуковыми скоростями. Образование поверхностных источников дислокаций в процессе реализации хемомеханического эффекта приводит к быстрому насыщению поверхностного слоя дислокациями, что создает условия для множественного скольжения (в том числе поперечного скольжения дислокаций) и, следовательно, для разрушения ранее сформировавшихся плоских скоплений, т. е. для релаксации микронапряжений и разупрочнения.  [c.126]

Размножение дислокаций под действием знакопеременных колебаний малой амплитуды. Характерной особенностью всех рассмотренных процессов является то, что возникший источник дислокаций сразу начинает работать, а число действующих источников определяется величиной деформации. Однако при воздействии знакопеременных напряжений малой амплитуды на кристалл, дислокации в котором закреплены точечными дефектами, работа источника становится возможной только после соответствующего перераспределения точечных дефектов, т. е. вероятность активации источника будет зависеть от времени. Оказывается, если все звенья дислокационной сетки имеют одинаковую длину и точечные дефекты распределены по длине дислокации с одинаковой вероятностью, то изменение плотности дислокаций со временем дается формулой [20]  [c.157]

Кинетика размножения дислокаций при малых циклических знакопеременных нагрузках будет несколько иной, чем при больших статических. Этот вопрос частично рассматривался в работе [14]. Настоящая работа является дальнейшим развитием и обобщением модели кинетики размножения дислокаций при малых циклических знакопеременных нагрузках, которая была предложена в работе [14].  [c.177]


Уравнения (2) и (3) дают зависимость между плотностью дислокаций и, амплитудой пластической деформации Ёпл (напряжения Оа) и числом циклов N нагружения. Эти уравнения подобны уравнению (1) кинетики дислокаций для статического и квазистатического нагружений. Характерной особенностью кинетики размножения дислокаций при нарастающем квазистатическом нагружении является то, что образовавшийся источник сразу начинает работать, а число действующих источников определяется величиной пластической деформации. При воздействии знакопеременных напряжений малой амплитуды на кристаллический материал, дислокации в котором закреплены точечными дефектами, работа источников становится возможной только после отрыва дислокаций от точечных дефектов. Отрыв дислокаций от точечных дефектов может быть достигнут сразу при приложении достаточно большого напряжения или после определенного числа циклов знакопеременного напряжения малой амплитуды. Предполагается, что после отрыва потенциальных дислокационных источников от точечных дефектов процесс образования новых источников и размножение дислокаций происходят так же, как и при квазистатическом нагружении.  [c.179]

Микроструктура материала, определяемая при данном рассмотрении концентрацией точечных дефектов и плотностью дислокаций, меняется с течением времени вследствие размножения линейных и точечных дефектов и их аннигиляции, так что приращение плотности дефектов за единицу времени  [c.30]

Проведенный анализ показал, что вследствие сложного процесса движения и размножения дислокаций и других дефектов кристаллической структуры, большого числа меняющихся в процессе деформации параметров, характеризующих дислокационную структуру, в настоящее время уравнение состояния, пригодное для инженерных расчетов, не может быть построено только на основе дислокационной модели. Уравнения состояния, в которые входят усредненные параметры дислокационной структуры материала, следует рассматривать как аппроксимацию эмпирических данных аналитическим выражением особого вида.  [c.35]

Дислокации присутствуют в мегаллических кристаллах в огромных количествах (10 —10 см ) и обладают легкой подвижиостькз и способностью к размножению Большое влияние на механические и Miioriie л,ру ие свойства металлов и сплавов оказывает пе тольк(з плотность, но и расположение дислокаций в объеме.  [c.24]

Образование зародышевых трещин в пределах зерна представляет собой (по Одингу) результат направленного размножения и перемещения (диффузии) дислокаций типа вакансий к границам зерна. Скорость диффузии пропорциональна величине напряжений и температуре и, следовательно, ускоряется в результате микронагрева материала.  [c.290]

Кроме того, в вершине возникающей трещины образуется аморфная зона материала, соответствующая зоне II поверхностного переходного слоя -разрыхленного "квазижидкого" участка. В этой пластической области вследствие активизации процессов диффузии дислокаций происходит локальное повышение температуры, регистрируемое тепловизорнь методом [172]. Это еще более активизирует процесс дальнейшей аморфизации материала у вершины трещины, генерируя структуры предплавления. Последнее вызывает взаимосогласованное, автокаталитическое размножение дефектов.  [c.316]

