Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Галеркина 19, 20 — Устойчивость

Используя метод Бубнова — Галеркина, получить уравнения устойчивости стержневой системы в форме метода перемещении. Указание. При выводе использовать уравнение устойчивости прямого бруса в форме (3.147)  [c.24]

Для интегрирования системы геометрически нелинейных дифференциальных уравнений устойчивости используют метод возмущений [105], метод разложения в степенные ряды [106] и [107], метод Бубнова — Галеркина и энергетические методы.  [c.262]


Одним из наиболее универсальных методов приближенного интегрирования дифференциальных уравнений является метод Галеркина (или Бубнова—Галеркина ). Рассмотрим схему решения этим методом задач устойчивости, сводящихся к линейным задачам на собственные значения (см. приложение I).  [c.71]

Методом Галер кина могут быть решены (и решены) многие другие задачи устойчивости прямоугольных и круглых пластин. Но при всех достоинствах этот метод нельзя считать универсальным методом решения задач устойчивости пластин. Основной недостаток метода Галеркина связан с необходимостью удовлетворения всех граничных условий при выборе базисных функций. Геометрические граничные условия можно выполнить сравнительно легко, но даже для пластин простой формы трудно выбрать базисные функции, удобные для математической обработки и удовлетворяющих всем силовым граничным условиям. Например, в задачах устойчивости прямоугольных пластин с одним свободным краем чрезвычайно трудно подобрать удобную систему базисных функций, удовлетворяющих граничным условиям на свободном краю. Это замечание относится и к пластинам с упруго закрепленным краем или пластинам с отверстиями. Во всех такого рода задачах приближенное решение удобнее получать энергетическим методом.  [c.177]

Метод нормальных координат. Решение ищу г в виде ряда (2), где (р (х) — собственные формы соответствующей консервативной системы или, в более общем случае, некоторые функции, удовлетворяющие граничным условиям для и (х, t) и обладающие в некотором смысле полнотой. Уравнения относительно обобщенных координат Qh (t) могут быть получены, например, методом Бубнова—Галеркина. Если функция U (х, t) аппроксимируется конечным числом членов ряда, то приходим к задаче об устойчивости некоторой неконсервативной системы с конечным числом степеней свободы. Дальнейший анализ проводят,пользуясь методами из гл. V.  [c.243]

Пример 4. Рассмотрим задачу динамической устойчивости упругого консольного стержня при наличии периодической следящей силы. Для дискретизации задачи применим метод Бубнова - Галеркина, приняв в качестве базисных балочные функции консольного стержня. Ограничившись разложением по первым четырем формам колебаний, уравнения возьмем в виде  [c.492]


Условия (2.2) впервые были предложены и использовались И. Г. Бубновым (1872—1919). В рецензии на монографию С. П. Тимошенко Об устойчивости упругих систем И. Г. Бубнов [6.3] (1913) нашел критическую силу сжатого консольного стержня, а также критическую нагрузку свободно опертой прямоугольной пластины при неравномерном продольном сжатии. Год спустя в курсе строительной механики корабля И. Г. Бубнов ([6.2], стр. 527) (1914) применил этот метод в задаче устойчивости пластины при эксцентричном сжатии и чистом сдвиге. Позднее Б. Г. Галеркин [6.7] (1917) применил метод Бубнова (в его работе имеется ссылка (стр. 897) на курс И. Г. Бубнова по строительной механике корабля [6.2]) к исследованию устойчивости и вычислению прогибов стержней и пластин для различных граничных условий. Интерпретация метода Бубнова с позиций принципа возможных перемещений была дана  [c.79]

Переходим к анализу устойчивости. Точное решение уравнения нейтрального равновесия (7.50) затруднительно из-за наличия в правой части (7.50) множителей (7.57). Для построения приближенного решения воспользуемся методом Бубнова —Галеркина.  [c.214]

Устойчивость цилиндрических оболочек при неоднородном осевом сжатии, в частности при изгибе моментом, рассматривалась во многих работах см. обзоры [36, 37]). В работе [44] применялся метод Бубнова — Галеркина, причем прогиб аппроксимировался двойным тригонометрическим рядом. В работах [112, 114] был использован излагаемый ниже метод асимптотического интегрирования.  [c.93]

В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]

