Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория Задача плоская для полос

Рассмотрим плоскую задачу теории упругости для полосы, т. е. для области — оо < л <С оо, у а [57]. Требуется в этой области определить напряжения Ох, Оу, Хху, удовлетворяющие уравнениям равновесия (4.4) гл. III  [c.455]

Плоская задача теории упругости для полосы при заданных на границе напряжениях [204]. Рассмотрим бесконечную полосу шириной 2L, отнесенную к декартовой системе координат хОу, ось Ох которой направлена по средней линии. Найдем напряженное состояние полосы при таких граничных условиях на ее гранях  [c.131]


Используем изложенный в параграфе 2 подход к численному решению сингулярных интегральных уравнений плоской задачи теории трещин при наличии полос пластичности для исследования кругового кольца с краевыми трещинами.  [c.228]

Вывод основных уравнений для тонких упругих покрытий (прослоек) в плоском случае путем асимптотического анализа точного решения задачи теории упругости для полосы  [c.22]

В гл. 3 приведены решения ряда смешанных задач теории ползучести для неоднородно-стареющих теп. В ней рассмотрена плоская задача о вдавливании штампа в двухслойную полосу.  [c.9]

Рис. 9.21. К формулированию граничных условий в плоской задаче теории упругости для прямоугольной полосы. Рис. 9.21. К формулированию <a href="/info/735">граничных условий</a> в <a href="/info/20342">плоской задаче теории упругости</a> для прямоугольной полосы.
Если размер пластической области вблизи фронта трещины мал по сравнению с толщиной оболочки и, кроме того, условия локального разрушения в точках фронта трещины близки к условиям локальной плоской деформации, то критериальная комбинация в принципе может быть определена из решения сингулярной задачи для полубесконечного разреза в пластине и критерия локального разрушения в условиях плоской деформации. Поясним это на простейшем случае, когда фронт разреза прямолинеен и перпендикулярен к плоскости пластины. Сингулярная задача на основании принципа микроскопа ставится так требуется найти решение уравнений теории упругости в полосе z < /г/2 с разрезом вдоль у = О, л < О при всюду свободных от нагрузок границах (см. рис. П87). Поле на бесконечности задается суперпозицией формул (3.44), (3.45), (П.151).  [c.590]

Курдюмов А, А. О решении в полиномах плоской задачи теории упругости для прямоугольной анизотропной полосы,— Прикл, математика и механика, 1945, т. IX, вып. 4, о. 339—342.  [c.156]

В восьмой главе рассмотрены плоские задачи об упругопластическом равновесии тел с трещинами при локализации зон пластичности в тонких слоях. При моделировании полос пластичности скачками смещений на прямолинейных отрезках упругопластические задачи сводятся к решению задач теории упругости для тел с разрезами неизвестной заранее длины.  [c.4]


При исследовании напряженно-деформированного состояния тел с трещинами широкое применение нашел метод сингулярных интегральных уравнений. Он особенно удобен и эффективен при решении плоских задач теории упругости для тел сложной геометрии, содержаш,их включения, отверстия и трещины произвольной формы. Впервые [И, 137, 181] сингулярные интегральные уравнения использовались при исследовании распределения напряжений около прямолинейной трещины (или полосы пластичности) в некоторых классических областях (полуплоскость, полоса, бесконечная плоскость с круговым отверстием). Система произвольно ориентированных прямолинейных трещин изучалась в работах [21, 22, 70]. Рассматривался также случай криволинейных трещин в бесконечной плоскости [16, 40, 74, 92, 117]. В работах [94—96] основные граничные задачи для многосвязной области, содержащей изолированные криволинейные разрезы и отверстия произвольной формы, сведены к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. Эти результаты обобщены на случай, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей [97]. К настоящему времени появилось большое количество работ, в которых методом сингулярных интегральных уравнений изучаются плоские задачи теории трещин. Обзор этих исследований имеется в работах [5, 32, 45, 54, 70, 95, 100].  [c.5]

