Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка задачи теории упругости в напряжениях перемещениях

Наиболее удобно использовать постановку задачи теории упругости в перемещениях, если на границе тела заданы непосредственно перемещения. Если же граничные условия записаны в напряжениях, то эти условия с помощью закона Гука (16.3, а) и соотношений Коши (16.2) следует преобразовать к такому виду, что они будут включать в себя перемещения. При заданных на границах нагрузках с учетом указанных преобразований граничные условия имеют вид  [c.339]


Несмотря на то, что общий план решения задач теории упругости в перемещениях или напряжениях достаточно ясен, реализация этого плана представляет весьма большие трудности, и в общем виде решить эти уравнения пока не представляется возможным. Лишь для простейших случаев удается получить решение задачи теории упругости, однако эти решения задач в самой общей постановке представляют очень большую ценность. Точные решения задач теории упругости являются своеобразным эталоном, с которым можно сравнивать приближенные решения, полученные в результате введения определенных дополнительных деформационных гипотез.  [c.56]

Если объемные силы и температура как функции координат известны и на границе заданы перемещения, то из уравнений (5.1) с известными начальными данными можно найти перемещения внутренних точек тела и таким образом решить задачу теории упругости в перемещениях. Напряжения после этого вычисляются с помощью закона Гука. Уравнения совместности деформаций при такой постановке задачи удовлетворяются автоматически, так как формулы, выражающие деформации через перемещения, представляют собой, как известно, общее решение уравнений совместности.  [c.343]

Согласно постановке краевой задачи необходимо найти в трехмерной области У, ограниченной замкнутой поверхностью S, тензорное поле Q (г), где г — радиус-вектор, определяющий положение произвольной точки внутри области V в глобальной криволинейной системе координат <7, где = 1, 2, 3 (рис. 2.26). При решении задачи теплопроводности Q = t тензор ранга О, температура, скаляр при решении задачи теории упругости в перемещениях Q- и - тензор ранга 1, вектор перемещений при решении этой же задачи в напряжениях Q = = о - тензор ранга 2, тензор напряжений.  [c.48]

В рассматриваемой постановке при = s G S представление (3.9) выражает собой преобразование вектора напряжений на L в вектор перемещений на S. При известных векторах ы (i) иы°(5) и ядре интегрального оператора система уравнений (3,5) является системой интегральных уравнений Фредгольма первого рода относительно неизвестного вектора напряжений Р/с(х) на L. Решение этой системы представляет собой обратную задачу теории упругости, в которой искомый вектор напряжений недоступен для прямого исследования, а изучается его косвенное проявление в виде вектора перемещений на доступном для измерений участке поверхности.  [c.65]


Располагая вариационными уравнениями Лагранжа и Кастильяно, можем теперь дать вариационную постановку задачи теории упругости если задача решается в п е р е м е -щ е н и я X, то требуется найти такие перемещения и, которые непрерывны внутри тела, удовлетворяют геометрическим граничным условиям и минимизируют полную потенциальную энергию системы V если задача решается в напряже-н и я X, то требуется найти такие напряжения а, которые удовлетворяют уравнениям равновесия и статическим граничным условиям и минимизируют полную дополнительную энергию системы У,  [c.43]

Возможна также постановка обратной задачи теории упругости. В этом случае задаются напряжения, деформации или перемещения для всех внутренних точек тела как функции координат. Требуется определить условия на границах тела, которым соответствует заданное напряженно-деформированное состояние.  [c.35]

Прямой метод решения задач теории упругости, заключающийся в интегрировании основных уравнений при заданных граничных условиях, не всегда возможен. Обратный метод, примененный в гл. 7 для плоских задач, часто не соответствует практической постановке задачи. Сен-Венаном был предложен так называемый полуобратный метод решения задач теории упругости, который заключается в том, что часть перемещений и напряжений задается, а остальные неизвестные определяются из уравнений теории упругости при заданных граничных условиях. Полуобратный метод не является общим. Однако он оказался одним из самых эффективных методов решения задач теории упругости.  [c.172]