Дислокации обоих видов обладают свойствами подвижности и размножения. Для движения и размножения дислокаций достаточны относительно малые напряжения. Относительно малая прочность кристалла объясняется наличием в.-ней дефектов дислокационного типа. Передвижение дислокации от одного атомного ряда рещётки к следующему требует малых изменений в расположении атомов. В ряде дислокаций атомы значительно смещены относительно своих нормальных мест в рещетке. Если ядро велико по сравнению с параметрами рещетки, то напряжения сдвига, необходимые для перемещения дислокации, становятся исчезающе малыми. Поэтому пластичность материалов объясняется увеличением  [c.324]

Движение перегиба (ступеньки) вдоль дислокации (рис. 69 и 70) на одно межатомное расстояние является элементарным актом скольжения дислокации. Перемещение дислокационной линии из начального АВ в конечное D состояние, отстоящее от начального на АС= =ВВя Ь, может осуществляться серией последовательных перемещений (дрейфа) перегиба EF. Элементарный акт такого смещения — перемещение EF в положение E F при EE =FF =b (см. рис. 69). Механизм размножения дислокаций благодаря работе источника Франка—Рида состоит из выгибания дислокаций между точками закрепления, рождения петель и т. д., т. е. состоит из последовательных актов рождения новых перегибов на дислокации. Движение церегиба, как и движение иця-молинейных дислокаций в плоскости скольжения, требует преодоления некоторого энергетического барьера, называемого обычно вторичным пайерлсовским Еп2. Расчеты и эксперимент показывают, что перемещение перегиба происходит значительно легче, чем движение всей  [c.124]

Эшби показал, что для сложных границ скольжение по границе и миграция тесно связаны. В этом случае скольжение и миграция границы пропорциональны, поскольку только в этом случае возможно скольжение без изменения структуры границы. При зернограничном проскальзывании по большеугловой границе миграция выступает как процесс, обеспечивающий непрерывное под-страивание границы до плоскости в атомном масштабе благодаря перемещению зернограничных дислокаций. Однако эту миграцию следует отличать от той, которая происходит в процессе пластической аккомодации, когда миграция, наблюдаемая при локальной пластической деформации, непосредственно не связана со скольжением по границе зерна. Такая нерегулярная миграция может препятствовать зернограничному проскальзыванию, поскольку не позволяет границе в процессе скольжения оставаться плоской. Для осуществления непрерывного скольжения по поверхности границы зерна необходимо действие источников зернограничных дислокаций. Предполагается, что источниками таких дислокаций могут быть источники типа Франка — Рида, действующие на границе зерна. Обнаруженные спиральные образования на границе зерен являются источниками дислокаций границ зерен, размножение которых происходит не скольжением, а переползанием. Дислокации границ зерен могут образовываться и в результате взаимодействия дислокаций решетки со структурными дефектами границы.  [c.178]


Уравнение (2.15), полученное впервые в работе [59], дает динамическую взаимосвязь напряжения с деформацией для начальных ее стадий (только для начальных, поскольку деформационное упрочнение в исходные уравнения не закладывалось, но в принципе это возможно). Анализ уравнения (2.15) [59] позволил объяснить практически все характерные особенности начальных участков кривых нагружени только за счет комбинации начальной плотности подвижных дислокаций, скорости их размножения и силовой чувствительности средней скорости движения дислокаций, т. е. за счет параметров, взаимосвязанных уравнениями (2.8) — (2.10).  [c.41]

При образовании скопления дислокаций и соответствующей концентрации напряжений у вершины скопления представляется весьма вероятным, что пластическая деформация в соседнем зерне начнется в результате работы зернограничных источников [54, 102]. Удаляясь от поверхности зерна, дислокации, эмитированные этими источниками, взаимодействуют с дислокациями сетки Франка и могут создать новые источники типа источников Франка — Рида. Поскольку эти новые источники не заблокированы примесями, они оказываются способными либо к размножению полных дислокаций, либо (при достаточно высоком уровне напряжений сдвига) — к размножению частичных дислокаций, т. е. к образованию двойника, например, по полюсному механизму Коттрелла — Билби или по механизму Шлизви-ка [20] (рнс. 2.17). Развитая в работе [22] модель, в которой двойникование начинается после частичной (за счет скольжения) релаксации концентраторов напряжений, приводит к получению аналогичной уравнению Холла — Петча для скольжения зависимости напряжения начала двойникования от размера зерна  [c.60]