Анализ разрушения металлических конструкций и многочисленные экспериментальные данные показывают, что в реальных условиях эксплуатации в нагруженном материале возле трещин могут возникать значительные пластические деформации, охватывающие области, сравнимые с характерными размерами концентратора напряжений (трещины, выреза, включения) или рассматриваемого тела. Описание процесса разрушения при значительных пластических деформациях требует решения соответствующей упругопластической задачи для тела с трещинами. Обстоятельный обзор таких исследований выполнен в работе [12]. Применение классических методов теории пластичности во многих случаях является малоэффективным и не всегда учитывает некоторые характерные особенности протекания процесса пластического деформирования, в частности локализацию деформаций в тонких слоях и полосах. В случае тонких пластин (плоское напряженное состояние) такие деформации локализуются в тонких слоях (полосах пластичности) на продолжении трещин и достаточно хорошо описываются с помощью б -модели, когда полосы пластичности моделируются скачками нормальных смещений [65. При плоской деформации зоны пластичности возле трещин во многих случаях также локализуются в тонких слоях (полосах скольжения), выходящих из вершины трещины под некоторыми углами к ней [45, 120, 159, 180]. Полосы скольжения при этом моделируются скачками касательных смещений. В результате решение упругопластической задачи для тела с трещинами сводится к решению упругой задачи для тела с кусочно-гладкими (ломаными) или ветвящимися разрезами (см. третью главу), на берегах которых заданы разрывные нагрузки. При этом длина зон пластичности и их ориентация заранее неизвестны и должны быть определены в процессе решения задачи. Для таких исследований может быть успешно применен метод сингулярных интегральных уравнений, развитый в предыдущих главах, что и проиллюстрировано на конкретных примерах.  [c.219]

При исследовании малых прогибов упругих стержней показано, как можно ввести поперечный сдвиг в дифференциальное уравнение равновесия этой теории. Излагается расчет балок на упругом основании и важная для судостроения задача, поставленная И. Г. Бубновым, о расчете перекрестных балок. Рассмотрен продольно-поперечный изгиб балок, приводится точное, а также приближенное, развитое автором, решение в тригонометрических рядах. Дается систематизированное изложение теории выпучивания прямых сплошных стержней, полос, круговых колец, двутавровых балок, устойчивости вала при кручении. Уточняется известная задача Ф. С. Ясинского о расчете на устойчивость пояса открытых мостов. Приводятся точные и приближенные решения этой задачи энергетическим методом, данные самим автором. Особенно ценны результаты, относящиеся к устойчивости плоской формы изгиба полос и двутавровых балок. Теория изгиба, кручения и устойчивости двутавровых балок была разработана автором в 1905—1906 годах и оказалась основополагающим исследованием для последующих разработок в области расчета и общей теории тонкостенных стержней. Автор приводит компактные формулы для расчета критических сил.  [c.6]


Плоская задача теории упругости для бесконечной полосы при заданных па границе напряжениях и смещениях. Докл, АН СССР, т. 131, № 6, 1960, стр. 1291—1293.  [c.672]

Кривые изменения напряжений вдоль оси Ог и линии уровня максимальных касательных напряжений приведены на рис. 2.13, б и в. В рассматриваемой плоской задаче теории упругости все компоненты напряжения, за исключением а у = ц(ст с + ), не зависят от упругих постоянных материалов. Поэтому часто для исследования напряженного состояния металлов в случае плоского характера деформирования используют прозрачные материалы и методы фотоупругости. На рис. 2.14, а представлены картины интерференционных полос (линии уровней максимальных касательных напряжений), полученных экспериментально при нафужении двух цилиндров силой, направленной по нормали к площадке контакта.  [c.37]

Последние два параграфа этой главы посвящены рассмотрению смешанных задач, которые не предусмотрены классификацией, данной в 7 гл. 1, по которые, однако, часто встречаются и представляют практический интерес. Здесь исследованы плоские контактные задачи теории упругости для полуплоскости и полосы, когда в области контакта жесткого штампа с границей упругого тела нельзя пренебречь силами трения.  [c.243]

