Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения и их характеристики

II. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ИХ ХАРАКТЕРИСТИКИ 1. Определение  [c.252]

Эти линейные уравнения Онзагера приводят к системе взаимосвязанных дифференциальных уравнений молекулярного переноса тепла и вещества [2]. Математическое описание процессов, протекающих в минеральных веществах на различных стадиях их обжига, в виде дифференциальных уравнений и их решения при заданных начальных и граничных условиях позволяют получить тепло- и массообменные характеристики, теплоту фазовых и химических превращений и критерии переноса тепла и вещества.  [c.357]


Основные уравнения и их характеристики. Дифференциальные уравнения одномерного движения с плоскими, цилиндрическими или сферическими волнами уже были получены в виде (12.12). С заменой обозначения скорости q ши эти уравнения таковы  [c.133]

Математическая модель с распределенными параметрами содержит переменные, зависящие от пространственных координат, и представляет собой систему дифференциальных уравнений в частных производных или систему интегро-дифференциальных уравнений. Важной характеристикой дифференциальных уравнений является их порядок, т. е. порядок старшей производной, которая входит в эти уравнения. Порядок производной по времени в большинстве динамических моделей процессов химической технологии — первый. Производные по координатам могут быть как первого, так и более высоких порядков. Модели обычно получаются в предположении о полном вытеснении (поршневом режиме течения) фаз. Производные второго порядка по координатам появляются в тех математических моделях, где учитывается перемешивание фаз.  [c.5]

Метод вычисления изгибной жесткости составного стержня предложен С. П. Тимошенко [38 ] для случая двухслойного стержня с различными механическими характеристиками слоев. Этот метод основан на гипотезе плоских поперечных сечений, и дифференциальные уравнения задачи аналогичны уравнениям для стержня Бернулли — Эйлера. Число слоев не имеет значения, важно лишь, чтобы их модули упругости не слишком сильно различались, в противном случае может возникнуть необходимость учета поперечного сдвига более мягкого слоя и его поперечной сжимаемости, т. е. потребуется отказаться от гипотезы плоских поперечных сечений и поперечной несжимаемости стержня. В последнем случае изменится порядок дифференциальных уравнений и соответственно изменится процедура решения задачи по сравнению с предложенной в работе [6.1] (см. [39 ]). — П рим. ред.  [c.272]

Одним из эффективных методов составления исходных дифференциальных уравнений и решения соответствующих краевых задач теплопроводности и термоупругости для кусочно-однородных тел (многослойных, армированных, со сквозными и с несквозными включениями) в случае выполнения на поверхностях сопряжения их однородных элементов условий идеального термомеханического контакта, для многоступенчатых тонкостенных элементов, локально нагреваемых путем конвективного теплообмена тел, тел е зависящими от температуры свойствами, с непрерывной неоднородностью является метод [52], основанный на применении обобщенных функций [7, 18,22, 50,87] и позволяющий получать единые решения для всей области их определения. В этих случаях физико-механические характеристики и их комбинации кусочно-однородных тел, толщина (диаметр) многоступенчатых оболочек, пластин, стержней, коэффициент теплоотдачи с поверхности тела могут быть описаны для всего тела (поверхности) как единого целого с помощью единичных, характеристических функций, а физико-механические характеристики тел с непрерывной неоднородностью с зависящими от температуры физико-механическими характеристиками могут быть аппроксимированы с помощью единичных функций. В результате подстановки представленных таким образом характеристик в дифференциальные уравнения второго порядка теплопроводности и термоупругости неоднородных тел, дифференциальные уравнения оболочек, пластин, стержней переменной толщины (диаметра), дифференциальные уравнения теплопроводности или условие теплообмена третьего рода с переменными коэффициентами теплоотдачи приходим к дифференциальным уравнениям или граничным условиям, содержащим коэффициентами ступенчатые функции, дельта-функцию Дирака и ее производную [52]. При получении дифференциальных ура,внений термоупругости для тел одномерной кусочно-однородной структуры наряду с вышеописанным методом эффективным является метод [67, 128], основанный на постановке обобщенной задачи сопряжения для соответствующих дифференциальных уравнений с постоянными коэффициентами. Здесь за исход-  [c.7]