В этом параграфе разработан метод численного решения линейных краевых задач устойчивости и свободных колебаний слоистых оболочек вращения, объединяющий в себе метод Бубнова — Галеркина для линейных интегральных уравнений Фредгольма второго рода с обобщенной формой метода инвариантного погружения. Изложение метода строится на примере задачи устойчивости и сопровождается указаниями на модификации, необходимые для перехода к задаче  [c.205]

Разработанный здесь метод численного определения матричной функции Грина обладает рядом достоинств, позволяющих рекомендовать его к широкому практическому использованию. В нем эффективно преодолевается сильная численная неустойчивость дифференциальных уравнений неклассической теории слоистых оболочек не вызывает никаких затруднений также и переменность коэффициентов этих уравнений. Сам метод матричной функции Грина как метод решения краевых задач механики оболочек имеет известные преимущества перед другими. Так, в нем не возникает проблем, связанных с построением ортогонального координатного базиса, как в методе Бубнова — Галеркина, или с большой размерностью, а часто и плохой обусловленностью алгебраической системы, как в методе конечных разностей. В задачах устойчивости оболочек использование данного метода позволяет легко и естественно учесть такие факторы, как до-критические деформации, неоднородность распределения докритических усилий в отсчетной поверхности оболочки, краевые условия задачи. В то же время число точек разбиения отрезка интегрирования, необходимое для аппроксимации интегрального оператора, относительно невелико, что приводит к алгебраической задаче невысокой размерности.  [c.222]


К началу XX в. относится и инженерная деятельность Б. Г. Галеркина. Он провел важные исследования по устойчивости каркасных конструкций (1909), теории изгиба пластинок (1915), показал возможность применения приближенного метода интегрирования дифференциальных уравнений к решению большого класса задач строительной механики и теории упругости (1915). Этот метод ныне нашел широкое применение в разных областях науки под названием метода Бубнова — Галеркина.  [c.248]

В этой главе излагаются общие положения теории конвективной устойчивости, на основе которых в последующих главах проводится решение конкретных задач. Сначала приводятся общие уравнения, описывающие тепловую конвекцию несжимаемой жидкости, и обсуждаются приближения Буссинеска, лежащие в основе этих уравнений. Далее формулируются условия механического равновесия неравномерно нагретой жидкости. В третьем параграфе содержится постановка задачи об устойчивости равновесия подогреваемой жидкости относительно малых нормальных возмущений, формулируется краевая задача для амплитуд и выясняются некоторые общие свойства спектра возмущений. В последнем параграфе этой главы речь идет о нахождении критических (нейтральных) возмущений и критических значений числа Рэлея, определяющих границы устойчивости равновесия. Здесь же обсуждаются варианты метода Бубнова — Галеркина, позволяющего эффективно решать краевые задачи для характеристических возмущений  [c.7]

Остановимся теперь на определении нижних уровней спектра конвективной неустойчивости с помощью метода Галеркина [ ]. Сравнение приближенного решения с точным, приведенным выше, позволяет оценить эффективность метода, который далее широко используется для исследования устойчивости в каналах и областях более сложной геометрии.  [c.76]

В этой главе мы рассмотрим различные задачи линейной теории конвективной устойчивости для ограниченных объемов. Критические движения в этих случаях имеют существенно трехмерную структуру, и точное решение получить не удается. Для приближенного решения задачи применяется метод Бубнова— Галеркина, позволяющий с достаточной точностью определить несколько нижних уровней спектра неустойчивости.  [c.109]

Для решения задачи об устойчивости равновесия с помощью метода Галеркина необходимо выбрать систему базисных функций. Векторные базисные функции для аппроксимации скорости удобно искать в виде полиномов, обращающихся в нуль на границе полости  [c.109]

Соответствующие распределения скорости находятся из уравнения Навье — Стокса, которое в принятых предположениях оказывается линейным уравнением с постоянными коэффициентами. Интегральные условия метода Галеркина, составленные для уравнения теплопроводности, позволяют определить коэффициенты Ьпт и Ъпт, 3 также декременты малых нормальных возмущений Я=ЦК, k, k , кг). Граница монотонной устойчивости находится из условия Я,=0. Наиболее опасными оказываются возмущения с i=0 и кг ф О (это означает, что стационарные валы неустойчивы относительно трехмерных возмущений). На рис. 56 изображена нейтральная кривая устойчивости равновесия вместе с границей области устойчивости конвективных валов (две ветви, ограничивающие область устойчивости валов, соответствуют критическим модам разной симметрии). Как видно из рисунка, зарождающаяся при критическом числе Рэлея Rm область устойчивости валов оказывается закрытой сверху.  [c.153]

