Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка задачи теории упругости в напряжениях координат

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]


Если объемные силы и температура как функции координат известны и на границе заданы перемещения, то из уравнений (5.1) с известными начальными данными можно найти перемещения внутренних точек тела и таким образом решить задачу теории упругости в перемещениях. Напряжения после этого вычисляются с помощью закона Гука. Уравнения совместности деформаций при такой постановке задачи удовлетворяются автоматически, так как формулы, выражающие деформации через перемещения, представляют собой, как известно, общее решение уравнений совместности.  [c.343]

Согласно постановке краевой задачи необходимо найти в трехмерной области У, ограниченной замкнутой поверхностью S, тензорное поле Q (г), где г — радиус-вектор, определяющий положение произвольной точки внутри области V в глобальной криволинейной системе координат <7, где = 1, 2, 3 (рис. 2.26). При решении задачи теплопроводности Q = t тензор ранга О, температура, скаляр при решении задачи теории упругости в перемещениях Q- и - тензор ранга 1, вектор перемещений при решении этой же задачи в напряжениях Q = = о - тензор ранга 2, тензор напряжений.  [c.48]

Методы граничных элементов, рассмотренные в предыдущих двух главах, предназначены для решения общих краевых задач теории упругости в плоской постановке. Как известно, такие задачи характеризуются плоской областью R, ограниченной контуром С. Область R может быть либо конечной (область внутри контура С), либо бесконечной (область вне контура С), как показано на рис. 6.1. В любом случае, с каждой точкой Q контура С мы связываем касательные и нормальные смещения и м и касательные и нормальные напряжения (или усилия) (Т и (Т . Эти величины задаются, как обычно, относительно локальной системы координат S, п точки Q  [c.111]

Возможна также постановка обратной задачи теории упругости. В этом случае задаются напряжения, деформации или перемещения для всех внутренних точек тела как функции координат. Требуется определить условия на границах тела, которым соответствует заданное напряженно-деформированное состояние.  [c.35]

Исследование динамических задач теории упругости в нелинейной постановке относится к одной из сложных и мало разработанных областей механики твердого деформируемого тела. В то же время существует целый класс задач, в которых на некоторое конечное напряженное статическое состояние накладываются малые динамические возмущения. Это позволяет в строгой постановке строить решение статической задачи, а динамику явлений, основываясь на малости динамических возмущений, исследовать на базе линеаризованных относительно некоторой малой окрестности напряженного состояния соотношений. При этом в полном объеме сохраняется присущая нелинейным задачам специфика постановки краевых задач в зависимости от используемой системы координат и используемых в процессе решения тензорных и векторных величин, описывающих напряженное состояние среды.  [c.34]


Механическая и математическая постановка задачи о кручении тела вращения. При рассмотрении задачи об осесимметричной деформации тела вращения в цилиндрической системе координат г, ф, г основные уравнения линейной теории упругости распадаются на две независимые системы. Первая система служит для определения перемещений и и т и напряжений о,, Ог, и Гп в случае, когда тело вращения, деформируясь, не скручивается. Вторая система служит для определения перемещения V и касательных напряжений Тг и Гщ в случае чистого кручения тел вращения.  [c.246]

Соотношения Бельтрами—Митчелла открывают еще один возможный путь решения задач классической теории упругости — метод их решения в напряжениях, не прибегая к предварительному определению перемещений. В этой постановке проблема сводится к отысканию таких шести функций от координат которые одновременно удовлетворяли бы трем уравнениям равновесия (5.2), шести соотношениям Бельтрами—Митчелла (9.3), (9.4) и, кроме того, подчинялись трем заданным краевым условиям в каждой точке поверхности, ограничивающей тело. Иногда второй путь решения оказывается более удобным, чем первый, состоящий в решении системы (7.1) из трех уравнений с тремя неизвестными и, V, . В частности, это будет безусловно так, если граничные условия на всей поверхности тела формулируются в напряжениях.  [c.196]

Монография написана, на наш взгляд, методически чрезвычайно удачно, вполне строго и вместе с тем достаточно просто. На основе традиционных концепций однородного напряженно деформированного состояния выясняются наиболее существенные особенности механического поведения вязких, упругих и высокоэластичных сред и предлагается оригинальный, сравнительно несложный метод формулирования соответствующих уравнений реологического состояния. Автор обходится элементарным математическим аппаратом векторного исчисления и системами лагранжевых координат с подвижным локальным векторным базисом (так называемые конвективные системы координат). Тем самым он облегчает неподготовленному читателю усвоение материала, добиваясь в первую очередь физической ясности изложения. Математически строгая постановка и анализ исследуемых задач в случае неоднородных напряжений и деформаций даются лишь в главе 12, где с помощью тензоров кратко излагается теория конечных деформаций в вязко-эластичных средах. Правда, здесь изложение слишком уж конспективно, и многочисленные доказательства , как правило, сводятся к перечню  [c.7]

В ЭТОЙ главе кратко изложены основные соотношения теории многократного наложения больших упругих и вязкоупругих деформаций и общая постановка краевых задач этой теории. В теории многократного наложения больших деформаций напряженно-деформированное состояние может быть описано не только в координатах начального и конечного (текущего) состояний, но и в координатах одного из нескольких промежуточных состояний. Это особенно важно при рассмотрении задач с последовательно изменяющимися границами и граничными усилиями.  [c.23]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]


