Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания оболочек слоистых

Таким образом, между критической нагрузкой осевого сжатия и частотой изгибных колебаний оболочки существует вполне однозначная связь, количественное выражение которой определяется характеристиками геометрии, жесткостей, а также выбором кинематической модели оболочки. Очевидно, что соотношения, подобные (3.60), можно получить для N yy и для других статических критических нагрузок. Поэтому оценки применимости кинематически однородных моделей, установленные в результате расчета частот собственных колебаний, позволяют однозначно судить о применимости таких моделей в статических расчетах слоистых оболочек. Данный вывод, в частности, полностью подтверждается многочисленными расчетами трехслойных оболочек, нагруженных осевым сжатием, внешним поперечным давлением и в случае комбинированного действия указанных нагрузок.  [c.150]


В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]

Исследуем свободные установившиеся гармонические колебания упругой слоистой композитной тонкостенной конической усеченной оболочки, структура армирования слоев которой не зависит от угловой координаты. В основу анализа положим уравнения (8.1.1) — (8.1.9) динамики конической оболочки. Из этих уравнений получим дифференциальные уравнения задачи о собственных колебаниях (см. [43, 100, 144, 289]), опуская в них нелинейные слагаемые, принимая составляющие внешних поверхностных и контурных нагрузок равными нулю и выполняя преобразование ы — частотный параметр)  [c.244]

Последняя глава охватывает ряд вопросов устойчивости и колебаний анизотропных слоистых оболочек. Здесь на основании классической и уточненных теорий рассматриваются задачи свободных колебаний, статической и динамической устойчивости, удара и флаттера анизотропных слоистых оболочек. Рассматриваются задачи колебаний и флаттера оболочки в поле действия высоких температур, а также магнитного поля.  [c.9]


Задачей теории анизотропных слоистых оболочек, как и задачей теории оболочек вообще, является изучение прочности, деформативности, устойчивости и колебаний оболочек, изготовленных из различных материалов и находящихся в различных условиях эксплуатации.  [c.11]

Весьма плодотворным объектом оптимизации в рамках упомянутого класса задач в рассматриваемый период становятся слоистые оболочки, армированные в нескольких (обычно в 3—4) направлениях. В качестве целевой функции проектов на первый план выдвигается показатель экономичности — масса оболочки. Требования к функциональным характеристикам конструкции (критические нагрузки потери устойчивости, частоты собственных колебаний, жесткость, прочность и т. п.) учитываются, как правило, в форме ограничений на проект.  [c.12]

В монографии представлены результаты теоретических и численных исследований, выполненных авторами в области механики и вычислительной математики слоистых тонкостенных анизотропных оболочек, а также неклассическая математическая модель нелинейного деформирования тонкостенных слоистых упругих композитных пластин и оболочек, отражающая специфику их механического поведения в широкой области изменения нагрузок, геометрических и механических параметров, структур армирования. Предложен и реализован эффективный метод численного решения краевых задач неклассической теории многослойных оболочек, основанный на идеях инвариантного погружения. Получены решения задач начального разрушения, устойчивости, свободных колебаний слоистых конструкций распространенных форм — прямоугольных и круговых пластин, цилиндрических панелей, цилиндрических и конических оболочек. Дана оценка влияния на характеристики напряженно-деформированного состояния и критические параметры устойчивости таких факторов, как поперечные сдвиговые деформации, обжатие нормали, моментность основного равновесного состояния, докритические деформации. Проведены систематические сравнения полученных решений с решениями, найденными при использовании некоторых других известных в литературе неклассических моделей, в том числе и в трехмерной постановке.  [c.2]

Накопленный опыт [17—19, 21, 23, 24, 30] использования метода инвариантного погружения в задачах статики, устойчивости, свободных колебаний слоистых оболочек вращения с применением разработанных в настоящей монографии неклассических дифференциальных уравнений позволяет заключить, что соответствующие им уравнения (7.2.21), (7.2.28) можно отнести к классу умеренно" жестких. Так, в рассмотренной ниже тестовой задаче прочности длинной круговой цилиндрической панели (требующей введения достаточно густой координатной сетки), дифференциальные уравнения метода инвариантного погружения (7.2.21),  [c.204]