Чтобы использовать теорию полос для случая передачи поперечной силы Qy или качения с верчением, следует использовать плоскую задачу 2.9, в которой рассматриваются поперечные напряжения. Дальнейшие детали могут быть найдены в [210]. Ясно, однако, что теория полос не удовлетворительна, если не выполняется неравенство Ь > а, и полностью теряет  [c.301]

В. М. Александров и А. С. Соловьев [3] задачу включения для бесконечной полосы решают применительно к проблеме тензомет-рировайия. Между поверхностью полосы и накладки (тензодатчи-ка) имеется упругий слой клея малой толщины. Предварительно с позиции плоской теории упругости рассматривается вспомогательная задача о растяжении двухслойной пластины (тензодатчик и клеевая прослойка) произвольной самоуравновешенной касательной нагрузкой, приложенной к одной из ее граней. Затем из уело ВИЙ полного сцепления клея с полосой строится сингулярное интегральное уравнение для определения касательных усилий взаимодействия на границе полоса—клей. Это уравнение регуляризует-ся и решается методом последовательных приближений.  [c.126]

Подобное исследование приводит к необходимости решения краевой задачи теории упругости в сложной области, которое может быть осуществлено в точной постановке лишь для некоторых идеализированных случаев. Одной из традиционных идеализаций является предположение о неограниченности области, в которой расположены дефекты. Методы определения напряжённого состояния упругих тел вблизи внутренних концентраторов напряжений в виде систем трещин, разрезов и тонких включений изложены в монографиях Н.И. Мусхелишвили [107], Г.Я. Попова [115], Т.Н. Савина [125]. Случаи, когда дефекты расположены вблизи границы упругого тела, не могут рассматриваться в рамках упомянутой выше идеализации. В.В.Можаров-ским и В.Е. Старжинским [104] предложен метод решения плоской контактной задачи для полосы, дискретно спаянной с основанием (имеющей конечное число разрезов на границе их раздела). Система круговых отверстий, расположенных вблизи границы полуплоскости, рассмотрена в [125]. Однако алгоритмы решения задач, развитые в [104, 125] и некоторых других работах, достаточно сложны для конкретных реализаций (особенно в случае исследования смешанных задач теории упругости) и, кроме того,  [c.205]

Этот результат представляет собой случай изгиба пластинок, исиользоваиный впоследствии А. Надаи для экспериментального подтверждения приближенной теории изгиба ), предложенной Кирхгоффом. О другой интересной краевой задаче упоминается н Натуральной философии Томсона—Тэйта. Здесь сообщается по этому поводу До сих пор, к сожалению, математикам не удалось решить, а возможно, что они даже и не пытались решать, прекрасную задачу об изгибании широкой, весьма тонкой полосы (подобной, например, часовой пружине) в круговое кольцо ). Лэмб исследовал антикластический изгиб по краю тонкой полосы ) и достиг большого прогресса в решении задачи о балке ). Рассматривая бесконечно длинную балку узкого прямоугольного сечения, нагруженную через равные интервалы равными сосредоточенными силами, действующими поочередно вверх и вниз, он упростил решение двумерной задачи а для некоторых случаев получил уравнения кривых прогиба. Таким путем было показано, что элементарная теория изгиба Бернулли достаточно точна, если высота сечения балки мала в сравнении с ее длиной. При этом было также показано, что поправка на поперечную силу, даваемая элементарной теорией Рэнкина и Грасхофа, несколько преувеличена и должна быть снижена до 75% от рекомендуемого этой теорией значения. Надлежит упомянуть также и о труде Лэмба, посвященном теории колебаний упругих сфер ) и распространению упругих волн по поверхности полубесконечного тела ), а также в теле, ограниченном двумя плоскими гранями ). Он изложил также и теорию колебаний естественно искривленного стержня ). Особый интерес для инженеров представляет его и Р. В. Саусвелла трактовка колебаний круглого диска ).  [c.407]

