Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система дифференциальных уравнений гиперболическая в точке

Нелинейная система дифференциальных уравнений (6.12) в частных производных гиперболического типа, как отмечалось в работах М. Леви [87], может быть линеаризована. Действительно, если принять за неизвестные функции параметры т] и в уравнения <6.12) подставить значения Оо и ф из (6.18), то после небольших преобразований [102] дифференциальные уравнения гиперболиче-  [c.158]

Если на границе тела заданы напряжения, то определение напряжений во всех точках тела связано с интегрированием гиперболической системы двух нелинейных дифференциальных уравнений в частных производных (IX.11) при известных граничных условиях. Обычно эти уравнения решаются приближенными методами построения полей линий скольжения. Иногда удается построить решение краевой задачи, основываясь только на свойствах линий скольжения.  [c.116]


В дифференциальных уравнениях, описывающих реальные физические явления, чаще всего встречаются особые точки и предельные циклы общего положения, то есть гиперболические. Однако встречаются и специальные классы дифференциальных уравнений, где дело обстоит иначе. Таковы, например, системы, обладающие симметриями, связанными с природой описываемого явления, а также гамильтоновы уравнения, обратимые системы, уравнения, сохраняющие фазовый объем. Так, например, рассмотрим однопараметрическое семейство динамических систем на прямой с симметрией второго порядка  [c.12]

Если дискриминант уравнения (37.68е) равен нулю, то две системы характеристик сливаются в одно семейство кривых, когда же он отрицателен, то действительных характеристик не существует вовсе. Три соответствующих типа дифференциальных уравнений в частных производных, как известно, называются гиперболическим, параболическим и эллиптическим 2). Само собой разумеется, что характер дифференциального уравнения в частных производных общего вида (37.68) в различных областях поля координат может изменяться, а уравнение может быть гиперболическим в одной области и параболическим или эллиптическим в примыкающих областях и т. д.  [c.624]

Ключом к решению одного уравнения первого порядка, как показано в гл. 2, служит использование семейства характеристик в (ж, )-плоскости вдоль каждой характеристики уравнение в частных производных сводится к обыкновенному дифференциальному уравнению. В некоторых случаях затем удается найти решение в аналитическом виде. Но в худшем случае уравнение в частных производных сводится к системе обыкновенных дифференциальных уравнений с последующим пошаговым численным интегрированием. В любом варианте решение можно построить последовательным локальным рассмотрением малых областей не обязательно вычислять сразу все решение в целом. Это, конечно, соответствует основным идеям волнового движения за любой малый интервал времени на поведение в выбранной точке могут оказать влияние только те точки, которые расположены настолько близко, что волны от них успевают дойти вовремя. Поставим следующий вопрос возможны ли такие локальные вычисления для системы (5.1) Если они возможны, то система является гиперболической и можно сформулировать соответствующее точное определение.  [c.116]

Предполагая, что искомые решения находятся в гиперболической области, теперь естественно перейти к нахождению характеристик линейной системы (17.90), или, что то же самое, линейного уравнения (17.91). Они являются интегральными кривыми дифференциального уравнения  [c.589]


Методы получения решений, удовлетворяющих граничным условиям, требуемым в практических приложениях, основаны на принципе Римана, согласно которому для класса уравнений в частных производных гиперболического типа интегралы, имеющие различную аналитическую форму, могут гладко сопрягаться вдоль определенных линий скольжения, т. е. вдоль той или иной из характеристических кривых данной системы дифференциальных уравнений (см. т. 1, стр. 625). Раньше внимание концентрировалось на вопросе о том, какую форму следует припи-  [c.556]

Еще раз подчеркнем, что, в отличие от одномерных неустано-вившихся движений газа, система дифференциальных уравнений, описывающая плоские или осесимметричные установившиеся движения, не является гиперболической для всех возможных движений. Эта система гиперболическая в области, где скорость газа сверхзвуковая, и эллиптическая—там, где газ движется с дозвуковой скоростью. Если при движении газа возникают дозвуковые и сверхзвуковые скорости (такие движения называются смешанными или трансзвуко-выми), то система уравнений приобретает смешанный тип эллиптический в одной части области движения и гиперболический — в другой.  [c.249]

Симплектическая структура 6 Симплектическая триада 234 Симплектическая форма 6 Симплектоморфизм 8 Система дифференциальных уравнений с частными производными, гиперболическая в точке 278 Складка, особенность 28 След многочлена 11 Сложенный зонтик 154 Спектр особенности 33 Список лагранжевых особенностей 27 Стгъбильная Л" -зквивалентность 29 Стабильная эквивалентность проектирований 169  [c.333]