Постановка граничных условий для уравнений Ламе особенно проста, когда речь идет о первой основной задаче теории упругости, т. е. когда на поверхности задано и, = Ui. Если на границе заданы усилия, то следует по закону Гука выразить напряжения через деформации, т. е. первые производные от перемещений, и внести в граничные условия (8.4.6). Таким образом, на границе оказываются заданными некоторые линейные комбинации из первых производных функций ш, которые мы выписывать не будем.  [c.249]

Во всех этих случаях массовые силы предполагались известными. В зависимости от постановки при решении задачи теории упругости искомыми функциями являются либо перемещения, либо напряжения.  [c.35]

Математическая постановка задачи анализа упругого формоизменения твердого тела приводит к девяти уравнениям в частных производных с девятью неизвестными (напряжения, действующие на различно ориентированные сечения и составляющие вектора перемещения). Граничные условия задачи классической теории упругости определяются данными любого рассматриваемого конкретного случая (форма напряженного тела, приложенная к нему внешняя нагрузка).  [c.14]

В зависимости от постановки для решения задач теории упругости могут применяться различные интегральные преобразования. При этом получаются точные решения для напряжений и перемещений в форме несобственных интегралов, сходимость которых обеспечена. Обычно они оцениваются численно, в замкнутой форме обратное преобразование возможно лишь в частных случаях. Некоторые примеры обсуждаются в последующих параграфах 8.6 и 9.6.  [c.127]

Прямая задача теории упругости, т. е. определение перемещений и напряжений упругого тела по заданным внешним силам и условиям закрепления, даже в линейной ее постановке, весьма трудна, и в настоящее время нет эффективного общего метода ее аналитического решения. Иными словами, сформулировав какую-либо конкретную задачу этой теории математически, мы часто не имеем достаточных математических средств, для того чтобы ее решить, если не говорить о приближенных методах интегрирования или об использовании вычислительных машин. Однако поскольку всякая задача теории упругости является по существу физической задачей, уместно привлекать к ее решению не только математические, но и физические соображения. Именно этим путем и было решено большинство задач теории упругости, представляющих наибольший практический интерес.  [c.236]


В классической линейной теории упругости принята следующая постановка задачи уравнения равновесия формулируются для недеформированного состояния, компоненты деформаций связаны с перемещениями линейными зависимостями, а материал подчиняется закону Гука, т. е. напряжения и деформации связаны между собой линейными зависимостями. В этом случае задача определения напряженно-деформированного состояния сводится к линейным дифференциальным уравнениям, всегда имеющим единственное решение. Нетрудно показать, что напряженно-деформированное состояние, соответствующее этому единственному решению, является устойчивым.  [c.77]

При решении задач термоупругости в качестве основных неизвестных удобно принимать перемещения или напряжения. В соответствии с этим различают, как и в изотермической теории упругости, постановку задачи термоупругости в перемещениях и постановку задачи термоупругости в напряжениях.  [c.406]

Главное, что будет излагаться в этой книге, по существу, состоит из трех основных частей 1) основные понятия о перемещениях, внутренних напряжениях, деформациях и работе внутренних сил, а также о процессе нагружения малого элемента твердого тела 2) основные механические свойства твердых тел, такие, как упругость и идеальная пластичность, текучесть, ползучесть и релаксация, вязкость и динамическое сопротивление, усталость и разрушение 3) основные кинематические и геометрические гипотезы, упрощающие математическую постановку задач о напряжениях, деформациях, перемещениях и разрушениях твердых тел при различных внешних воздействиях, а также основные уравнения и методы решения задач о деформации и прочности тел. Методы сопротивления материалов отличаются от более строгих методов теории упругости и пластичности в основном введением ряда упрощающих предположений кинематического и геометрического характера и, тем не менее, в большинстве случаев оказываются достаточно точными.  [c.12]