Согласно[107, 173], начало пластической макродеформа-цин металлов и сплавов определяется не только движением дислокаций, но и прежде всего процессом их размножения, причем последний осуществляется в основном по механизму двойного поперечного скольжения [12, 107]. В случае двухфазных сплавов при напряжениях, соответствующих пределу текучести, необходимо соблюдать еще одно условие — условие обхода частиц дислокациями. Но поскольку поперечное скольжение и обход частиц дислокациями в данных сплавах можно считать взаимосвязанными [166, 174], то в условиях начала поперечного скольжения будет фактически учитываться и обход частиц дислокациями.  [c.77]

Специфика деформационного упрочнения ОЦК-металлов обусловлена рядом особенностей развития деформации в этих металлахг заметной величиной сил трения решетки, сильной температурной зависимостью напряжения течения существенным, особенно при низких температурах, различием в скоростях движения краевых и винтовых дислокаций наличием большого числа относительно равноправных систем скольжения легким протеканием процессов размножения по механизму двойного поперечного скольжения [9, 254—256].  [c.103]

Первая из них, или начальная, связана [68, 356] с задержкой начала пластической деформации в ОЦК-металлах и локальным ее цротеканием, что обусловлено недостаточным количеством свободных дислокаций и низкой скоростью их размножения при малых напряжениях. В результате на кривой нагружения часто наблюдаются зуб и площадка текучести или только площадка текучести.  [c.154]

Предложена дислокационно-статистическая модель, в основу которой положено размножение дислокаций источниками Франка—Рида, первоначально дезактивированными точечными дефектами. С помощью указанной модели получены аналитические зависимости и.чменения плотности дислокаций от числа циклов (времени) и амплитуды напряжения (деформации) циклического нагружения, которые согласуются с литературными экспериментальными данными.  [c.238]

Пластическое течение металлов и сплавов описывается различными моделями деформационного упрочнения 1) преодолением барьера Пайерлса—На-барро, характеризующим собственное сопротивление решетки движению дислокаций 2) преодолением в процессе деформации различного рода препятствий движению дислокаций (барьеров Ломера—Коттрелла или сидячих дислокаций и др.) 3) пересечением скользящих дислокаций с дислокациями леса и взаимодействием дислокаций с плоскими границами 4) поперечным скольжением винтовой составляющей дислокаций с переползанием краевой составляющей дислокации 5) зарождением (размножением) дислокаций.  [c.7]

Включение в работу источников размножения дислокаций повышает общую плотность дислокаций, а следовательно, и скорость пластического, теченрш до исчерпания задержки текучести. Нагрузка на верхнем пределе текучести, таким образом, определяется действием двух факторов — освобождением от закрепления определенной части дислокаций и их размножением. Увеличение плотности подвижных дислокаций и связанное с ним снижение средней скорости их движения (при постоянной скорости движения захватов испытательной машины) ведет к уменьшению нагрузки, необходимой для поддержания заданной скорости.  [c.40]

В металлах структурное состояние определяется размерами зерен, блоков и других параметров микроструктуры и плотностью дефектов кристаллической решетки — линейных, точечных и т. д. При высокоскоростной деформации, контролируемой динамикой дислокаций, структурное состояние материала достаточно полно может быть охарактеризовано плотностью дислокаций и концентрацией дефектов различной физической природы на пути их движения. Обычно принимается, что с ростом пластической деформации возрастает плотность дислокаций,, изменяясь от начальной плотности Z-o до величины L — Lof en). Функция размножения чаще всего аппроксимируется линейной или степенной зависимостью (для области малых степеней деформации) /(е ) = 1где aj и xi — постоянные, характеризующие материал.  [c.41]

Связанную с деформацией скорость размножения дислокаций можно принять пропорциональной их общему числу и энергии (чем выше энергия дислокаций, тем выше вероятность генерации новых дислокаций). В первом приближении, представляя энергию дислокаций зависимостью д 1иср(1+ P J p), записываем скорость деформационного размножения дислокаций в виде  [c.42]


Смотреть страницы где упоминается термин Дислокация Размножение : [c.45]    [c.255]    [c.130]    [c.253]    [c.571]    [c.43]    [c.37]    [c.39]    [c.42]    [c.52]    [c.97]    [c.108]    [c.109]    [c.157]    [c.177]    [c.170]    [c.181]    [c.36]   
Механические свойства металлов Издание 3 (1974) -- [ c.0 ]



ПОИСК



Движение и размножение дислокаций при развитии пластической деформации

Дислокации аннигиляция и размножение

Дислокация

Размножение

Структурно-энергетические особенности зарождения и размножения дислокаций вблизи свободной поверхности твердого тела



© 2025 Mash-xxl.info Реклама на сайте