О численном интегрировании линейных краевых задач устойчивости и свободных колебаний слоистых оболочек вращения  [c.205]

В этом параграфе разработан метод численного решения линейных краевых задач устойчивости и свободных колебаний слоистых оболочек вращения, объединяющий в себе метод Бубнова — Галеркина для линейных интегральных уравнений Фредгольма второго рода с обобщенной формой метода инвариантного погружения. Изложение метода строится на примере задачи устойчивости и сопровождается указаниями на модификации, необходимые для перехода к задаче  [c.205]

Свободные колебания слоистой композитной ортотропной конической оболочки  [c.244]

В этом параграфе дано решение задачи о собственных колебаниях слоистой армированной круговой конической усеченной жестко защемленной оболочки. Выполнен сравнительный анализ результатов расчета, полученных с использованием классических и неклассических дифференциальных уравнений динамики слоистых оболочек, что позволило выявить и оценить влияние поперечных сдвиговых деформаций на собственные частоты и формы колебаний.  [c.244]


В результате возникает линейная краевая задача на собственные значения для системы дифференциальных уравнений с частными производными, к интегрированию которой сводится определение спектра свободных колебаний слоистой тонкостенной оболочки. Эта система включает в себя следующие группы зависимостей (считаем оболочку достаточно тонкой и пренебрегаем во всех уравнениях величинами порядка h/R по сравнению с 1)  [c.244]

Зависимости (8.1.2), (8.1.9), (8.4.1) — (8.4.5) вместе составляют полную систему неклассических дифференциальных уравнений задачи о собственных колебаниях слоистой композитной ортотропной конической оболочки, которую следует интегрировать при соответствующих граничных условиях. В рассмотренном ниже случае замкнутой в окружном направлении оболочки с жестко защемленными краями S = а, s = Ь эти условия заключаются в обращении в нуль обобщенных перемещений в точках закрепленного контура  [c.246]

Итак, исследование свободных колебаний конической ортотропной слоистой композитной оболочки сведено к интегрированию линейной краевой задачи на собственные значения для системы обыкновенных дифференциальных уравнений. Численное решение этой задачи получено по методу, разработанному в параграфе 7.3 при использовании ортонормированной координатной системы  [c.252]

В табл. 8.4.2 в зависимости от параметра окружного волнообразования п приведены результаты расчета трех низших собственных частот свободных колебаний слоистой композитной конической оболочки. Графическая иллюстрация этих результатов, полученных при значениях параметров (8.4.15) — (8.4.17), приведена на рис. 8.4.3. Из табл. 8.4.2 видно, что неучет поперечных сдвиговых деформаций приводит к завышению расчетных значений собственных частот, притом тем большему, чем больше номер п рассматриваемой окружной гармоники. Так, если относительная погрешность, вносимая неучетом поперечных сдвигов в определение собственной частоты практически отсутствует, то при определении собственной частоты эта погрешность составляет уже 4,63 %. При определении собственных частот of и относительная погрешность от неучета сдвигов составляет соответственно 0,04 и 8,70 %. Из рис. 8.4.3 видно  [c.254]

Вторая часть посвящена уточненной теории ортотропных слоистых цилиндрических оболочек, учитывающей сдвиг между слоями, и ее приложению для решения конкретных задач. Исследована осесимметричная деформация цилиндрической оболочки при различных способах закрепления ее краев, рассмотрены вопросы термоупругости с учетом зависимости механических характеристик от температуры, а также прочность оболочек при локальном нагружении, устойчивость и колебания. Приводятся рекомендации по расчету и проекти- рованию оболочек из армированных материалов. Основные теоретические результаты подтверждаются экспериментально и иллюстрируются численными примерами.  [c.2]