Подчеркнем, что, как утверждалось выше, при произвольных напряжениях а( ) и т( ) выражениям (5.9) и (5.10) не соответствуют действительные перемещения точек оболочки, поскольку уравнение неразрывности деформаций (5.8) будет нарушено. Однако если эти выражения в силу условий (5.11) отождествить с действительными перемещениями граничных точек упругого шара, то тем самым будет наложено ограничение на контактные напряжения a(fl ), т(А ) и в определенном смысле будет удовлетворено уравнение неразрывности (совместимости) деформаций оболочки. В конечном итоге можно считать, что последнее уравнение вследствие указанной трактовки условий контакта (5.11) окажется нарушенным в меньшей степени. Придерживаясь этой точки зрения, примем такую постановку задачи, когда выражения (5.9) и (5.10), определяемые по безмоментной теории тонкой сферической оболочки, в силу условий (5.11) в зоне контакта отождествляются с действительными перемещениями граничной поверхности упругого весомого шара.  [c.324]

При решении задач термоупругости в качестве основных неизвестных удобно принимать компоненты вектора перемещения или компоненты тензора напряжения В соответствии с этим различают, как и в изотермической теории упругости, постановку задачи термоупругости в перемещениях, при которой раньше всех других неизвестных находятся неизвестные и постановку задачи термоупругости в напряжениях, когда решение задачи начинается с определения неизвестных Во всех случаях, если это особо не оговаривается, упругие и термические коэффициенты предполагаются постоянными.  [c.37]

Механическая и математическая постановка задачи о кручении тела вращения. При рассмотрении задачи об осесимметричной деформации тела вращения в цилиндрической системе координат г, ф, г основные уравнения линейной теории упругости распадаются на две независимые системы. Первая система служит для определения перемещений и и т и напряжений о,, Ог, и Гп в случае, когда тело вращения, деформируясь, не скручивается. Вторая система служит для определения перемещения V и касательных напряжений Тг и Гщ в случае чистого кручения тел вращения.  [c.246]

При классической постановке задачи для того, чтобы удовлетворялись уравнения движения в перемещениях, компоненты вектора перемещений должны быть функциями класса (V х 3 ). Чтобы удовлетворялись основные уравнения теории упругости, определяемые дифференциальными операторами (4.30), компоненты напряженно-деформированного состояния должны принадлежать следующим функциональным пространствам щ 6 (V X е /, Рг 6  [c.94]

Теория упругости как стройная научная дисциплина зародилась в начале XIX столетия, когда почти одновременно Л. Навье (1821) [54], А, Коши (1822) [40] и С. Пуассон (1829) [55] вывели общие уравнения равновесия и движения упругих тел и дали правильную постановку соответствующих задач. При этом допускалось, что перемещения точек тела весьма малы и что соотношения между напряжениями и деформациями линейны.  [c.9]

Соотношения Бельтрами—Митчелла открывают еще один возможный путь решения задач классической теории упругости — метод их решения в напряжениях, не прибегая к предварительному определению перемещений. В этой постановке проблема сводится к отысканию таких шести функций от координат которые одновременно удовлетворяли бы трем уравнениям равновесия (5.2), шести соотношениям Бельтрами—Митчелла (9.3), (9.4) и, кроме того, подчинялись трем заданным краевым условиям в каждой точке поверхности, ограничивающей тело. Иногда второй путь решения оказывается более удобным, чем первый, состоящий в решении системы (7.1) из трех уравнений с тремя неизвестными и, V, . В частности, это будет безусловно так, если граничные условия на всей поверхности тела формулируются в напряжениях.  [c.196]