Дифференциальное уравнение является метрологической характеристикой средств измерения, поскольку позволяет при известном сигнале на входе x t найти выходной сигнал y t) и после подстановки их в выражение (9.4) вычислить динамическую погрешность.  [c.183]

Ответ на поставленный вопрос может дать анализ расхождений между характеристиками, получаемыми при решении первичных нелинейных дифференциальных уравнений и при решении линеаризованных уравнений, их аппроксимирующих. Такой анализ сравнительно несложно провести для рассмотренных в 28 камер, истечение через дроссели в которых происходит с малыми перепадами давлений. Это определяется тем, что для камер этого типа получено в аналитической форме решение как линеаризованных, так и исходных нелинейных дифференциальных уравнений.  [c.306]

Уравнения (60) нельзя проинтегрировать сразу, как это было для случая изотермического движения газа, поскольку их правые части зависят от самого решения задачи, так как в них входят неизвестные функции с Т)= с (х, t) и w=w x, f). Такие системы называются неприводимыми в отличие от дифференциальных уравнений, у которых характеристики находятся независимо от решения той или иной задачи.  [c.137]

Систему уравнений (24.3) в общем случае можно решить численно методом разностных уравнений, определенных на сетке характеристик, используя при этом соотношения на характеристиках (24.5) и равенство (24.6), или же путем сведения уравнений (24.3) к интегро-дифференциальным уравнениям и решению их методом последовательных приближений. Вычисления в этом случае значительно более сложны, чем в случае однородной среды. Можно определить некоторый класс неоднородных сред, для которых в областях упругих деформаций решения получаются в замкнутом виде.  [c.217]

Применяются и нелинейные средства измерений, однако с целью упрощения их описаний часто проводят линеаризацию характеристик таких средств измерений, что позволяет для их анализа также использовать линейные дифференциальные уравнения вида  [c.137]

Характеристики. Найдем характеристические направления в плоскости xt системы дифференциальных уравнений (4.1.1) и замыкающего их условия (4.1.2). Пусть в некоторой точке М х, t) заданы значения функций V2, р (значения осталь-  [c.301]

Для операторов, задаваемых обыкновенными дифференциальными уравнениями, весовая и параметрическая передаточная функции являются равноценными характеристиками, причем способы их нахождения весьма похожи. Чтобы найти весовую или параметрическую передаточную функцию оператора, задаваемого общим уравнением (3.1.1), необходимо решать либо уравнение (3.1.15) с начальными условиями (3.1.16), либо уравнение (3.1.31). Эти уравнения имеют одинаковую структуру и в каждом конкретном случае можно определить, какую из функций G t, т) или F i, р) проще искать. Некоторое различие в процедурах нахождения характеристических функций появляется только для стационарных объектов. В этом случае для нахождения весовой функции по-прежнему необходимо решать дифференциальное уравнение (3.1.17), в то время как для отыскания передаточной функции используется тривиальное алгебраическое уравнение (3.1.34), решение которого (3.1.35) имеет очень простой вид.  [c.97]

В гл. 5 рассматриваются некоторые общие свойства упругих и пластических стержневых систем. Существенно заметить, что вариационные принципы теории упругости, ассоциированный закон течения, свойство выпуклости поверхности нагружения для пластической системы доказываются здесь совершенно элементарно. Все эти теоремы будут сформулированы и доказаны впоследствии при более общих предположениях. Автору представляется по опыту его педагогической работы, что иллюстрация общих принципов на простейших примерах, где эти общие принципы совершенно очевидны, способствует лучшему их пониманию и усвоению. Гл. 6 посвящена теории колебаний, которая должна занять подобающее место как во втузовских, так и в университетских программах. Кроме собственно задач о колебаниях здесь излагается метод характеристик для решения задач о продольных волнах в стержнях. Этот метод настолько прост И ясен, что им можно пользоваться и его легко понять, не прослушав общего курса дифференциальных уравнений математи-  [c.12]


Аналитическое решение дифференциальных уравнений становится невозможны.м вследствие трудностей, связанных с определением пульса-ционных характеристик и их связи с осредненными параметрами потока.  [c.129]