Вынужденные колебания слоистой ортотропной цилиндрической оболочки, подкрепленной продольными или кольцевыми ребрами, исследовались в работе [180]. В уравнениях движения  [c.16]

В рамках трехмерной постановки Килина [135] исследует зависимость минимальной частоты свободных колебаний слоистых пластин и цилиндрических оболочек от расположения составляющих слоев. Приведено сравнение полученных результатов с данными, соответствующими приближенным теориям.  [c.20]

Настоящая работа не охватывает многих вопросов, которые выдвигаются современной инженерной практикой и нуждами машиностроения. Не затронуты задачи, связанные с большими перемещениями срединной поверхности оболочки, в том числе и задачи устойчивости, не рассмотрены нелинейные упругие и неупругие деформации слоистых оболочек и не освещены вопросы нелинейных колебаний. Нет сомнения, что они будут разработаны в трудах других исследователей в ближайшем будущем.  [c.5]

Рассмотрим в качестве примера свободные поперечные колебания слоистой цилиндрической оболочки, изготовленной из ортотропного материала. Главные оси анизотропии будем предполагать совпадающими с осями координат.  [c.193]

Так как жесткость цилиндрической оболочки при изгибе значительно меньше жесткости при ее деформировании в срединной поверхности, а сдвиговые деформации невелики, при исследовании поперечных колебаний тангенциальными и сдвиговыми составляющими сил инерции будем пренебрегать. Согласно уравнению (634) задача о поперечных колебаниях слоистой ортотропной цилиндрической оболочки сводится к решению следующего дифференциального уравнения  [c.193]

Таким образом, вынужденные поперечные колебания слоистой ортотропной цилиндрической оболочки происходят в форме  [c.196]

Книга посвящена исследованию вопросов прочности, устойчивости и колебаний анизотропных оболочек. Она является естественным продолжением монографии автора Теория анизотропных оболочек (1961), посвященной вопросам статики анизотропных СЛОИСТЫХ оболочек, и монографии Теория анизотропных пластин (1967), в которой рассмотрены вопросы уточненных теорий анизотропных пластин. В настоящей книге некоторые результаты, входящие в первую монографию, повторяются.  [c.9]

Собственные колебания симметричных, слоистых ортотропных свободно опертых (шарнирная опора, допускающая осевое смещение) по всем сторонам цилиндрических панелей и оболочек рассматривались на основе теории типа Доннелла в работе Даса [71 ]. Пензес [217 ] использовал ту же теорию для анализа собственных колебаний замкнутых цилиндрических оболочек со свободно опертыми, и защемленными краями, а также оболочек, один край которых является защемленным, а другой — свободно опертым. Петров и Финкельштейн [222 ] исследовали относительное влияние различных членов, входящих в уравнения.  [c.238]


Влияние предварительного нагружения на частоты свободных колебаний симметричных слоистых, ортотропных цилиндрических оболочек изучали многие авторы. Анализ влияния равномерного внутреннего давления содержится в работах ДиДжиованни и Ду-гунджи [771 и Дима [87, 88], случай неравномерного в окружном направлении давления рассмотрен Падованом [211]. Никулин [204] исследовал осевое сжатие, кручение и внеЩнее давление и установил, что степень их влияния на частоты возрастает в соответствии с порядком, в котором они здесь перечислены.  [c.238]

Число работ, посвященных нелинейным колебаниям оболочек из композиционных материалов, сравнительно невелико, причем исследовались только симметричные по толщине слоистые структуры. Багдасарьян и Гнуни [2А] рассмотрели нелинейные изгиб-ные колебания пологих оболочек, а Новинский [208] — апало-  [c.242]

Влияние сдвиговой податливости материала при сдвиге по толщине на устойчивость слоистых цилиндрических панелей исследовалось в работе Дурфлофски и Майерса [86], задачи устойчивости и колебаний замкнутых слоистых цилиндрических оболочек рассматривались Тейлором и Майерсом [280].  [c.245]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]