Для определения характеристических декрементов в работе применялся метод Бубнова — Галеркина. В качестве базиса использовались критические движения, соответствующие задаче об устойчивости равновесия вертикального плоского слоя с непроницаемыми границами (собственные функции задачи, получающейся из (39.4) при X = О и а = 0 явный вид базисных  [c.277]

Интегрирование системы конечно-элементных уравнений (1.35) можно осуществить различными способами [55, 177, 178], наибольшее применение среди которых получили методы центральных разностей, Вилсона, Галеркина, Ньюмарка. Нельзя формально подходить к использованию того или иного метода,, так как каждый из них имеет свои сильные и слабые стороны, которыми и определяется область их рационального применения. Так, применение центральных разностей имеет несомненное преимущество при использовании сосредоточенной (диагональной) матрицы масс, однако устойчивость его зависит от выбора шага интегрирования во времени Ат. Выбирая безусловно устойчивые и более точные двухпараметрические методы интегрирования Ньюмарка и Галеркина, мы значительно увеличиваем время счета. Оптимально и достаточно просто реализуемое интегрирование уравнения (1.35) можно провести с помощью модифицированной одношаговой процедуры Вилсона по двум схемам, отличающимся числом членов разложения в ряд Тейлора функций (т) , (й т) , ы(т) в момент времени т [7].  [c.25]

Предполагается, что метод решения дифференциальных уравнений движения должен быть тесно связан с физическими особенностями движения, поэтому в восьмой главе исследуется физическая ка]ртина движения в диффузорах. Рассматривается как движение в диффузоре в целом, так и движение в турбулентном пограничном слое. Показывается, что для внутренней области - вследствие ее консервативности по отношению ко внешним возмущениям - удобно использовать метод последовательных приближений, а для менее устойчивой внешней области - методы типа Бубнова-Галеркина. В последующих главах метод по-зонного решения уравнений пограничного слоя подробно обосновывается.  [c.8]


Энергетические методы широко применяют в задачах статики и динамики тонкостенных конструкций. Наиболее распространенным из них является метод Релея — Ритца, предусматривающий представление решения в виде ряда по координатным функциям. Выбор метода решения задачи — интегрирование дифференциального уравнения (классическими методам и или методом Галер-кина) или применение энергетического метода — часто связан с определенными трудностями. Можно показать, что при условии корректного применения метода Галеркина к системе дифференциальных уравнений [22], он в математическом отношении эквивалентен методу Релея — Ритца [133]. Однако, если имеется только дифференциальное уравнение, то следует применять метод Галеркина или другие методы его решения, а если имеется только выражение, определяющее энергию системы, следует отдать предпочтение энергетическим методам. Эти соображения не помогают выбрать метод решения задач, которые сформулированы как в дифференциальной, так и в энергетической постановке. Он определяется в этих случаях предшествующими расчетами, а также наличием программ решения задач на собственные значения (для устойчивости и колебаний) для вычислительных машин. Традиционно энергетические методы получили наибольшее распространение в США и Германии, в Англии отдавалось предпочтение конечно-разностным методам решения дифференциальных уравнений, а в СССР — методу Галеркина.  [c.179]

Чамис [41 ] получил решение задачи устойчивости прямоугольных пластин методом Галеркина, которое также достаточно хорошо подтверждается экспериментальными результатами, полученными Кичером и Манделлом [87 ] при одноосном сжатии пластин с шарнирно опертыми нагруженными краями и с. шарнирно опертыми или свободными боковыми кромками. Следует упомянуть также раннюю работу Бафлера [38].  [c.184]