Среди приближенных методов решения задач математической физики особую роль играет теория возмуш,ений, позволяющая построить асимптотические разложения при малых и больших значениях тех или иных характерных параметров. Применению такого подхода к контактным задачам теории упругости для изотропной полосы и изотропного слоя был посвящен специальный параграф в монографии [7]. При этом в качестве малых и больших параметров принимались, как правило, относительные геометрические размеры штампа (отношение ширины штампа к ширине полосы (слоя) или обратная величина). Между тем, в случае анизотропного и, в частности, ортотропного материала появляется еще одна возможность. Обычно некоторые жесткости композитов, моделируемых анизотропными однородными средами, отличаются по порядку величины, и, следовательно, их отношения могут рассматриваться как малые параметры. В последние десятилетия был развит асимптотический метод, основанный на построении разложения по таким параметрам. Этот метод отражен, помимо статей [1, 3, 5], в монографиях [4] и [6]. Первое его применение к контактным задачам содержится в статье Л. И. Маневича и А. В. Павленко [5], где рассмотрено вдавливание в упругую ортотропную полосу жестких штампов при наличии сил трения. В этой работе было показано, что использование малого параметра, характеризующего отношение жесткостей ортотропной среды, позволяет свести смешанную краевую задачу плоской теории упругости к последовательно решаемым задачам теории потенциала. Статья С. Г. Коблика и Л. И. Маневича [3] посвящена контактной задаче для ортотропной полосы при наличии области контакта зон сцепления и скольжения. В этой сложной задаче предложенный метод оказался особенно эффективным бьши получены явные аналитические выражения для нормальных и касательных напряжений в обеих областях, а также для заранее неизвестной границы между этими областями. В работе Н. И. Воробьевой,  [c.55]


Плоские контактные задачи теории упругости длй неклассическнх областей (в частности, для полосы), отличные от классической задачи Буссинеска, по-видимому, впервые стали изучаться в 30-х годах. Первые исследования контактных задач для полосы выполнены в работах И. Г. Альперина [40] и О. Я. Шехтер [257]. Более поздние работы М. Я. Беленького [57] и С. Е. Бирмана [61] относятся к 50-м годам. С начала 60-х годов началось бурное развитие теории неклассических контактных задач, обусловленное появлением новых математических возможностей (асимптотические методы, метод ортогональных многочленов и т. д.).  [c.126]

Часто применяемые на практике балки таврового, двутаврового, зетового, коробчатого и других тонкостенных сечений могут рассматриваться как состоящие из длинных прямоугольных полос, соединенных между собой вдоль краев. Элементарная теория изгиба применительно к таким профилям может быть неточной более правильные расчеты получаются, если строить для каждой из полос решение плоской задачи теории упругости и эти решения сопрягать между собою. Таким образом, возникает естественная необходимость построения решения плоской задачи для длинного, вытянутого прямоугольника. Оговорка о том, что прямоугольник должен быть вытянут, существенна. Дело в том, что метод разделения переменных, который будет применен в этой задаче, не позволяет удовлетворить двум граничным условиям на каждой стороне. Поэтому при решении добиваются точного удовлетворения граничных условий на длинных сторонах, тогда как на коротких сторонах граничные условия выполняются лишь интегрально. Вспомним, что такая же ситуация встречается в теории кручения и изгиба. Пусть ширина балки есть 2Ь, длина I, оси координат выбраны так, что границами слун ат линии х, = 0, х, = I, Х2 = Ь.  [c.355]