Системы автоматического регулирования принято оценивать по их статическим и динамическим характеристикам, которые находятся различными путями, но которые являются основой для выбора и построения системы. Поведение всякой САР, ее элементов и звеньев характеризуется зависимостями между выходными и входными величинами в стационарном состоянии и при переходных режимах. Эти зависимости составляются на основе законов сохранения энергии и материи в виде дифференциальных уравнений. Из последних можно получить передаточные функции для исследования свойств системы, ее элементов и звеньев.  [c.414]

Ниже (см. п. 2—5) приведены основные дифференциальные уравнения, описывающие переходные процессы в электро- и гидроприводах и указаны пути получения их упрощенных динамических характеристик. Подчеркнем еще раз, что мы стремимся к получению динамической характеристики в виде линеаризованного дифференциального уравнения с переменными со, (угловая скорость якоря-ротора, вращающий момент) или s, (относительная угловая скорость, вращающий момент). При этом специфика электро- и гидропривода учитывается соответствующими постоянными времени и коэффициентом крутизны статической (линеаризованной) характеристики.  [c.8]

Механические характеристики двигателей и рабочих машин представляют собой большей частью сложные зависимости и изображаются в виде кривых линий. Динамическое исследование механизмов во многих случаях целесообразно производить аналитическими методами с тем, чтобы можно было установить закономерности изменения основных параметров машинного агрегата. Это возможно в тех случаях, когда удается решить дифференциальные уравнения движения механизма и представить их решения в конечном виде. Если механические характеристики двигателя и рабочей машины представляют собой сложные функции кинематических параметров, то сделать это оказывается невозможным, и тогда для решения дифференциальных уравнений приходится применять численные или графические методы. Путем их применения получаются результаты частного характера, по которым нельзя сделать обобщающих выводов.  [c.24]

Однако бывают случаи, когда силы зависят не только от положения, но еще и от скорости и времени или зависят только от скорости или от времени. Например, в электродвигателях (кроме синхронных машин переменного тока) развиваемый ими движущий момент зависит, как правило, от угловой скорости их ротора точно так же в центробежных насосах и вентиляторах потребляемый момент изменяется в квадратичной зависимости от угловой скорости (о механических характеристиках машин см. п. 27). В этих случаях теорема об изменении кинетической энергии не может свести задачу i интегрируемым дифференциальным уравнениям (так как работа сил не может быть определена без знания самого закона движения), поэтому задача определения движения машины должна в таких случаях строиться на решении дифференциального уравнения движения системы в обобщенных координатах, соответствующего обобщенным силам или обобщенным моментам, т. е. так называемого дифференциального уравнения Лагранжа 2-го рода. Для установления этого уравнения воспользуемся зависимостью (48). Из нее для бесконечно малого промежутка времени получим  [c.251]

Постоянный рост производительности вновь создаваемых машин требует увеличения скоростей движения, что в машинах с цикловыми механизмами сопряжено с возникновением вибраций. Вибрационный расчет для каждой проектируемой машины позволяет откорректировать ее упруго-инерционные характеристики с целью улучшения ее динамических качеств уменьшение вибраций, сил инерции, увеличение динамической точности. Однако расчет каждой конкретной машины, включаюш ий в себя составление дифференциальных уравнений движения и решения их на ЭВМ, является трудоемкой задачей.  [c.18]

В процессах тепло- и массообмена искомыми являются поля скоростей, температур и концентраций, поэтому в систему основных уравнений входят дифференциальные уравнения движения, сплошности, переноса теплоты и массы. Кроме того, в систему могут входить другие уравнения, определяющие состояние среды и их физические характеристики.  [c.37]

При реализации колеблющейся системы в конструкцию с определенным размещением в пространстве р упругих элементов и h демпферов характеризующие их постоянные в дифференциальных уравнениях приобретут конкретные значения, а поэтому целесообразно введение соответствующих обобщающих характеристик, увязывающих свойства связей с их конструктивной компоновкой.  [c.22]