Книга посвящена вопросам расчета на прочность, устойчивости и колебания анизотропных слоистых оболочек. В ней рассмотрены вопросы общей теории, статической и динамической устойчивости, свободных колебаний, термоупругости, аэроупругости, магнитоупругости анизотропных слоистых оболочек.  [c.2]

Динамика произвольных слоистых цилиндрических оболочек, по-БИдимом , впервые была исследрвана Уайтом [306], который рассмотрел осесимметричные и неосесимметричные колебания таких оболочек при свободном опирании по краям. Однако слоистая. оболочка в этой работе заменялась эквивалентной однослой-  [c.238]

Выводы, полученные для балок, обычно применимы также в теориях пластин и оболочек, и в последующих главах эти случгш будут обсуждаться. Будет обнаружено, что поправки обычно необходимы только для составных конструкций (таких, как решетчатые балки или пластины и оболочки, изготовленные из слоистых материалов), у которых центральная часть облегчена и имеет сравнительно низкое сопротивление поперечному сдвигу, или для однородных конструкций, у которых амплитуда волны црогиба имеет порядок величины толщины (например, для толстых массивных конструкций или для высоких частот колебаний, для которых характерны волны небольшой длины).  [c.54]

В книге рассматриваются современные модели расчета и методы параметрической оптимизации несущей способности оболочек вращения из композитов двумерной и пространственной структур армирования. Основное внимание при этом уделено оболочкам, работающим на статическую устойчивость или в режиме колебаний, эффективные деформативные характеристики которых определяются методами теории структурного моделирования композита. В задачах, содержащих оценки предельных состояний оболочек по прочности, используется феноменологическая структурная модель прочностных характеристик слоистого композита, параметры которой получены экспериментально. Подробно анализируются особенности постановки задач пара.метрической оптимизации оболочек из композитов. Показана взаимосвязь векторной и скалярной моделей задач оптимизации в случае формализуемых локальных критериев качества проекта. Значительное место отведено изложению и примерам приложения нового метода решения задач оптимизации оболочек из. многослойных композитов — метода обобщенных структурных параметров, применение которого позволяет получить наиболее полную информацию об опти.чальных проектах широкого класса практически важных задач оптимизации. Содержащиеся в книге результаты могут быть использованы для инженерного проектирования оболочек из волокнистых композитов. Табл. 23, ил. 58, библиогр. 181 назв.  [c.4]

Проблеме колебаний с учетом рассеяния энергии в материале слоистых оболочек посвящена статья Дубенца [109]. В физические соотношения связи напряжений с деформациями входят гистерезисные операторы, которые оказываются эффективными при решении этих задач. Однако основным недостатком этих операторов является их нелинейность.  [c.16]

Y. Kagawa [3.116] (1968) на основе уравнений I. Mirsky и G. Неггтапп а [3.132] исследовал свободные колебания трехслойных цилиндрических оболочек бесконечной длины с жестким заполнителем. Рассматриваются пять типов колебаний. Полученные частоты сравниваются с результатами других авторов для однородных цилиндров в случае осесимметричных форм колебаний слоистых цилиндров.  [c.206]



Смотреть страницы где упоминается термин Колебания оболочек слоистых : [c.228]    [c.205]    [c.225]    [c.176]    [c.15]    [c.246]    [c.252]    [c.276]    [c.31]    [c.273]    [c.276]    [c.544]    [c.36]   
Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.16 , c.459 ]



ПОИСК



Колебания оболочек

Некоторые задачи колебаний и устойчивости анизотропных слоистых оболочек

О численном интегрировании линейных краевых задач устойчивости и свободных колебаний слоистых оболочек вращения

Оболочка слоистая

Свободные колебания слоистой композитной ортотропной конической оболочки



© 2025 Mash-xxl.info Реклама на сайте