Остановимся кратко на содержании главы. В разд. 2,2 на основе принципа виртуальных перемещений Лагранжа выведены основные соотношения подкрепленной ребрами криволинейной панели. В разд. 22.3 выделено элементарное решение Сопротивления материалов. Преобразование исходных уравнений для плоской панели к системе разрешающих уравнений содержится в разд. 2.4. Далее в разд. 2.5 изучено напряженно-деформированное состояние симметрично подкрепленной панели. Рассмотрена панель как конечной, так и бесконечной длины. Решение представлено в виде быстросходящихся рядов, даны результаты численных расчетов и программы расчета. В разд. 2.6 изучается эффект подкрепления панели на торце дополнительным ребром, работающим только иа изгиб. В разд. 2.7, как и в разд. 2.5, рассмотрена симметрично подкрепленная панель, но при кососимметрнчиом загруженин ребер парой сил. Решение отличается от полученного в разд. 2.5, так как требуется учитывать изгиб панели в ее плоскости. Решение доведено до числа. В разд. 2.8 рассмотрены панели с двумя ребрами разной жесткости для случа.я, когда поперечное перемещение панелн равно нулю или отлично от нуля. В разд. 2.9 на примере бесконечной пластины с полубесконечным ребром дается оценка погрешности решения путем введения гипотезы отсутствия поперечной деформации пластины. Эта оценка выполнена, путем срав неиня решения на основе упомянутой гипотезы с точным решением, полученным иа основе уравнений плоской теории упругости. Результаты этого раздела опубликованы Э. И. Грнголюком и В. М. Толкачевым [5]. В этой работе дана также общая постановка задач включения на основе гипотезы отсутствия поперечной деформации, рассмотрены задачи для пластины и ребра конечных размеров, для полубесконечной пластины с полубесконечным ребром, а также задача для защемленной по боковым сторонам полубесконечной полосы, нагруженной на торце постоянной распределенной нормальной нагрузкой.  [c.68]

В третьей главе содержится решение некоторых плоских ко нтактных задач взаимодействия ребер с пластинами. В отличие от первых двух глав решение строится иа основе уравнений теории плоского обобщенного напряженного состояния пластины без введения упрощающих гипотез. Ребра считаются присоединенными к пластинам по линии, ширина участка контакта не учитывается. В связи с математическими трудностями, возникающими при построении функций Грина для пластин конечных размеров (в случае плоской задачи) в литературе, за небольшим исключением, рассмотрены плоскость, полуплоскость и полоса с ребрами конечной и бесконечной длины. В силу высокой концентрации напряжений вблизи концов ребер такие решения приближенно могут описывать напряженное состояние и характер реакций взаимодействия в окрестности концов ребер и для пластин конечных размеров, если, ргйумеется, ребро не доходит до границы пластины. В данной главе делается акцент на решение контактной задачи, состоящей в определении касательных реакций взаимодействия между пластинами и ребрами. Напряжения в пластинах не исследуются, но необходимые для этого формулы естественно получаются при формулировке задачи.  [c.121]

Получено точное решение плоской задачи теории упругости о полосе с произвольной неоднородностью по одной координате при различных граничных условиях и на этих примерах выясняется вопрос о точности теории нулевого приближения. Рассматриваются произвольные регулярные слоистые структуры, для которых в явном виде выписываются эффективные характеристики. Как частный случай таких структур рассматривается слоистый пустотелый цилиндр. На примере задачи Гадолина (о слоистой трубе под давлением) оценивается зависимость теории нулевого приближения (а также первого и второго) от числа ячеек периодичности. На примере неосесимметричной задачи о трубе под действием локальных нагрузок выясняется характер зависимости точности теории нулевого приближения от степени локализации нагрузки. По теории нулевого приближения подсчитываются на-  [c.143]

Интегральные представления комплексных потенциалов Ф (г) и Y (г) (1.145) являются общим решением двумерной бигармони-ческой задачи, содержащим две произвольные комплексные функции g (/) и q (/) (или четыре действительные функции), что позволяет с их помощью изучать самые разные краевые задачи для областей с разрезали . В частности, удовлетворив с помощью представления (1.145) и формул (1.26), (1.30), (1.42) граничным условиям плоской задачи теории упругости для бесконечной плоскости с разрезами, когда на одном берегу разреза заданы смещения, а на другом — напряжения, найдем сингулярные интегральные уравнения второго рода. При использовании условий неидеального контакта упругих тел, когда напряжения и смещения берегов разреза связаны линейными зависимостями (см. [40, 172, 175, 261]), легко получить сингулярные интегро-дифференциальные уравнения типа Прандтля для тел с тонкостенными упругими включениями 238]. Интегральные представления могут быть использованы при решении различных смешанных задач для тел с разрезами, задач о полосах пластичности, моделируемых скачками перемещений [23], и др.  [c.38]