Система уравнений (19) характеризуется большим количеством связей между движениями по выбранным координатам, созданными произвольным размещением точек присоединения упругих элементов и демпферов к колеблющейся массе системы. Наличие этих связей затруднит получение информации о неуравновешенности в простой форме без применения сложных счетно-решающих устройств, введение которых нежелательно с позиций надежности в эксплуатации. Кроме того, эти связи затруднят решение системы уравнений. Поэтому следует стремиться к снижению числа связей между дифференциальными уравнениями за счет обращения в нуль ряда обобщающих характеристик. Это допускают статические (16) и центробежные (18) моменты жесткостей и постоянных вязкого трения при соответствующем размещении упругих элементов и демпферов. Однако в конкретных схемах колеблющихся частей балансировочных устройств упрощение дифференциальных уравнений (19) будет различным, а поэтому их следует решать применительно к частным случаям.  [c.26]


Исходные дифференциальные уравнения (5-4-1)— (5-4-2) в процессе преобразования приобретают в некотором роде сходство с уравнениями, выражающими два связанных колебания поэтому по Генри физическая интерпретация их решений (5-4-15) заключается в том, что каждая температурная волна сопровождается диффузионной (массовой) волной , идущей с той же скоростью, величина которой пропорциональна температурной волне. Зависимость между этими волнами определяется только свойствами среды. Подобным же образом диффузионная волна сопровождается дополнительной температурной волной . Если даже одно из внешних условий, например потенциал массо-переноса, изменяется, тем не менее будет налицо законченная характеристика из двух массовых и двух температурных волн, хотя некоторые 3 них могут быть незначительными, если взаимодействие слабое.  [c.182]

В ходе процесса материал в той или иной степени изменяет свои структурные свойства. Когда свойства тела меняются по координате незначительно или самым беспорядочным образом, допустимо при исследовании явлений переноса соответствующие коэффициенты и термодинамические характеристики принимать постоянными и равными средним эффективным их значениям. В ряде случаев, однако, неоднородность физических свойств оказывается столь значительной, а изменение их по координате столь закономерным, что пренебрегать ею недопустимо. Последнее вынуждает нас переходить от решения дифференциальных уравнений переноса с постоянными коэффициентами к решению уравнений, где все или отдельные коэффициенты являются в конечном счете функцией координат.  [c.472]

Наибольшее распространение в машиностроении получили однокоординатные гидравлические следящие приводы дроссельного управления благодаря исключительной простоте их конструкции и высокой надежности в эксплуатации. Эти приводы, состоящие из комбинаций различных управляющих дроссельных золотников и гидродвигателей, могут вместе с тем рассматриваться в качестве типовых звеньев, лежащих в основе всех существующих гидравлических следящих приводов. Принцип действия и методы построения схем таких приводов рассматриваются в главе П. Далее в ней приводятся статические и динамические характеристики основных элементов этих приводов и рассматриваются вопросы устойчивости и качества регулирования приводов в виде линеаризованных моделей в основном по классическому методу с использованием передаточных функций. Такой метод позволяет наиболее простыми средствами исследовать динамику сложных следящих приводов, описываемых дифференциальными уравнениями высоких порядков. Глава включает методику расчета следящих приводов дроссельного управления и примеры конкретных станочных копировальных приводов.  [c.4]

При экспериментальных исследованиях гидроприводов необходимо достаточно точно определять характеристики элементов гидросистемы. Это представляет известные трудности. Такие нелинейные характеристики, как зависимость сил трения от скорости, зависимость от давления коэффициента податливости магистралей и модуля объемной упругости рабочей жидкости, содержащей не-растворенные газовые включения, нестабильны и могут быть определены в каждом конкретном случае по экспериментальным кривым переходных процессов расчетами, методика которых приведена в гл. III. Эти расчеты, выполненные по осциллограммам, полученным на различных стадиях работы исследуемой гидросистемы (пуск холодной системы режим разогрева начальная стадия режима установившейся температуры и т. д.), могут дать картину эволюции нелинейных характеристик гидропривода в зависимости от режима работы, выявить их стабильность и диапазон изменений параметров. Знание истинных характеристик гидросистемы необходимо и для оценки влияния различных упрощений и линеаризаций исходных дифференциальных уравнений движения на точность расчетов.  [c.139]