Равновесие хрупких тел с трещинами. Построение теории разрушения хрупких материалов связано с изучением напряженного состояния в окрестности поверхности разрыва поля перемещения ( трещин ) в упругом теле. Наиболее простой является задача о плоском напряженном состоянии в плите с прямолинейным разрезом, нагруженной силами, перпендикулярными разрезу, концы которого достаточно удалены от краев плиты. В линеаризованной постановке классическое решение, получаемое предельным переходом из решения задачи о напряженном состоянии в окрестности эллиптического отверстия, приводит к бесконечным напряжениям в концах трещины (угловых точках области). Без добавочных предполо-  [c.69]

Исследование панельного флаттера в нелинейной постановке представляет интерес в двух отношениях. Во-первых, оно позволяет оценить амплитуды перемещений и напряжений при повышении критической скорости флаттера и ответить на вопрос, в какой мере это превышение является опасным. Во-вторых, исследование нелинейных задач необходимо для того, чтобы изучить поведение упругой системы на границе области неустойчивости и судить о возможности возбуждения автоколебаний конечной амплитуды при докритических скоростях. Теория панельного флаттера в нелинейной постановке разрабатывалась В. В. Болотиным (1958—  [c.356]

Наряду с двумя pa MOi репными постановками задач теории упругости (в перемещениях и в напряжениях) известны и другие подходы, когда в качестве искомых функций используются одновременно и перемещения и напряжения (смешанная постановка задачи) или другие, искусственно вводимые функции. Один из таких подходов будет рассмотрен в следующей главе.  [c.341]

Как уже отмечалось, решение задач теории упругости в прямой постановке (в перемещениях либо напряжениях) представляет очень большие сложности и общих методов решеипя задач в такой постановке пока не существует, Обратная постановка задач часто не соответствует потребностям практики, так как жизнь обычно ставит задачи в прямой постановке. Прп этом известны граничные условия, и требуется определить поло напряжений, деформаций п перемещений, соответствующих заданным граничным условиям.  [c.58]

Задание закона состояния приводит к замкнутой системе дифференциальных уравнений, по которой определяется реализуе- мое в теле напряженное состояние и вектор перемещения точек среды. Из сказанного следует, что в линейной постановке задача определения формы и размеров упругого тела в конечном состоянии отодвигается на второй план—их находят после того, как задача решена в предполон<ении неизменности начальной формы тела. Этот прием позволяет избежать серьезной трудности нелинейной теории упругости, когда напряженное состояние приходится разыскивать в 1/-объеме — в теле с неизвестной наперед границей О. Его законность подтверждается тем, что при решении задач нелинейной теории упругости методом последовательных приближений, например в форме ряда по степеням параметра ма.пости, характеризующего малость градиента вектора перемещения, исходное приближение, получаемое при пренебрежении слагаемыми, содержащими этот параметр, представляет решение задачи для линейно-упругого тела, когда определяющие уравнения отнесены к начальному объему и начальной форме его границы.  [c.102]

Вариационные принципы при учете температурных слагаемых. Уравнение теплопроводности рассматривается в его классической форме Фурье (3.6.8) гл. III, а в задаче теории упругости сохраняется статическая постановка, то есть пренебрегают изменениями во времени напряженного состояния, вызываемыми нестационарностью температурного поля. Это позволяет рассматривать температуру как неварьируемый при варьировании напряженного состояния внешний фактор и в соответствии со сказанным в п. 1.14 формально трактовать наличие температурного поля как поля объемных сил с потенциалом (1.14.5) и поверхностных сил (1.14.6). Учитывается действие этих сил и реактивных сил на Oj, создаваемых связями, обеспечивающими заданные перемещения на этой части поверхности тела.  [c.161]