В первой части курса излагается общ ая теория напряженного и деформированного состояния. Выводятся дифференциальные уравнения равновесия в напряжениях и перемещениях для трехмерной изотропной среды. Принцип возможных перемещений применяется для изотропного зшру-гого тела. При помощи методов, применяемых в курсе сопротивления материалов, исследуются растяжение, кручение и изгиб стержней. Как частный случай общей теории приводятся общие соотношения для плоской деформации и плоского напряженного состояния. Дано решение дифференциальных уравнений плоской задачи в целых полиномах, а также в гиперболотригонометрических функциях применительно к изгибу тонкой полосы. Разбирается случай полярных координат. Описано применение энергетического метода к плоской задаче.  [c.5]


Вместе с тем в рамках этой теории исследовались, как правило, задачи о предельном равновесии, т. е. начале пластического течения. Получено ограниченное число решений задач с учетом изменения геометрии тела, собственно, о пластическом течении задачи о внедрении клина в полупространство, раздавливании клина плоским штампом [1-3], одноосном растяжении плоского [4] и цилиндрического [5] образцов, растяжении полосы с V-образными вырезами [6]. На основе этих решений в работах [7-9] получен определенный класс решений контактных задач для тел произвольной формы с учетом изменения геометрии свободной поверхности. При решении таких задач деформации тел оценивались визуально по искажению прямоугольной сетки. Более точное описание процесса деформирования требует использования в качестве меры деформации тензорных характеристик (тензора дисторсии, тензора конечных деформаций Альманси и т.п.). Решение задач с учетом изменения геометрии особенно необходимо при расчете деформаций в окрестности поверхностей разрыва скоростей перемещений и других особенностей пластической области.  [c.762]

В книге излагается теория переноса монохроматического излучения, изотропного и анизотропного (глава 2), и излз ения в спектральной линии с полным или частичным перераспределением по частоте (глава 4). Геометрия рассеивающих сред предполагается плоской. Рассматриваются бесконечная и полубесконечная среды, а также плоский конечный слой. Подробно излагается аналитическая теория, в том числе точные, асимптотические и приближенные методы решения модельных задач. В отдельную главу 3 выделен резольвентный метод, позволяющий найти точные выражения для основных функций, характеризующих поля излучения, и асимптотики этих функций. Дается представление о некоторых распространенных численных методах, В последней главе 5 рассматриваются задачи об определении интегральных характеристик полей излучения, таких как среднее число рассеяний, о рассеянии в молекулярных полосах, с частичным перераспределением по частоте, а также с учетом поляризации и движения рассеивающей среды.  [c.9]

На основе идей работы И. Е. Прокоповича (1956) Н. Ф. Какосимиди, применив наследственную теорию старения, разработал приближенный способ расчета фундаментной полосы (1960) и круглой плиты (1965), лежащих на упруго-ползучем основании. Для описания механических свойств оснований автор использовал модель упруго-ползучего полупространства, находящегося в условиях плоской деформации. Задача свелась к решению интегрального уравнения Вольтерра второго рода. Учет ползучести основания при расчете фундаментных полос (а также балок) приводит к возрастанию расчетных усилий, заметному перераспределению контактных давлений и возрастанию изгибаюпщх моментов.  [c.202]