При экспериментальном исследовании поля скоростей и давлений в рабочей полости, распределения давлений на поверхностях лопастей и на стенках изучают влияние геометрических параметров на формирование потока и, следовател 1НО, на внещние и внутренние характеристики. Одновременно находят гидравлические потери, уточняют их расчеты, находят начальные и граничные условия, необходимые для решения дифференциальных уравнений, и сравнивают результаты теоретических и опытных данных.  [c.93]

Существует два способа расчета параметров жидкости в пограничном слое. Первый способ заключается в численном решении системы дифференциальных уравнений пограничного слоя, впервые полученных Прандтлем, и основывается на использева-нии вычислительных машин. В настоящее время разработаны различные математические методы, позволяющие создавать рациональные алгоритмы для решения уравнений параболического типа, к которому относится уравнение пограничного слоя. Такой подход широко используется для определения характеристик ламинарного пограничного слоя. Развиваются приближенные модели турбулентности, применение которых делает возможным проведение расчета конечно-разностными численными методами и для турбулентного потока. Второй способ состоит в нахождении методов приближенного расчета, которые позволяли бы получить необходимую информацию более простым путем. Такие методы можно получпть, если отказаться от нахождения решений, удовлетворяющих дифференциальным уравнениям для каждой частицы, и вместо этого ограничиться отысканием решений, удовлетворяющих некоторым основным уравнениям для всего пограничного слоя и некоторым наиболее важным граничным условиям на стенке и на внешней границе пограничного слоя. Основными уравнениями, которые обычно используются в этих методах, являются уравнения количества движения и энергии для всего пограничного слоя. При этом, однако, необходимо задавать профили скорости и температуры. От того, насколько удачно выбрана форма этих профилей, в значительной степени зависит точность получаемых результатов. Поэтому получили распространение методы расчета параметров пограничного слоя, в которых для нахождения формы профилей скорости и температуры используются дифференциальные уравнения Прандтля или их частные решения. Далее расчет производится с помощью интегрального уравнения количества движения.  [c.283]

Все это делает весьма актуальным рассмотрение упрощенных моделей, позволяющих рассчитывать интегральные характеристики процессов теплообмена и описываемых системами алгебраических иобыкновенных дифференциальных уравнений. В дальнейшем такие модели будем называть моделями с сосредоточенными параметрами, отделяя их тем самым от моделей с распределенными параметрами, которые учитывают пространственные распределения физических величин.  [c.7]

В первой главе рассматриваются уравнения Лагранжа второго рода для механических систем с иеременными массами. С помощью принципа условного затвердевания получено удобное на практике выраягение для обобщенной силы, возникающей за счет изменения кинетической энергии частиц перемепной массы. Исследована структура приведенного момента массовых сил и составлено дифференциальное уравнение движения машинного агрегата относительно его кинетической энергии. Рассматривается вопрос о влиянии масс обрабатываемого продукта, поступающих к исполнительным звеньям механизма, на инерционные параметры и суммарную приведенную характеристику машинного агрегата. В аналитической форме даются условия работы широких классов машинных агрегатов, время разбега и выбега которых мало но сравнению с общим временем их движения. Выясняется динамический смысл этих условий.  [c.7]


В нодавляюш ем большинстве практически важных случаев механические характеристики Мд, двигателя и рабочей машины являются нелинейными функциями соответствуюш,их кинематических параметров. Вследствие этого дифференциальное уравнение движения звена приведения машинного агрегата (1. 35)  [c.57]

Унификации математических моделей машин с цикловыми механизмами и созданию универсальной программы для их динамического расчета на ЭВМ посвящ,ена данная работа. Наличие этой программы позволит конструктору, не составляя дифференциальных уравнений движения машины, а зная лишь предварительно определенные упруго-инерционные характеристики ее, судить о ее динамических качествах.  [c.18]