Несколько большее число работ посвящено динамике прямоугольных ортотропных пластин при больших прогибах. По-види-мому, впервые задачи такого рода применительно к однослойным (или симметричным) шарнирно опертым пластинам были рассмотрены в работах Амбарцумяна и Гнуни [8], Хассерта и Новинского [68]. В первой работе, посвященной динамической устойчивости, применялась процедура Ритца — Галеркина и учитывался сдвиг по толщине (см. раздел VI), а во второй — получено решение в рядах для прямоугольной пластины с закрепленными кромками. Позднее Ву и Винсон [193 ] получили существенно более простое решение этой задачи, используя гипотезы Бергера [26]. Круглые и треугольные пластины из ортотропного в прямоугольных координатах материала рассматривались в работах Новинского [103 ] и Новинского и Измаила [104].  [c.190]

Эту подстановку использовали Муштари и Саченков при решении задачи устойчивости методом Галеркина, она также с успехом была применена для расчета ортотропных усеченных конических оболочек энергетическим методом Релея — Ритца [23].  [c.230]

И, наконец, возможно применение прямых методов типа Ритца и Бубнова—Галеркина. Системы координатных функций, удовлетворяющие граничным условиям, а также обеспечивающие устойчивость вычислительного процесса, в рассматриваемой задаче могут быть таковы  [c.82]

В практических приложениях, когда нас интересуют напряжения (деформации) лишь в наиболее нагруженных участках элемента, эффективное решение можно получить, например, прямыми методами типа Ритца и Бубнова—Галеркина, Как показано в [97], системой координатных функций для сечения в виде прямоугольника (0< <а 0<.у <.Ь), удовлетворяющей условиям устойчивости вычислений для уравнений (16,4), (19,4), будет, например,  [c.102]

На рио. 24 изображены годографы скорости частицы, полученные в результате решения задачи на электронной моделирующей установке, причем виден процесс установления устойчивого движения, котхэрому соответствуют замкнутые кривые. Отклонение этих кривых от эллипсов увеличивается с уменьшением параметра п = Ыа. Решение (75) получено Цзя Шу Хучем путем использования метода Бубнова — Галеркина им же получены кривые на рис. 24 (см [6], где приведен более детальный анализ задачи.)  [c.46]

Для решения задачи задается зависимость Р=Р(х), граничные и начальные условия. При вычислении жесткостей Р интегралы разбиваются по высоте сечения на четыре в соответствии с образующимися зонами деформирования. К уравнению (7.5.12) примеггяется процедура Бубнова-Галеркина по координате х с последующим переходом к задаче Коши по времени I. На рис. 7.5.6 и 7.5.7 приведены результаты расчета по выггучиванию и устойчивости стального стержня с жестко защемленными концами. Кривые У-4 соответствуют стреле начального  [c.499]

Вопросы численного решения уравнений (3.3.15), (3.3.16) разработаны и представлены в литературе достаточно полно. Укажем, например, на монографии [65, 143, 178, 185, 211, 244], в которых аппарат функционального анализа и теории операторов составил основу исследования и строгого теоретического обоснования таких эффективных численных методов решения уравнения (3.3.15), как метод В. Ритца, И.Г. Бубнова—Б.Г. Галеркина, методы конечных элементов, конечных разностей и др. Методы, ориентированные на задачи устойчивости оболочек, описаны в [104]. Специальные вопросы численного решения краевых задач устойчивости анизотропных оболочек вращения обсуждаются в [19, 20, 144, 289]. Этим вопросам уделено значительное внимание и в настоящей монографии.  [c.65]

Изучение динамической устойчивости оболочечной конструкции должно начинаться с упрощения основного дифференциального уравнения. Обычно такое упрощение состоит в переходе к системе с сосредоточенными параметрами при помощи энергетическо,го метода, либо метода конечных элементов, либо метода конечных разностей, либо метода Бубнова—Галеркина. После этого необходимо убедиться в том, что полученная модель соответствует реальной действительности. В большинстве исследований динамической устойчивости такая проверка не проводилась. Некоторые дискретные модели имеют такие положения статического равновесия, которые отсутствуют в конструкции с распределенными параметрами [4] (это обстоятельство было отмечено, в работе [5]).  [c.10]