Из формулы (15.8.7) следует, что при т 1<1 существует два семейства характеристик, соответствуюпщх знакам плюс и минус в формуле (15.8.7). В этом случае система (15.8.4) называется гиперболической. Если т 1>1, то формула (15.8.7) определяет мнимые направления, и система (15.8.4) называется эллиптической. Метод характеристик, т. е. отыскание соотношений вдоль характеристик из условия Z)p, i = О, для эллиптической системы не приводит к цели. Наконец, промежуточный случай, когда т = 1 и оба семейства характеристик сливаются, соответствует параболической системе исходных дифференциальных уравнений, В зависимости от вида условия пластичности в теории пластичности встречаются все три случая при этом гиперболическая задача оказывается наиболее простой, для нее. разработаны эффективные методы решения. Дальнейшее изложение будет ограничено почти исключительно случаем гиперболичности уравнений пластичности.  [c.502]

Уравнения (3.72), (3.76) и (3.84) образуют систему гиперболических дифференциальных уравнений в частных производных первого порядка с двумя независимыми переменными, которыми являются осевая координата х и время Решение этой системы находится путем интегрирования. Функцию можно проинтегрировать на некотором интервале, если она непрерывна на этом интервале. Метод характеристик позволяет проинтегрировать известные непрерывные функции, вид которых типичен для рассматриваемой системы уравнений. Поэтому метод характеристик представляет собой, по существу, строгую математическую процедуру замены квазилинейных неоднородных уравнений в частных производных системой общих дифференциальных уравнений, обычно называемых совместными уравнениями, которые справедливы и интегрируемы на поверхностях, называемых характеристиками или характеристическими поверхностями. Мы дали в какой-то степени упрощенное описание этой процедуры более строгое математическое описание можно найти в классической монографии Куранта и Фридрихса [50] или в содержательной работе Цукроу и Хофмана [41].  [c.340]

В принципе эти методы могут быть применены к любой задаче, для которой дифференциальное уравнение или линейно, или линейно относительно приращений [44—49]. В задачах, сводящихся к эллиптическим дифференциальным уравнениям, решения получаются сразу, в то время как для параболических и гиперболических систем уравнений должны быть введены процессы продвижения во времени. Таким образом, охватывается очень широкий класс физических задач при помощи прямых или непрямых формулировок МГЭ могут быть решены, например, задачи об установившемся и неустановившемся потенциальных течениях, задачи статической и динамической теории упругости, упругопластичности, акустики и т. д. [8—49]. МГЭ может также быть использован в сочетании с другими численными методами [44], такими, как методы конечных элементов или конечных разностей, т. е. в смешанных формулировках. Соответствующие комбинированные решения почти неограниченно расширяют область применения методов, ибо МГЭ обладает четко выраженными преимуществами для областей больших размеров, в то время как методы конечных элементов являются удобным средством включения в такие системы объектов конечного размера или уточнения поведения решения в зонах быстрого изменения свойств. Более подробное сравнение особенностей этих методов будет дано в следующем параграфе.  [c.16]


В рамках классической теории пограничного слоя [Prandtl L., 1904] задача об асимптотическом состоянии вязкого течения около твердого тела при больших числах Рейнольдса приводит к исследованию областей внешнего невязкого потока и пограничного слоя. Пограничный слой описывается системой уравнений параболического типа, а внешний поток при сверхзвуковых скоростях — системой гиперболического типа. Решения краевых задач для таких систем обладают тем свойством, что распределение искомых функций в некоторой области пространства определяется краевыми условиями на границе, лежащей вверх по потоку от этой области. Такая ситуация имеет место, например, при обтекании тонкого тела потоком с умеренной сверхзвуковой скоростью или в случае гиперзвукового обтекания, если только взаимодействие пограничного слоя с внешним потоком является слабым. Однако если краевые условия заранее неизвестны и подлежат определению при совместном решении задач для обеих областей, то ситуация будет иной. Это относится, в частности, к течению со свободным взаимодействием в области, расположенной перед точкой отрыва потока [Нейланд В. Я., 1969, а глава 1] или перед донным срезом тела [Матвеева Н.С., Нейланд В.Я., 1967 глава 3], а также к гиперзвуковому обтеканию пластинки конечной длины [Нейланд В. Я., 1970] и течению около треугольного крыла при сильном взаимодействии [Козлова И.Г., Михайлов В.В, 1970]. В таких задачах внешнее течение, а значит, и давление в пограничном слое, определяется распределением толщины вытеснения пограничного слоя, которое выражается интегральным образом через искомые функции этого слоя. Следствием интегро-дифференциального характера задачи является то, что возмущения, задаваемые в плоскости симметрии треугольного крыла, могут распространяться по потоку вплоть до его передних кромок.  [c.187]