В работах [1, 5] предложена схема рулонированной стенки сосуда, основанная на усреднении свойств навивки, показан путь идеализации, приводящий к схематизации стенки трехслойным цилиндром, а также исходные уравнения и полученная с их помощью разрешающая система дифференциальных уравнений, записанная в нормальной форме. При этом жесткостные характеристики слоя, схематизирующего навивку, представлены в общем виде, чем предусмотрена возможность различных вариантов усреднения. В настоящей статье конкретизируется усреднение зависящей от микронеровностей контактной податливости между витками навивки и исследуется работа схемати-  [c.63]

Одновременно с этим следует отметить, что в матема-тичбок ом отно шенйи интегральные уравнения ipawiHauiHOH-ного теплообмена отличаются существенной сложностью и их приближенные аналитические решения получены лишь для одномерных задач с введением ряда упрощающих допущений (постоянство радиационных характеристик, изотропное рассеяние в объеме и на граничной поверхности, неселективные (серые) среда и поверхность излучающей системы]. В общем же случае система интегральных уравнений теплообмена излучением содержит ряд заранее неизвестных величин (ядра интегральных ураинений, поглощательная и отражательная способность граничной поверхности, средние по спектру коэффициенты поглощения и рассеяния среды). Эти величины являются функционалами температурных полей в объеме и на поверхности и могут быть определены лишь с той или иной степенью приближения. Поэтому методы решения интегральных уравнений теплообмена излучением в общем случае по аналогии с различными дифференциальными методами можно рассматривать как своего рода интегральное приближение.  [c.190]

Анализ системы дифференциальных уравнений, описывающих процессы тепло- и массообмена в турбулентном потоке газа, показывает, что система не может быть замкнутой до тех пор, пока не будут получены дополнительные уравнения, определяющие статические характеристики турбулентных пульсаций и их связи с осредненпым движением. Объем наших знаний о турбулентном движении настолько ограничен, что не позволяет в настоящее время решить этот вопрос рационально. Необходимо накопление систематических подробных экспериментальных сведений о природе и внутренней структуре турбулентного движения как для сжимаемого, 3,0 так и для несжимаемого обтекания. г,о Недостаток требующихся для точного решения сведений при- t,0 водит к необходимости при ре-  [c.307]

Аналитические методы определения характеристик объектов регулирования основаны на составлении их дифференциальных уравнений. Составление дифференциальных уравнений базируется на использовании основных физических законов сохранении массы, энергии и количества движения. Как правило, таким путем удается получить нелинейное уравнение объекта, аналитическое решение которого в общем случае не может быть получено. Следующим шагом является линеаризация полученного уравнения, т. е. переход к линейной математической модели объекта. Линеаризация обычно проводится путем разложения нелинейных зависимостей в ряд Тейлора в окрестности исходного станционарного режима с сохранением только линейной части разложения и последующим вычитанием уравнений статики. Полученная таким образом линейная модель объекта справедлива лишь при малых отклонениях от исходного стационарного режима. Решение уравнений при ступенчатом или импульсном изменении входных величин позволяет получить соответственно переходные функции (кривые разгона) или импульсные временные характеристики объектов. Решение часто проводят в области изображений Лапласа или Фурье. В этом случае получают соответственно передаточные функции или амплитудно-фазовые характеристики.  [c.817]


Смотреть страницы где упоминается термин Дифференциальные уравнения и их характеристики : [c.253]    [c.257]    [c.259]    [c.84]    [c.91]    [c.9]    [c.219]    [c.603]    [c.16]    [c.86]    [c.261]   
Смотреть главы в:

Молекулярное течение газов  -> Дифференциальные уравнения и их характеристики



ПОИСК



Вероятностные характеристики решений линейных дифференциальных уравнений при нестационарных случайных возмущениях

Линии скольжения как характеристики дифференциальных уравнений теории плоского течения идеально пластичного вещества

Логинов. Численный метод интегрирования одной системы дифференциальных уравнений тепло- и массопереноса в случае переменных физических характеристик

Преобразования дифференциальных уравнений характеристик

Системы линейные - Дифференциальные уравнения 316-319 - Понятие характеристика

Уравнение характеристик

Характеристики дифференциальных

Характеристики дифференциальных уравнений в частных производны

Характеристики системы дифференциальных уравнений

Характеристики системы обыкновенных дифференциальных уравнений



© 2025 Mash-xxl.info Реклама на сайте