Относительно простые уравнения, учитывающие геометрическую нелинейность задачи, получаются, если ввести допущение о том, что в процессе ползучести оболочки при возмущенном движении, обусловленном некоторыми отклонениями от идеальной формы, напряжения и деформации в ней мало отличаются от напряжений и деформаций основного безмо-ментйого состояния. Введение этого допущения позволяет привести задачу об определении прогибов и напряжений пологой оболочки в условиях ползучести к системе из двух нелинейных интегродифференциальных уравнений относительно прогиба и функции напряжений, зависящих от координат на срединной поверхности и времени [87], Эти уравнения отличаются от уравнений, которые были получены ранее [83, 77] при исследовании условных критериев устойчивости, только слагаемыми, учитывающими геометрическую нелинейность. Сведение задачи к системе из двух уравнений позволяет использовать для решения задач ползучести оболочек эффективный прием, аналогичный тому приему, который был предложен Карманом и Тзяном при решении нелинейных задач для упругих оболочек. Прием состоит в разыскании функции прогибов в виде ft (О Щ (х, у), где Wi x, у) — задаваемые функции координат. Вид функции напряжений устанавливается с помощью уравнения совместности. Второе уравнение интегрируется по координатам приближенно в смысле Бубнова — Галеркина. Задача сводится к системе нелиь ей-ных интегральных уравнений относительно функций интегрирование которых при заданных начальных условиях  [c.273]


Труды И. Г. Бубнова и А. Н. Крылова положили основу новой дисциплины — Строительная механика корабля . Работы Б. Г. Галеркина относятся главным образом к расчету пластин и оболочек разработанный им метод решения дифференциальных уравнений широко используется в прикладной теории упругости. Вопросы теории удара и ряд проблегл устойчивости освещены в трудах А. Н. Динника.  [c.11]

Труды Б. Г. Галеркина по теории пластин и оболочек, по устойчивости упругих систем, по методам решения пространствеппой задачи теории упругости, по теории толстых плит являются важным вкладом в отечественную науку.  [c.137]

В 1915 г. было опубликовано классическое сочинение Б. Г. Галеркина Стержни и пластинки , в котором им изложен эффективный метод приближённого решения задач прикладной теории упругости, ранее указанный И. Г. Бубновым. Этот метод был впоследствии применён к решению самых разнообраз-.ы.ч задач математической физики и послужил основой для многочисленных научных работ как в Советском Союзе,так и за границей. Приложение этого метода дало результаты первостепенной важности для расчётов на прочность, устойчивость и колебания в области самолётостроения, кораблестроения, инженерных сооружений и г. д.  [c.137]

Изучение динамических свойств нелинейных систем, как известно, не может быть в принципе выполнено при помощи линейного математического аппарата, а теоретическое исследование устойчивости, качества и эффективности регулирования нелинейных автоматических систем существенно затруднено и может быть выполнено только для простейших нелинейных автоматических систем. Именно поэтому для приближенного исследования нелинейных автоматических систем высокого порядка были предложены различные аппроксимации, позволяющие заменять исследования нелинейных систем исследованиями некоторых эквивалентных им линейных систем (методы А. А. Кобзарева, наименьших квадратов, малых возмущений, вариации постоянных, вариационный Галеркина — Ритца, вычисления среднего значения энергии и др.).  [c.37]

Остроградского. Приводятся соответствующие примеры. Далее рассматриваются методы точного и приближенного (включая методы Ритца, Галеркина, Канторовича) определения частот и форм собственных колебаний, а также даются способы нахождения вынужденных колебаний с учетом внепгних и внутренних потерь в материале. В заключение излагаются вопросы устойчивости упругих систем, включая неконсервативные задачи упругой устойчивости. Изложение этой части проводится на примерах стержня, нагруженного следящей силой, трубопровода с движущейся жидкостью и вращающего вала.  [c.12]

Для отыскания критических чисел Рэлея и критических движений можно использовать прямые методы математической физики, в частности, методы Ритца и Бубнова — Галеркина. Особенно широкое распространение в задачах конвективной устойчивости получил метод Бубнова — Галеркина ввиду его простоты и универсальности (см. работы а также ряд последующих параграфов этой книги). Важное преимущество этого метода состоит в том, что он может быть эффективно использован для решения задач, не связанных с вариационными проблемами. К их числу относится, например, задача об устойчивости конвективных движений, расс матриваемая в гл. X.  [c.28]