Рассматриваемая в данной главе стохастическая краевая задача теории упругости является основой статистической механики композитов со случайной структурой. Начало систематическому изучению этой задачи положено работой И.М. Лифшица и Л.Н. Розенцвейга [160] применительно к поликристаллам, в дальнейшем многочисленные результаты были обобщены в монографиях [62, 130, 162, 172, 247, 296, 320 и др.]. При единой практически для всех работ в этом направлении постановке задачи, связанной с представлением упругих модулей микронеоднородной среды как случайных статистически однородных функций координат и выбором граничных условий в виде, обеспечивающим однородность макроскопических деформаций, а также общности подхода к решению с использованием метода функции 1 ина уравнений теории упругости в перемещениях для неограниченной изотропной или анизотропной среды существуют различия в получаемых результатах для эффективных свойств композитов и, в большей мере, для оценки полей напряжений и деформаций в компонентах композитов. Это обусловлено статистической нелинейностью исследуемой задачи и построением приближенных решений, которые неодинаково адекватны физической модели композита, в частности, его структуре.  [c.39]

В общем случае изучение механических процессов в начально-деформированных телах необходимо проводить в рамках нелинейной теории упругости. Однако, множество процессов, происходящих в начально-деформированных телах, можно рассматривать в рамках линеаризованной теории наложения малых деформаций (возмущений) на конечные деформации (начальное состояние) в предположении, что возмущения малы. Традиционно [30, 41, 42] различают три состояния тела естественное (ненапряженное) состояние (ЕС), начально-деформированное состояние (НДС) и актуальное (возмущенное по отношению к НДС) состояние. При этом особое значение приобретает выбор системы координат, которая может быть связана либо с естественной конфигурацией (система координат Лагранжа или материальная система координат), либо с актуальной конфигурацией (система координат Эйлера) [30, 41, 42]. Линеаризованные уравнения движения существенным образом зависят как от выбора системы координат, так и от выбора определяющих соотношений, поскольку имеет место возможность определения напряженного состояния различными тензорами (Коши, Пиола, Кирхгофа и т.д.) и множественность их представления через меры деформации (Коши-Грина, Фингера, Альманзи) или градиент места. Более детально с особенностями постановки задач для преднапряженных тел можно ознакомиться в монографиях А. И. Лурье [41], А. Лява [42] и А. Н. Гузя [30].  [c.290]

Остановимся подробнее на получении системы интегро-функциональ-ных уравнений контактной задачи. Использование принципа суперпозиции предполагает возможность получения аналитического решения краевой задачи динамической теории упругости с однородными граничными условиями в напряжениях для составляющих многослойную область с каноническим включением элементов. Таковыми являются однородный упругий слой, однородное упругое полупространство, полость в безграничном пространстве и упругое включение, граница которого тождественна границе полости. Решение задач для однородного слоя (полупространства) строится методом интегральных преобразований с использованием принципа предельного поглощения и может быть получено в виде контурного несобственного интеграла [2,4,14]. В зависимости от постановки задачи (пространственная, плоская, осесимметричная) получаем контурные интегралы типа обращения преобразования Фурье или Ханкеля [16]. Решение задачи для пространства с полостью, описываемой координатной поверхностью в ортогональной криволинейной системе координат, получаем в виде рядов по специальным функциям (сферическим, цилиндрическим (Ханкеля), эллиптическим (Матье)) [17]. При этом важно корректно удовлетворить условиям излучения, для чего можно использовать принцип излучения. Исключение составляет случай горизонтальной цилиндрической полости при исследовании пространственной задачи. Здесь необходимо использовать метод интегральных преобразований Фурье [16] вдоль образующей цилиндра и принцип предельного поглощения [3] для корректного удовлетворения условиям излучения энергии вдоль образующей.  [c.312]

В седьмой главе разработанные методы решения динамических контактных аадач теории упругости с одчостороннимн ограничениями для тел с трещинами использованы при решении задачи о взаимодействии плоской волны растяжения-сжатия с трещиной конечной длины в плоскости. Приведены уравнения, необходимые для математической постановки задачи. Эти уравнения являются следствием общих уравнений, полученных в предьщущих главах. Исследована зависимость точности решения от аппроксимации по пространственным координатам и по времени, а также от количества членов ряда Фурье разложения компонент напряжен-но-деформированиого состояния. Приведены также численные результаты и исследованы количественные и качественные эффекты, вызванные контактным взаимодействием берегов трещины.  [c.7]


Смотреть страницы где упоминается термин Постановка задачи теории упругости в напряжениях координат : [c.332]   
Теория упругости и пластичности (2002) -- [ c.67 , c.68 ]



ПОИСК



656 —• Постановка задачи

Задача в напряжениях

Задача теории упругости в напряжения

Задача упругости

Задачи теории упругости

К постановке зг ачи

Напряжения упругие

Постановка задач теории упругости в напряжениях

Постановка задачи теории упругости

Теория напряжений

Теория упругости

Упругость Теория — см Теория упругости

Упругость напряжение



© 2025 Mash-xxl.info Реклама на сайте