НОВЫЙ качественный подход к анализу проблемы п тел. Позднее в гамильтоновой динамике зародились два различных направления ( ) исследование динамической сложности, возникающей в этой задаче из-за определенной гиперболичности (Алексеев, Конли), и Ш) анализ интегрируемых систем и их возмущений, который привел к КАМ-теории. Хотя и гиперболическая, и интегрируемая модели были известны еще со времен Пуанкаре, потребовался глубокий анализ Колмогорова, для того чтобы осознать, что многие качественные особенности (весьма специальных) интегрируемых систем в определенной степени сохраняются под действием возмущений, а также возникают в типичных ситуациях (например, вблизи неподвижной эллиптической точки). На развитие обоих этих направлений повлиял вопрос об устойчивости солнечной системы, который изучался в рамках гиперболического подхода в терминах устойчивости системы п тел и в рамках КАМ-теории посредством анализа возмущений, например, (интегрируемой) системы центральных сил без учета взаимодействий между планетами. В работе Конли и Цендера была установлена взаимосвязь топологических и вариационных методов, ставшая краеугольным камнем современной глобальной симплектической геометрии. Возрождение анализа вполне интегрируемых систем началось с работы Гарднера, Грина, Крускала и Миуры и открытия П. Лаксом новых методов построения интегрируемых систем. Это привело к быстрому увеличению числа новых интересных примеров конечномерных интегрируемых систем, а также к построению теории бесконечномерных гамильтоновых систем. Применение этой теории к изучению нелинейных дифференциальных уравнений в частных производных стало крупным достижением впервые в ситуациях, когда асимптотическое поведение уже не может быть названо тривиальным, появились средства для законченного качественного анализа.  [c.24]

В качестве простого примера рассмотрим сохраняющие площадь потоки в случае размерности 2, индуцированные линейной системой х = Ах обыкновенных дифференциальных уравнений с постоянными коэффициентами, т. е. потоки вида для некоторой матрицы А, для которой =с1е16- = 1, или А =0. В этом случае трансверсальные неподвижные точки могут быть только эллиптическими или гиперболическими седлами собственные значения матрицы равны А и —Л, и мы можем считать, что матрица А приведена к жордановой форме. Если А = О, то начало координат не является изолированной неподвижной точкой. Если А / О, то число Л либо чисто мнимо А = га гК, либо вещественно. В первом случае собственные значения равны е= = для некоторого з е К, и тогда нуль — неподвижная эллиптическая точка. В противном случае собственные значения имеют вид для некоторого в е К и нуль — гиперболическая неподвижная точка. Другими словами, возможны только два случая  [c.328]

В динамике пластин метод степенных рядов применял И. Т. Селезов [2.50] (1960). Он исходил из краевой задачи динамической теории упругости в перемешениях и рассматривал систему рекуррентных соотношений типа (20.9) и (20.10) и уравнения типа (20.11), вытекающие из граничных условий, как общую бесконечную систему дифференциальных уравнений, эквивалентную исходной краевой задаче (это справедливо при условии равномерной сходимости рядов). В дальнейшем требуется введение каких-либо ограничений, что можно сделать различным путем. Поэтому методом степенных рядов можно получить бесконечное множество аппроксимаций. Цель состояла в построении гиперболических аппроксимаций. Было показано, что при усечении системы до какого-либо порядка получается замкнутая система уравнений, которая может быть приведена к нескольким или одному дифференциальным уравнениям более высокого порядка. Если при этом сохранить все пространственно-временные дифференциальные операторы до определенного порядка включительно [2.52] (1961), то полученная система уравнений будет гиперболической. Это условие является достаточным для построения гиперболических аппроксимаций. Приведем краткое изложение этих результатов. Рассмотрим упругое поле, характеризуемое пространственными ортогональными координатами Хи Х2, Хз и временной координатой t. Причем ось Охз является прямой, а криволинейные ортогональные координаты Х и Х2 отсчитываются в плоскости Хз = 0. Выделим слой —оо<х1<°о, —оэ<х2<оэ, —к<Хз<к и положим, что изменение поля в зависимости от координат и Х2 характеризуется некоторым параметром I, который значительно больше толщины слоя 2к  [c.137]


Глобальное различие в поведении общей и гамильтоновой динамической системы проявляет себя локально в особых точках. Аналогично, в теории гиперболических дифференциальных уравнений с частными производными поведение лучей и волновых фронтов в общих и в ва риационных системах существенно различны в окрестностях особых точек нестрогой гиперболичности, в то время как в остальных точках распространение волн в обоих случаях одинаково.  [c.276]


Смотреть страницы где упоминается термин Система дифференциальных уравнений гиперболическая в точке : [c.44]    [c.101]    [c.92]   
Особенности каустик и волновых фронтов (1996) -- [ c.278 ]



ПОИСК



Гиперболическая система

Гиперболическая система дифференциальных уравнений

Гиперболическая система уравнени

Гиперболические уравнении

Дифференциальные системы

Дифференциальные уравнения точки

Система дифференциальных уравнений

Система точек

Точка гиперболическая

Уравнение точки



© 2025 Mash-xxl.info Реклама на сайте