Определение критических чисел из трансцендентных уравнений (6.14), (6.15) требует громоздких вычислений, поэтому в первых исследованиях устойчивости равновесия слоя с твердыми границами использовались приближенные методы решения краевой задачи для нейтральных возмущений. Впервые значения минимального критического числа Рэлея были найдены Джефрисом с помощью метода конечных разностей [ ], а затем, более точно, — методом Фурье Р]. Исследование границы устойчивости на основе точных характеристических уравнений было проведено Лоу [ ] и особенно обстоятельно — в известной работе Пеллью и Саутвелла [ ] ). В последней работе был также предложен вариационный метод нахождения критических чисел Рэлея для плоского слоя. Дальнейшее развитие вариационный метод получил в работах Чандрасекара (см. [ 2]). Весьма эффективным оказался также метод Галеркина (см. 7 и 8).  [c.43]

В этом параграфе мы рассмотрим условия возникновения конвекции в системе вертикальных каналов. Как и в случае связанных горизонтальных слоев, разобранном в 8, тепловые возмущения, возникаюп ие в одном из каналов, проникают в другой. К этому добавляется новый эффект гидравлической связи каналов, которые предполагаются сообщающимися. Наличие гидравлической и тепловой связи каналов существенно влияет на устойчивость. Вначале рассматривается простейший случай двух плоских каналов одинаковой тожцины, разделенных твердой теплопроводной прослойкой. В этом случае удается получить точное решение и найти весь спектр конвективной неустойчивости. Далее разбирается более сложный случай двух каналов кругового сечения в теплопроводном массиве. С помощью метода Галеркина находится основной уровень неустойчивости, определяющий начало конзекции.  [c.93]

Рассмотрению аналогичной задачи об устойчивости равновесия в вертикальном круговом канале по отношению к ячеистым возмущениям посвящены работы Э. И. Славновой р ] и В. И. Чернатынского, А. Н. Паршакова РП. В Р ] в первом приближении метода Галеркина найдено критическое число Рэлея для нижнего уровня спектра, соответствующего диаметральной.  [c.101]

В заключение этого параграфа остановимся кратко на результатах работы Дэвиса [ ], в доторой исследовалась устойчивость равновесия в полости в виде прямоугольного параллелепипеда. Границы области предполагались твердыми и идеально теплопроводными. Длина вертикального ребра принята за единицу длины, а безразмерные длины горизонтальных ребер вдоль осей хну равны /11 и Аг- В работе рассмотрены возмущения в виде одноэтажной системы конечного числа конвективных валов, оси которых параллельны одному из горизонтальных ребер. Для определения границы устойчивости применяется метод Галеркина с аппроксимирующими функциями, построен ными из полиномов. Критическое число Рэлея зависит от параметров А1 и Лг, а также от числа конвективных валов и ориентации их осей. Расчет показывает, что во всех случаях наиболее опасными являются возмущения в виде системы валов с осями, параллельными короткому ребру основания параллелепипеда число этих валов зависит от соотношения между А1 и Лг и, в общем, возрастает с увеличением этих параметров. Результаты расчетов позволяют построить сводную карту (рис. 44), на которой изображены изолинии постоянных значений минимального критического числа Рэлея на плоскости (Ль Лг), а также указаны границы зон, соответствующих критическим возмущениям определенной структуры. Карта си.м-метрична относительно диагонали Л1=Л2 точкам плоскости.  [c.121]

Дополнительную информацию дает работа Буссэ [ ], в которой для исследования стационарных движений и их устойчивости применялся метод Галеркина, применимость которого не ограничена малой надкритичностью. В этой работе рассматривался случай обеих твердых границ слоя. Исследовалась устойчивость лишь двумерных конвективных структур. Для простоты автор ограничился предельным случаем достаточно больших значений числа Прандтля, когда можно пренебречь инерционными членами в уравнении Навье — Стокса (сохраняя, однако, нелинейные члены в уравнении тепло,проводности). Принимались следующие аппроксимации температуры стационарного движения Т и возмущения f  [c.153]


Смотреть страницы где упоминается термин Галеркина 19, 20 — Устойчивость : [c.134]    [c.43]    [c.282]    [c.441]    [c.15]    [c.206]    [c.300]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.16 , c.21 ]



ПОИСК



Галеркин



© 2025 Mash-xxl.info Реклама на сайте