Рассматриваемая в данной главе стохастическая краевая задача теории упругости является основой статистической механики композитов со случайной структурой. Начало систематическому изучению этой задачи положено работой И.М. Лифшица и Л.Н. Розенцвейга [160] применительно к поликристаллам, в дальнейшем многочисленные результаты были обобщены в монографиях [62, 130, 162, 172, 247, 296, 320 и др.]. При единой практически для всех работ в этом направлении постановке задачи, связанной с представлением упругих модулей микронеоднородной среды как случайных статистически однородных функций координат и выбором граничных условий в виде, обеспечивающим однородность макроскопических деформаций, а также общности подхода к решению с использованием метода функции 1 ина уравнений теории упругости в перемещениях для неограниченной изотропной или анизотропной среды существуют различия в получаемых результатах для эффективных свойств композитов и, в большей мере, для оценки полей напряжений и деформаций в компонентах композитов. Это обусловлено статистической нелинейностью исследуемой задачи и построением приближенных решений, которые неодинаково адекватны физической модели композита, в частности, его структуре.  [c.39]

Остановимся кратко на содержании главы. В разд. 2,2 на основе принципа виртуальных перемещений Лагранжа выведены основные соотношения подкрепленной ребрами криволинейной панели. В разд. 22.3 выделено элементарное решение Сопротивления материалов. Преобразование исходных уравнений для плоской панели к системе разрешающих уравнений содержится в разд. 2.4. Далее в разд. 2.5 изучено напряженно-деформированное состояние симметрично подкрепленной панели. Рассмотрена панель как конечной, так и бесконечной длины. Решение представлено в виде быстросходящихся рядов, даны результаты численных расчетов и программы расчета. В разд. 2.6 изучается эффект подкрепления панели на торце дополнительным ребром, работающим только иа изгиб. В разд. 2.7, как и в разд. 2.5, рассмотрена симметрично подкрепленная панель, но при кососимметрнчиом загруженин ребер парой сил. Решение отличается от полученного в разд. 2.5, так как требуется учитывать изгиб панели в ее плоскости. Решение доведено до числа. В разд. 2.8 рассмотрены панели с двумя ребрами разной жесткости для случа.я, когда поперечное перемещение панелн равно нулю или отлично от нуля. В разд. 2.9 на примере бесконечной пластины с полубесконечным ребром дается оценка погрешности решения путем введения гипотезы отсутствия поперечной деформации пластины. Эта оценка выполнена, путем срав неиня решения на основе упомянутой гипотезы с точным решением, полученным иа основе уравнений плоской теории упругости. Результаты этого раздела опубликованы Э. И. Грнголюком и В. М. Толкачевым [5]. В этой работе дана также общая постановка задач включения на основе гипотезы отсутствия поперечной деформации, рассмотрены задачи для пластины и ребра конечных размеров, для полубесконечной пластины с полубесконечным ребром, а также задача для защемленной по боковым сторонам полубесконечной полосы, нагруженной на торце постоянной распределенной нормальной нагрузкой.  [c.68]


В четвертой главе излагается общая постановка плоской задачи термоупругости в перемещениях и напряжениях при этом особое внимание уделяется формулировке плоской задачи термоупругости в напряжениях для многосвязной области в связи с изучением термонапряженности плоских многосвязных тел. Здесь дается подробный вывод условий однозначности для перемещений и углов поворота, выясняется связь их неоднозначности с дислокационными напряжениями и приводится аналогия между плоской задачей термоупругости для многосвязных тел при стационарном температурном поле и соответствующей плоской задачей изотермической теории упругости с дислокациями, установленная Н. И. Мусхелишвили в 1916 г.  [c.8]


Смотреть страницы где упоминается термин Постановка задачи теории упругости в напряжениях перемещениях : [c.304]   
Теория упругости и пластичности (2002) -- [ c.56 ]



ПОИСК



656 —• Постановка задачи

Задача в напряжениях

Задача в перемещениях

Задача теории упругости в напряжения

Задача теории упругости в перемещениях

Задача упругости

Задачи теории упругости

К постановке зг ачи

Напряжения упругие

Перемещения и напряжения

Постановка задач теории упругости в напряжениях

Постановка задач теории упругости в перемещениях

Постановка задачи теории упругости

Теория напряжений

Теория упругости

Упругие перемещения

Упругость Теория — см Теория упругости

Упругость напряжение



© 2025 Mash-xxl.info Реклама на сайте