При изучении вопроса о концентрации напряжений около щелей и трещин значительный интерес представляет решение смешанных задач теории упругости для неклассических областей типа полосы (слоя). В математическом отношении эти задачи очень трудны. Однако начатое около десяти лет назад систематическое исследование этого вопроса привело к созданию эффективных методов решения задач такого класса (В. М. Александров, И. И. Ворович, Н. Н. Лебедев, Я. С. Уфлянд и др.). Методами операционного исчисления эти задачи довольно легко сводятся к решению интегральных уравнений первого рода с нерегулярным ядром. Наибольший эффект в нахождении удобных для практического использования решений этих уравнений был достигнут при использовании специфичных асимптотических методов. Начало исследований вопроса равновесия трещин в полосе было положено И. А. Маркузоном (1963). В. М. Александров (1965) исследовал равновесные трещины вдоль полосы или слоя, где интегральное уравнение строится для функции, определяющей форму трещины. Им получено приближенное решение путем разложения ядра уравнения в ряд при больших отношениях толщины к размеру трещины и получены зависимости нагрузки от размеров трещины. Используя этот метод и решения уравнений Винера — Хопфа, В. М. Александров и Б. И. Сметанин (1965, 1966) получили выражение для коэффициента интенсивности напряжений на краях равновесной трещины в слое малой толщины. Для случая постоянной нагрузки определяется связь размера равновесной трещины с действующей нагрузкой. Аналогичное решение получено для дискообразной трещины в слое конечной толщины. В. М. Ентов и Р. Л. Салганик (1965) рассмотрели в балочном приближении задачу Ь полубесконечной трещине, проходящей по средней линии полосы, причем для нагрузок, приложенных к берегам трещины, задача сводится к рассмотрению расслаивания под действием нормальной или тангенциальной силы. В этой работе с помощью метода Винера — Хопфа получено выражение для коэффициента интенсивности напряжений для достаточно больших и достаточно малых значений отношения расстояния от конца трещины до точки приложения силы к полуширине полосы. Используя аналитический метод, развитый В. М. Александровым и И. И. Воровичем (1960) при исследовании контактных задач для слоя большой относительной толщины, Б. И. Сметанин (1968) рассмотрел задачу о продольной щели в клине, а также плоскую и осесимметричную задачи о продольной щели в слое при различных условиях на гранях клина и слоя. Для щели, расположенной симметрично относительно граней клина (слоя), и нормальной нагрузки, приложенной к поверхности щели, получены формулы для определения поверхности щели. Коэффициент интенсивности напряжений выражается в виде асимптотического ряда по степеням безразмерного параметра.  [c.383]

Как известно, решение плоской задачи теории упругости для прямоугольной полосы методом начальных функций [3] сводится к определению четырех начальных функций, представляющих собой компоненты вектора перемещений и, v п вектора напряжений Оу, Хху на площадке у = onst и определенных при г/ = О (рис. i). Напряженное и деформированное состояние полосы через начальные функции определяется формулами  [c.137]

Представляется поучительным перед детальным анализом задачи теории упругости исследовать закономерность роста деформаций и напряжений при увеличении нагрузки на основе элементарных соображений размерности. Для простоты ограничимся рассмотрением (а) тел вращения (например, щаров). Для которых область контакта есть круг радиуса а, и (Ь) плоскими телами (цилиндрами с параллельными осями), для которых область контакта есть полоса щириной 2а.  [c.105]

Этой трудности можно избежать, используя совершенно отличный подход, предложенный Хейнсом и Оллертоном [154] и развитый Калькером [210]. В этом методе область контакта делится на тонкие полоски, параллельные направлению качения (ось х). Теория, развитая для плоской задачи (см. 8.3), используется для каждой такой полосы при этом пренебрегается их взаимодействием. Будем применять этот метод для случая эллиптической площадки контакта при действии лишь продольной тангенциальной силы Qx (рис. 8.9).  [c.299]


Смотреть страницы где упоминается термин Теория Задача плоская для полос : [c.149]    [c.100]    [c.249]    [c.250]    [c.147]    [c.304]    [c.14]    [c.23]    [c.160]    [c.278]    [c.286]    [c.119]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.97 , c.98 ]



ПОИСК



Вывод основных уравнений для тонких упругих покрытий (прослоек) в плоском случае путем асимптотического анализа точного решения задачи теории упругости для полосы

Плоская задача

Плоские задачи теории упругости для полуплоскости и полосы с разрезами

Теории Задача плоская

Теория Задача плоская для полос бесконечных и для тел анизотропных



© 2025 Mash-xxl.info Реклама на сайте